T.C. AKDENİZ ÜNİVERSİTESİ

RADYONÜKLİTLER İÇİN ETKİN DOZ HIZI DÖNÜŞÜM KATSAYILARININ MONTE CARLO YÖNTEMİ İLE HESAPLANMASI

Fatma ONAT

FEN BİLİMLERİ ENSTİTÜSÜ

RADYASYON GÜVENLİĞİ VE KORUMA

ANABİLİM DALI

YÜKSEK LİSANS TEZİ

ŞUBAT 2021

ANTALYA

T.C. AKDENİZ ÜNİVERSİTESİ

RADYONÜKLİTLER İÇİN ETKİN DOZ HIZI DÖNÜŞÜM KATSAYILARININ MONTE CARLO YÖNTEMİ İLE HESAPLANMASI

Fatma ONAT

FEN BİLİMLERİ ENSTİTÜSÜ

RADYASYON GÜVENLİĞİ VE KORUMA

ANABİLİM DALI

YÜKSEK LİSANS TEZİ

ŞUBAT 2021

ANTALYA

T.C. AKDENİZ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

RADYONÜKLİTLER İÇİN ETKİN DOZ HIZI DÖNÜŞÜM KATSAYILARININ MONTE CARLO YÖNTEMİ İLE HESAPLANMASI

Fatma ONAT

RADYASYON GÜVENLİĞİ VE KORUMA

ANABİLİM DALI

YÜKSEK LİSANS TEZİ

Bu tez Akdeniz Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FYL-2020-5307 nolu proje ile desteklenmiştir.

ŞUBAT 2021

T.C. AKDENİZ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

RADYONÜKLİTLER İÇİN ETKİN DOZ HIZI DÖNÜŞÜM KATSAYILARININ MONTE CARLO YÖNTEMİ İLE HESAPLANMASI

Fatma ONAT RADYASYON GÜVENLİĞİ VE KORUMA ANABİLİM DALI YÜKSEK LİSANS TEZİ

Bu tez 16/02/2021 tarihinde jüri tarafından Oybirliği ile kabul edilmiştir.

Prof. Dr. Ahmet BOZKURT (Danışman) Doç. Dr. Nina TUNÇEL Doç. Dr. Şule ERGÜN

ÖZET

RADYONÜKLİTLER İÇİN ETKİN DOZ HIZI DÖNÜŞÜM KATSAYILARININ MONTE CARLO YÖNTEMİ İLE HESAPLANMASI

Fatma ONAT

Yüksek Lisans Tezi, Radyasyon Güvenliği ve Koruma Anabilim Dalı

Danışman: Prof. Dr. Ahmet BOZKURT

Şubat 2021; 113 sayfa

Radyasyon uygulamalarında bireyleri radyasyonun olumsuz etkilerinden korumak öncelikle maruz kalınan radyasyon dozunun bilinmesini gerektirir. Yerinde ölçümler veya hesaplamalar yardımıyla yapılan bu doz tahminleri bireylerin güvenli doz limitleri dahilinde çalışıp çalışmadığına karar vermede önemlidir. Ancak organ dozu bazında ölçümler yapılamadığından, çoğu zaman süreç hesaplamalarla yürütülür. Bu tez kapsamında, bir Monte Carlo radyasyon taşıma kodu olan MCNP içerisinde voksel tabanlı bir tüm vücut modeli tanımlanarak insan bedenindeki radyasyon etkileşimleri simüle edilmiş ve fantomun 1 m uzağına yerleştirilen radyoaktif nokta bir kaynaktan yayımlanan fotonların her bir organ veya dokuda bıraktığı soğrulan dozlar belirlenmiştir. Vücut modeli olarak yetişkin referans erkek ve dişi fantomların kullanıldığı simülasyonlar sonucunda her iki fantoma ait elde edilen soğrulan organ dozları, ICRP Yayın 103 metodolojisine uygun olarak sırasıyla radyasyon ve doku ağırlık faktörleri ile çarpılıp önce eşdeğer organ dozuna ve ardından toplamlar alınarak etkin doza dönüştürülmüştür. Daha sonra hesaplanan etkin doz, kaynağın birim aktivitesine ve birim maruziyet süresine bölünerek ve ayrıca kaynak ile fantom arasındaki mesafeden de bağımsız hale getirilerek etkin doz hızı dönüşüm katsayısına dönüştürülmüştür. Simülasyonlar, fantomların 8 farklı yönelimi ve foton yayıcı 1179 farklı radyonüklit kaynak için gerçekleştirilmiş ve sonuçta her bir radyonüklit kaynağa ve kaynak yönelimine özgü etkin doz hızı dönüşüm katsayıları türetilmiştir. Tüm yönelim ve radyoizotoplar incelendiğinde, maksimum doza AP yöneliminde Cf-254 izotopunun, minimum doza ise RP yöneliminde Sm-251 izotopunun sebep olduğu gözlenmiştir. Elde edilen sonuçlar literatürdeki hava kerma hızı sabiti katsayılarıyla kıyaslandığında, vücut modeli üzerinden farklı kaynak yönelimleri için geliştirilen etkin doz hızı dönüşüm katsayılarının pratik uygulamalarda radyasyon alanında yer alan bir birey için radyasyon riskini daha gerçekçi bir şekilde temsil edeceği görülmüştür.

ANAHTAR KELİMELER: Etkin Doz Hızı Dönüşüm Katsayısı, Foton Kaynakları, Monte Carlo Yöntemi, Soğrulan Organ Dozu, Voksel Tabanlı Fantom

JÜRİ: Prof. Dr. Ahmet BOZKURT

Doç. Dr. Nina TUNÇEL

Doç. Dr. Şule ERGÜN

ABSTRACT

COMPUTING THE EFFECTIVE DOSE RATE CONVERSION COEFFICIENTS USING THE MONTE CARLO METHOD

Fatma ONAT

MSc Thesis in Department of Radiation Safety and Protection

Supervisor: Prof. Dr. Ahmet BOZKURT

February 2021; 113 pages

In radiation applications, one needs to know the radiation dose exposed in order to protect the individuals from detrimental effects of radiation. These dose estimates are assessed from on the spot measurements or calculations and are essential in deciding whether the individuals are working within safe dose limits. However, because measurements can not be made on the basis of organ dose, the process is usually carried out through calculations, Within the scope of this thesis study, a voxel-based whole body model defined in MCNP, which is a Monte Carlo radiation transport code, and radiation interactions inside human body were simulated and absorbed doses deposited in each organ or tissue originated from photons emitted from a radioactive point source placed 1 m away from the phantom were determined. As a result of the simulations which used adult reference male and female phantoms as body models, the absorbed organ doses from both phantoms were subsequently multiplied by the radiation and tissue weight factors, in accordance with the ICRP Publication 103 methodology, and then converted to equivalent organ doses and then added to obtain effective dose. Later, the calculated effective dose was converted to the effective dose rate conversion coefficient by dividing by the unit source activity and unit exposure time and also was made independent of the distance between the source and the phantom. Simulations were performed for 8 different orientations of the source and for 1179 different radionuclide sources emitting photons, and as a result effective dose rate conversion coefficients were derived for each radionuclide source and orientation investigated. When all the orientation and the radioisotopes were examined, it was observed that Cf-254 isotope under AP orientation caused the maximum dose while Sm-251 isotope under RP orientation caused the minimum dose. When the obtained results are compared with the air kerma rate constant in the literature, it is seen that the effective dose rate conversion coefficients developed for different source orientations using whole body models will represent the radiation risk more realistically in practical applications for an individual in a radiation field.

KEYWORDS: Effective Dose Rate Conversion Coefficient, Photon Sources, Monte Carlo Method, Absorbed Organ Dose, Voxel Based Phantom

COMMITTEE: Prof. Dr. Ahmet BOZKURT

Assoc. Prof. Dr. Nina TUNÇEL

Assoc. Prof. Dr. Şule ERGÜN

ÖNSÖZ

Bu çalışmanın gerçekleşmesinde değerli bilgilerini benimle paylaşan, kıymetli zamanını ayırıp sabırla ve büyük bir ilgiyle bana yardımcı olabilmek için elinden gelenden fazlasını sunan, her sorun yaşadığımda yanına çekinmeden gidebildiğim, güler yüzünü ve samimiyetini benden esirgemeyen ve gelecekteki mesleki hayatımda da bana kattığı bilgilerden faydalanacağım kıymetli danışman hocam Sayın Prof. Dr. Ahmet BOZKURT'a, tüm eğitim sürecim boyunca bütün zorlukları benimle göğüsleyen ve hayatımın her evresinde bana destek olan değerli aileme, gerek kişisel yaşamımda gerek çalışma hayatımda gerçekçi fikirleriyle benim yanımda olan Sayın Ögr. Gör. Aycan ŞAHİN'e sonsuz teşekkürlerimi sunarım.

ÖZET		i			
ABSTRACT	`	ii			
ÖNSÖZ		iii			
AKADEMİ	S BEYAN	vi			
SİMGELER	VE KISALTMALAR	vii			
ŞEKİLLER	DİZİNİ	xi			
ÇİZELGELI	ER DİZİNİ	xiii			
1. GİRİŞ		1			
2. KAYN	IAK TARAMASI	4			
3. MATE	RYAL VE METOT				
3.1. Me	onte Carlo Yöntemi				
3.1.1.	Monte Carlo Simülasyon Tekniği				
3.1.2.	Radyasyon Taşımada Kullanılan MC Kodları	19			
3.2. M	CNP'nin Genel Özellikleri	20			
3.2.1.	MCNP6'nın Genel Özellikleri	21			
3.2.2.	MCNP'de Geometrik Modelleme	22			
3.2.3.	MCNP'de Kaynak Tanımı	23			
3.2.4.	MCNP'de Dedektör Türleri	25			
3.2.5.	MCNP Simülasyonları ve Pratik Hususlar	25			
3.2.6.	MCNP'de Tekrarlanan Yapıların Modellenmesi	26			
3.3. Vü	icut Fantomları	27			
3.3.1.	Hesaplamalı Stilize Fantomlar	29			
3.3.2.	Hesaplamalı Vokselize Fantomlar				
3.4. IC	RP Yetişkin Referans Fantomları				
3.5. Ra	dyonüklidler ve İzotop Bozunum Verileri				
3.6. Etl	kin Doz Hesabı				
3.6.1.	Soğrulan Organ Dozu				
3.6.2. Eşdeğer Doz					
3.6.3.	3.6.3. Etkin Doz				
3.7. Etl	kin Doz H1z1 Dönüşüm Katsayısı (EDDK)	43			
4. BULG	ULAR VE TARTIŞMA	49			

İÇİNDEKİLER

	4.1. Çalışmada İncelenen Durumlar	49
	4.2. Simülasyonların Öykü Sayısı, Süresi ve Bağıl Hatası	49
	4.3 EDDK Değerlerine Etki Eden Faktörler	
	4.4 Simülasyon Sonuçlarının Literatür Değerleri ile Kıyaslanması	54
5.	SONUÇLAR	63
6.	KAYNAKLAR	65
7.	EKLER	70
Ö	ZGEÇMİŞ	

AKADEMİK BEYAN

Yüksek Lisans Tezi olarak sunduğum "Radyonüklitler için Etkin Doz Hızı Dönüşüm Katsayılarının Monte Carlo Yöntemi ile Hesaplanması" adlı bu çalışmanın, akademik kurallar ve etik değerlere uygun olarak yazıldığını belirtir, bu tez çalışmasında bana ait olmayan tüm bilgilerin kaynağını gösterdiğimi beyan ederim.

16/02/2021

Fatma ONAT

SİMGELER VE KISALTMALAR

Simgeler

γ	: gama
	0

- *A* : aktivite
- Bq : Becquerel
- boz : bozunum
- C : Coulomb
- Ci : Curie
- $D_{T,R}$: soğrulan organ dozu
- dk : dakika
- *E* : etkin doz
- eV : elektron volt
- Gy : Gray
- H_p : doz eşdeğeri
- H_T : eşdeğer doz
- $I_{\gamma,t}$: toplam intensite
- $I_{\gamma,mak}$: maksimum enerji intensitesi
- $I_{\gamma,min}$: minimum enerji intensitesi
- $I_{\gamma,bas}$: baskın enerji intensitesi

 $I_{\gamma,25keV}$: 25 keV altı enerjilerin toplam intensitesi

m	: metre	
par	: parçacık	
R	: Röntgen	

- Sv : Sievert
- sa : saat
- sn : saniye

- w_R : radyasyon ağırlık faktörü
- *w_T* : doku ağırlık faktörü

<u>Kısaltmalar</u>

AF	: Adult Female (Yetişkin Dişi)		
AM	: Adult Male (Yetişkin Erkek)		
4D MCAT	: Four Dimensional Mathematical Cardiac-Torso Phantom		
	(Dört Boyutlu Matematiksel Kardiyak Gövde Fantomu)		
BREP	: Boundary Representation		
CERN	: European Organization for Nuclear Research		
	(Avrupa Nükleer Araştırma Örgütü)		
СТ	: Computed Tomography (Bilgisayarlı Tomografi)		
EDDK	: Etkin Doz Dızı Dönüşüm Katsayısı		
ENDF	: Evaluated Nuclear Data Files		
	(Denetimden Geçmiş Nükleer Veri Dosyaları)		
ENIAC	: Electronic Numerical Integrator and Computer		
ENSDF	: Evaluated Nuclear Structure Data File		
	(Denetimden Geçmiş Nükleer Yapı Veri Dosyaları)		
gkd	: Geri kalan dokular		
HKHS	: Hava Kerma Hızı Sabiti		
IAEA	: International Atomic Energy Agency		
	(Uluslararası Atom Enerji Ajansı)		
ICRP	: International Commission on Radiological Protection		
	(Uluslararası Radyasyondan Korunma Komitesi)		
ICRU	: International Commission on Radiation Units and Measurements		
	(Uluslararası Radyasyon Birimleri ve Ölçümleri Komitesi)		
ICRP-AF	: ICRP Adult Female (ICRP yetişkin dişi)		
ICRP-AM	: ICRP Adult Male (ICRP yetişkin erkek)		
IDACstar	: Internal Dose Assesment by Computer		

INFN	: Instituto Nazionale di Fisica Nucleare			
	(İtalyan Nükleer Fizik Enstitüsü)			
JM-108	: Ortalama Yetişkin Japon Erkek Fantomu			
LANL	: Los Alamos National Laboratory (Los Alamos Ulusal Laboratuvarı)			
LET	: Linear Energy Transfer (Lineer Enerji Transferi)			
LHC	: Large Hadron Collider (Büyük Hadron Çarpıştırıcısı)			
MC	: Monte Carlo			
MCNP	: Monte Carlo N-Particles			
MIRD	: Medical Internal Radiation Dose (Tıbbi Dahili Radyasyon Dozu)			
MIT	: Massachusetts Institute of Technology			
	(Massachusetts Teknoloji Enstitüsü)			
MRI	: Magnetic Resonance Imaging (Manyetik Rezonans Görüntüleme)			
NURBS	: Non-uniform Raional B-Spline			
ORNL	: Oak Ridge National Laboratory (Oak Ridge Ulusal Laboratuvar)			
RBE	: Relative Biological Effectiveness (Rölatif Biyolojik Etkinlik)			
SEE	: Specific Effective Energy (Özgün Etkin Enerji)			
SAF	: Specific Absorbed Fraction (Özgün Soğurma Katsayısı)			
RCP-AM	: Referance Computational Phantom Adult Male			
	(Referans Hesaplamalı Erişkin Erkek Fantomu)			

Х

ŞEKİLLER DİZİNİ

Şekil 3.1. 7*7*7'lik küp yapısının ayrı ayrı küplerin manuel tanımlanması sonucu MCNP'den görüntülenen katmanları
 Şekil 3.2. 7*7*7 adet küp örgüsü ile oluşturulan bir voksel kürenin geometrik gösterimi. a) Örgüyü (lattice) oluşturan küp kesitleri; b) Küp örgüsü; c) Voksel küre24
Şekil 3.3. Hesaplamalı fantom çeşitleri. a) Stilize fantom; b) Vokselize fantom;c) BREP fantom
 Şekil 3.4. Hesaplamalı fantom çeşitlerine ait metotların akciğer üzerinde gösterimi. a) Stilize akciğer; b) Vokselize akciğer; c) BREP akciğer
Şekil 3.5. Farklı hesaplamalı fantomlarda sindirim sisteminin tanımlanması. a) Stilize fantom; b) Vokselize fantom; c) BREP fantom
Şekil 3.6. Stilize fantomların gelişimi. a) MIRD fantomu; b) 4D MCAT fantomu;c) Süperkuadratik fantom
Şekil 3.7. Pikselden piksel dizisine ve voksel örgüsüne dönüşüm
Şekil 3.8. Vokselize fantom oluşturma aşamaları
Şekil 3.9. Stilize ve vokselize fantomların aynı aksiyal kesitlerinin karşılaştırılması.a) Stilize fantom; b) Vokselize fantom
Şekil 3.10. ICRP yetişkin referans voksel fantomların önden görünümü (boyutlar mm cinsinden). a) Yetişkin erkek (ICRP-AM); b) Yetişkin dişi (ICRP-AF)
Şekil 3.11. Referans yetişkin dişiye ait indis numaraları bloğunun MCNP formatına dönüştürüldükten sonraki görüntüsü
Şekil 3.12. Referans yetişkin dişiye ait indis numaraları bloğunun MCNP girdi dosyasındaki birkaç satır görüntüsü
Şekil 3.13. Farklı radyasyon türlerinin RBE - LET ilişkisi41
Şekil 3.14. Etkin dozun fantomlar kullanılarak hesaplanma adımları
Şekil 3.15. EDDK değeri hesaplanan kaynak yönelimleri (AP: anterior-posterior / ön- arka eksen; RA: right-anterior / sağ-ön eksen; RL: right-lateral / sağ-yan eksen: RP: right-posterior / sağ-arka eksen; PA: posterior-anterior / arka-ön eksen; LP: left- posterior / sol-arka eksen; LL: left-lateral / sol-yan eksen: LA: left-anterior / sol-ön eksen)

Şekil 4.1. Maksimum EDDK	değerine sahip	izotopların spektru	mları53
--------------------------	----------------	---------------------	---------

ÇİZELGELER DİZİNİ

Çizelge 2.1. Literatürdeki bazı doz dönüşüm katsayısı çalışmalarına ait özellikler5
Çizelge 3.1. ICRP yetişkin referans erkek (ICRP-AM) ve dişi (ICRP-FM) fantomunun temel özellikleri
Çizelge 3.2. ICRP yetişkin referans voksel fantomlarında segmente edilmiş (bölütlenmiş) dokular
Çizelge 3.3. ICRP 107'de spektrum bilgileri yer alan radyasyon türleri
Çizelge 3.4. ICRP tarafından farklı radyasyon türleri için tavsiye edilen radyasyon ağırlık faktörleri
Çizelge 3.5. Organ veya dokular için ICRP tarafından önerilen doku ağırlık faktörleri 42
Çizelge 3.6. ICRP yetişkin referans voksel fantomlarında yer alıp kemik yüzeyi ve kırmızı kemik iliği doz hesabına dahil edilen dokular ve bunların katkı oranları
Çizelge 3.7 . ICRP yetişkin referans voksel fantomlarında yer alan ve etkin doza katkısı bulunan doku ve organlar (kemik dokusu ve arta kalan dokular hariç)47
Çizelge 3.8. ICRP yetişkin referans voksel fantomlarında geri kalan dokular arasında yer alan doku ve organlar
Çizelge 4.1. Çalışmada simülasyonların yapıldığı bilgisayarın özellikleri50
Çizelge 4.2. Tüm yönelimlerde genellikle en fazla sayıda parçacık öyküsüne ihtiyaç duyan radyonüklitlerin özet spektrum bilgileri
Çizelge 4.3. Br-82m izotopunun 1 milyar parçacık için cp0 ve ctm süreleri (dk)52
Çizelge 4.4. Minimum EDDK değerine sahip olan izotopların spektrumları
Çizelge 4.5. Bazı radyonüklitler için hava ve vakum ortamlarda MCNP ile hesaplanan HKHS ve EDDK (AP) değerlerinin kıyaslanması
Çizelge 4.6. Bazı radyonüklitler için farklı yöntemler ile hesaplanan HKHS değerlerinin kıyaslanması
Çizelge 4.7. Bazı radyonüklitler için MCNP yardımıyla hesaplanmış EDDK (AP) ve HKHS değerlerinin kıyaslanması
Çizelge 4.8. Bazı radyonüklitler için literatürdeki HKHS değerleri ile MCNP'den elde edilen HKHS değerlerinin kıyaslanması

Çizelge 4.9. Bazı radyonüklitler için literatürdeki HKHS değerleri ile AP ve RP	
yönelimlerinin EDDK değerlerinin kıyaslanması	.62

1. GİRİŞ

Radyoaktivite, kararsız atomlarda yeni izotopların veya izomerlerin oluşumuyla sonuçlanan ve kendiliğinden gerçekleşen nükleer dönüşümler olarak tanımlanır (Johnson 2017). Çekirdeğin, bu dönüşüm sırasında parçacık veya elektromanyetik dalga olarak yaydığı enerjiye *nükleer radyasyon* denir ve en genel tanımıyla *radyasyon*, elektromanyetik spektrumun tamamı ile atomik veya atom altı parçacıklar yoluyla atomdan dışarıya aktarılan enerjiyi ifade eder.

Farklı radyasyon türlerini sınıflandırmanın birçok yolundan biri de taşınan enerji miktarına bağlı olarak *iyonlaştırıcı ve iyonlaştırıcı olmayan radyasyon* şeklinde gruplandırmaktır. İyonlaştırıcı türdeki radyasyonlar genellikle etkileşime girdikleri maddenin atomlarını uyarma ve iyonlaştırma yetenekleriyle karakterize edilir. Bir değerlik elektronunun bir atomdan kopması için 4-25 eV aralığında enerji gerektiğinden, bir radyasyon türünün iyonlaştırıcı olabilmesi için bu değerden daha fazla kinetik enerji veya enerji kuantumunu atoma aktarması gerekir (Attix 1986). X ve γ ışınları gibi fotonlar ile elektron, pozitron, proton, alfa, nötron, ağır iyon ve mezon gibi tüm atomik ve atom altı parçacıklar iyonlaştırıcı radyasyon grubunda yer alır. İyonlaştırıcı olmayan türdeki radyasyonlar ise genellikle dalga boyu yaklaşık 10 nm veya daha uzun olan elektromanyetik radyasyonlardır. Elektromanyetik spektrumun bu dalga boyundaki kısmı radyo dalgaları, mikrodalgalar, kızıl ötesi (infrared), görünür ve mor ötesi (ultraviyole) ışınları içerir (Tschurlovits vd. 1992).

İyonlaştırıcı veya iyonlaştırıcı olmayan radyasyon türlerinden tıpta, endüstride, araştırmada ve enerji üretiminde büyük ölçüde yararlanılır. Radyasyon kaynaklarının tedarik edilmesinde, rutin kullanım süreçlerinde veya meydana gelebilecek herhangi bir kaza durumunda, çalışan veya halkın bir miktar radyasyona maruz kalması söz konusu olabilmektedir. Radyasyon maruziyeti riskini azaltmak ve dolayısıyla radyasyonun olası sağlık etkilerini mümkün olduğunca minimize etmek üzere Uluslararası Radyasyondan Korunma Komitesi (ICRP) tarafından oluşturulan radyasyondan korunma sistemi *gerekçelendirme, optimizasyon* ve *doz sınırlama* ilkelerine dayanmaktadır (ICRP 2007). Birinci ilke, net bir pozitif fayda sağlamayan radyasyon uygulamalarının yapılmaması gerektiğini ifade ederken, ikinci ilke, mümkün olan en düşük doz ile maksimum bilgi veya etkinin elde edilmesini amaçlar. Sonuncu ilke ise, her uygulamada radyasyon maruziyetini izin verilen ve güvenli sayılabilen doz sınırlarının altında tutmayı hedefler.

Radyasyon içeren faaliyetlerin risklerini ve faydalarını dengelemek radyasyondan korunmanın temel amaçlarından olup, bu amaç doğrultusunda çalışanların uygulama sırasında aldıkları radyasyon dozunun miktarının bilinmesine ihtiyaç duyulmaktadır. Radyasyon dozimetrisi olarak bilinen bu süreçte, bir radyasyon alanında yapılan spesifik ölçümler, radyasyonun bir hedefte üreteceği fiziksel, kimyasal veya biyolojik değişiklikler ile nicel olarak ilişkilendirilmeye çalışılır (Turner 2007).

Radyasyondan korunma ve radyasyon dozimetrisinin ardında yatan temel ilke ve kavramlar, bilim ve teknolojinin gelişmesi ile kazanılan bilgi ve tecrübelerin ışığında yıllar içerisinde değişim gösterebilmektedir. Bu kavramların geliştirilmesi ve radyasyonla uğraşılan tesislerde radyasyondan korunma kriter ve limitlerinin belirlenmesinde, ICRP ile Uluslararası Radyasyon Birimleri ve Ölçümleri Komitesi (ICRU), iş birliği içinde çalışarak tavsiyeler geliştirir ve bu tavsiyeler radyasyon kaynaklarının güvenliğini temin

etmede ve çalışanların, halkın ve çevrenin radyasyondan korunmasını sağlamada dünya ölçeğinde önemli rol oynar (ICRP 2007; ICRU 2011).

ICRP tarafından tavsiye edilen doz limitleri, özellikle iyonlaştırıcı radyasyonun biyolojik ortamlardaki etkinliğinden kaynaklanan risklerin azaltılmasında oldukça önemlidir. Bu yüzden iyonlaştırıcı radyasyon üreten veya yayan kaynakların etrafında çalışacak personelin radyasyonun olası zararlı etkilerinden korunması bakımından çalıştıkları süre içerisinde ne kadarlık radyasyon dozuna maruz kaldığının bilinmesi radyasyondan korunma pratiğinin hayati bir parçasıdır (Attix 1986; Johnson 2017).

Radyasyon maruziyeti kavramı ilk zamanlar iyonlaştırıcı radyasyon yayan bir kaynağın etrafında havanın birim kütlesinde ölçülen iyonlaşma miktarı cinsinden ifade edilmekteydi (Nachtigall 1969). Bu yaklaşımın sonucu olarak, radyoaktif izotoplar için gama sabiti adıyla bilinen ve kaynağın 1 metre uzağında birim aktivite başına pozlanma hızını genellikle Röntgen birimi (enerjisi 3 MeV'e kadar olan X ve y türü radyasyonların, havanın birim kütlesinde oluşturacağı iyonlaşma miktarını tanımlayan maruziyet/pozlanma birimi) cinsinden veren bir nicelik kullanılmaktaydı (Unger ve Trubey 1982). Daha sonraları, iyonlaşma miktarı yerine doz miktarı temelinde bir kavramın kullanılmasının daha doğru olacağı ICRP tarafından tavsiye edilmiş ve özellikle radyoaktif kaynaklar için korunma nicelikleri hava kerma hızı ile ilişkilendirilmiştir (ICRP 1982). Hava kerma hızı, havanın birim kütlesi başına yüksüz iyonlaştırıcı parçacıklar (foton veya nötronlar) tarafından birim zamanda üretilen tüm yüklü iyonlaştırıcı parçacıkların başlangıç kinetik enerjilerinin toplamı olarak tanımlanır (Wasserman ve Groenewald 1988). Uygulamada ise, radyoaktif bir kaynaktan 1 metre uzakta birim aktivite başına hava kerma hızı hesaplanarak hava kerma hızı sabiti şeklinde genellikle tablolarda Gym²/Bq/sn cinsinden verilen değerler kullanılır. Böylece aktivitesi bilinen noktasal bir gama kaynağının belli bir mesafe uzağında belli bir süre geçiren bir bireyin maruz kaldığı doz miktarı kolaylıkla hesaplanabilmektedir (Wasserman ve Groenewald 1988; Ninkovic vd. 2005; Pibida vd. 2008; Vega-Carrillo vd. 2008; Ninkovic ve Adrovic 2012; Smith ve Stabin 2012; Otto 2016).

Radyasyondan korunmanın temel amaçlarından olan radyasyonun stokastik etkilerinin ortaya çıkma olasılığının azaltılması, personelin maruz kaldığı dozun belirlenen doz limitlerinin altında tutulması durumunda mümkün olabilir. Bu limitler ise en güncel haliyle eşdeğer ve etkin doz gibi kavramlar yardımıyla belirlenmektedir (ICRP 1991, 2007). Ancak uygulamada kullanılan ve fotonlar için enerji soğurma veya transfer katsayıları kullanılarak elde edilen pozlanma hızı veya hava kerma hızı sabitlerini içeren hesaplamalar gerçek ışınlanma ve radyasyon etkilerini doğru temsil edememektedir (Hubbell 2006). Çünkü her iki nicelik türü de, nokta detektörlerle, vakum ortamında pozlanma/maruziyet veya kerma üzerinden yapılan hesaplamalara dayanılarak soğrulan dozun tahmin edilmesini esas alır. Bu yaklaşım ise iyonlaştırıcı radyasyonun doku ortamında oluşturacağı biyolojik hasarı göz ardı eder ve doz hesaplamalarının hassas ve güvenilir sonuçlar vermesini ve anlamlı çıkarımlar yapılmasını zorlaştırır.

Etkin doz hesaplamalarında karşılaşılan bu eksiklik, ICRP 103'te de gösterildiği gibi, soğrulan organ dozu, radyasyon ağırlık faktörleri, eşdeğer doz, doku ağırlık faktörleri ve etkin doz gibi modern korunma kavramlarının da hesaplamaya dahil edilmesiyle giderilebilir. Bu çalışmanın amacı, rutin çalışma esnasında veya bir kaza durumunda radyoaktif kaynaklara maruz kalan kişilerin doz değerlendirmelerinin

realistik vücut modelleri kullanılarak elde edilmiş dozimetrik nicelikler kullanılarak daha doğru bir şekilde yapılabileceğini göstermektir. Bu amaç doğrultusunda, ICRP 110 tarafından kullanılması önerilen ve voksel tabanlı erkek ve dişi anatomisini temsil eden iki tüm vücut modeli (fantom), bir radyasyon taşıma programı olan MCNP içerisinde tanımlanmıştır (ICRP 2009; Werner 2017). Hava ortamına yerleştirilen her iki fantomun yüzeyinden 1 m uzakta yer alan bir nokta kaynak için ICRP 107'de verilen ve foton spektrumuna sahip tüm radyonüklitler (1179 tane) için belli organ veya dokularda soğrulan dozlar Monte Carlo yöntemiyle hesaplanmıştır (ICRP 2008b). ICRP 103 metodolojisine uygun olarak her bir radyoizotop için farklı kaynak yönelimlerine (anterior-posterior, posterior-anteriror, lateral ve çapraz lateral ışınlama geometrileri) özel etkin dozlar belirlenmiştir (ICRP 2007). Böylece radyonüklit kaynak yakınında yer alan bir kişi için söz konusu olacak etkin dozun, kaynağın enerji spektrumuna ve fantomun kaynağa göre yönelimine bağlı olarak nasıl değiştiği analiz edilmiştir. Hesaplamalar sonunda her bir durum için elde edilen etkin doz değerleri, birim mesafe, birim aktivite ve birim zamana normalize edilerek, kaynak ile fantom arasındaki mesafeden bağımsız hale getirilmiş ve böylece her bir ışınlama konfigürasyonu için radyasyondan korunmada hava kerma hızı sabitleri yerine kullanılmak üzere yeni bir nicelik olarak etkin doz hızı dönüşüm katsayıları üretilmiştir.

Voksel tabanlı dişi ve erkek vücut modellerinin MCNP programı içerisinde tanımlanması, radyasyon çalışanlarının ve maruz kaldıkları dozların doğru şekilde simüle edilmesine olanak sağlamıştır. Bu yöntem, radyasyon kaynakları ile çalışan personelin maruziyet senaryolarını daha gerçekçi olarak temsil edilebilecek yetenektedir. Ayrıca bu çalışmada önerilen şekliyle etkin doz temelinde bir yaklaşım benimsenerek hesaplanan etkin doz hızı dönüşüm katsayıları, personelin radyasyon maruziyetine karşı korunmasında daha doğru doz değerlendirmeleri sunacaktır (ICRP 1977, 1991, 2007).

Bu tez çalışmasında Bölüm 1, radyasyondan korunmanın temel ilkelerinden bahisle önerilen çalışmanın amacını, temel bilgileri ve çalışmanın motivasyonunu; Bölüm 2, bu alanda daha önce yapılan çalışmaların literatür taraması ve özetini; Bölüm 3, bu çalışmada önerilen etkin doz hızı dönüşüm katsayılarını hesaplamak için takip edilen yöntemi, radyasyondan korunma pratiğinde kullanılan mevcut kavram ve nicelikleri ve çalışmada kullanılan materyal ve araçları; Bölüm 4, çalışmadan elde edilen bulguların analizini; Bölüm 5, çalışmadan elde edilen bulgular ile literatür verilerinin kıyasını; Bölüm 6, ise elde edilen sonuçların genel bir değerlendirmesini sunmaktadır.

2. KAYNAK TARAMASI

Radyasyon uygulamalarının gerçekleştiği her alanda radyasyonun zararlı etkilerinden korunabilmek amacıyla organ veya tüm vücut bazındaki doz değerlendirmelerinin gerçekleştirilmesi için farklı doz dönüşüm katsayıları türetilmiştir. Hem dahili hem harici radyasyon maruziyetini takip etmek amacıyla ihtiyaç duyulan bu doz dönüşüm katsayıları farklı yöntemler benimsenerek hesaplanmıştır. Bu bölüm dahilinde, doz dönüşüm katsayıları elde edilirken faydalanılan kaynak ve araçlar, uygulanılan yaklaşımlar, sonuçta ortaya çıkan katsayılar ve bu katsayıların kullanım alanları temelinde bir literatür taraması yapılmıştır. Ayrıca, incelenen literatür çalışmalarına yönelik özet bilgileri içeren Çizelge 2.1 hazırlanmıştır.

Radyoizotoplar için radyasyondan korunma pratiğinde kullanılmak amacıyla dönüşüm katsayıları geliştirmek üzere yapılmış ilk çalışmalardan biri Lauridsen (1982) tarafından gerçekleştirilmiştir (Lauridsen 1982). Risoe Ulusal Laboratuvarları'na ait bu çalışmada, 1084 tane radyonüklit için maruziyet hızı sabitleri (R m²/Ci/sa) tablo halinde verilmektedir. Tüm hesaplamalar için gerekli veriler, ORNL tarafından derlenen ve IAEA'nın Evaluated Nuclear Structure Data File (ENSDF) sayfasından elde edilmiştir (Anonymous 1). Maruziyet hızı sabitleri, nokta kaynağa 1 metre uzaklıktaki silindir yapı için hesaplanmıştır. Yarıçapı 30 cm ve yüksekliği 100 cm olan silindir yapı, raporda fantom olarak nitelendirilmiş ve bu yapının bileşiminin insan dokusuna eşdeğer su olduğu varsayılmıştır. Radyonüklit kaynaklar için x ışınları ve 30 keV'den az enerjili fotonlar pratikte bir öneme sahip olmadığı için hesaplamalarda göz ardı edilmiştir. Bu çalışmada, insanı temsilen kullanılan silindirik su yapısı, gerçek doku veya organları yansıtmamaktadır. Ayrıca çalışmada radyasyon transportunda problemlerinde tercih edilen Monte Carlo kodlarından hiçbirine başvurulmamıştır.

Unger ve Trubey (1982) tarafından yazılmış bir Oak Ridge Ulusal Laboratuvarı raporunda, radyolojik değerlendirmeler ve dozimetri için önemli olan ve spektrumları literatürden derlenen yaklaşık 500 radyonüklide özgü gama sabitleri (rem/Bq/sa) listelenmektedir (Kocher 1981; Unger ve Trubey 1982). Nokta kaynaktan 1 m (R = 1 m) uzaklıkta olmak üzere gama sabitleri,

$$\Gamma_{\delta} = \frac{1}{4\pi R^2} \sum_{n} S_i D(E_i) \tag{2.1}$$

bağıntısından hesaplanmıştır. Bu bağıntıda radyonüklit spektrumunda mevcut gama fotonu sayısı *n*, her bir γ ışınının yayımlanma olasılığı *S_i*, birim akı yoğunluğu başına doz hızı *D*(*E_i*) ile ifade edilmekle birlikte, hesaplamalar 10 keV'den fazla enerjiye sahip γ ışınları için yapılmıştır. Dış radyasyon maruziyeti durumunda doz tahminlerinde kullanılmak üzere yapılmış olan bu hesaplamalar, kaynak veya hedef geometrileri gerçekçi bir şekilde temsil etmemektedir. Günümüzde radyasyon taşınımını simüle etmek için yaygın olarak benimsenmiş Monte Carlo kodlarından hiçbirini kullanmamakla birlikte hassas doz tahminleri için ICRP'nin tavsiye ettiği hesaplama yöntemlerini de içermemektedir.

Yazarlar	Yıl	Çalışma	Kullanılan Veri Setleri	Yöntem
Lauridsen B.	1982	Table of Exposure Rate Constants and Dose Equivalent Rate Constants	- ENDSF (IAEA)	Maruziyet hızı sabitleri, nokta kaynağa 1 metre uzaklıktaki 30 cm yarıçapa ve 100 cm yüksekliğe sahip su dolu silindir yapı için hesaplanmıştır.
Unger L.M. ve Trubey D.K.	1982	Spesific Gamma-Ray Dose Constants for Nuclides Important to Dosimetry and Radiological Assesment	 A Handbook of Decay Data for Application to Radiation Dosimetry and Radiological Assessment (Kocher D.C.) (ORNL) Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients From 10 keV to 100 GeV (Hubbell J.H.) 	Gama sabitleri, nokta kaynak ve nokta dedektör yardımıyla aralarında 1 m mesafe olmak üzere hesaplanmıştır.
Tschurlovits M. vd.	1992	Dose Rate Constants for New dose Quantities	 A Handbook of Decay Data for Application to Radiation Dosimetry and Radiological Assessment (Kocher D.C.) (ORNL) Photon Mass Attenuation and Energy- Absorption Coefficients from 1 keV to 20 MeV (Hubbell J.H.) 	Hava kerma ve doz eşdeğeri sabitleri, hava ortamında nokta kaynağa 1 m mesafedeki nokta dedektör kullanılarak hesaplanmıştır.
Wasserman H. ve Groenewald W.	1988	Air Kerma Rate Constant for Radionuclides	- Literatürden seçilmiş farklı çalışmalar	Literatürden elde edilen bazı maruziyet hızı sabitleri, belli bir katsayı yardımıyla hava kerma hızı sabitlerine dönüştürülmüştür.
Ninkovic M.M. vd.	2005	Air Kerma Rate Constants for Gamma Emitters Used Most Often in Practice	 Decay Data for Internal and External Dose Assessment (Stabin M.G.) Table of Isotopes (Firestone R.B.) Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients From 10 keV to 100 GeV (Hubbell J.H.) Photon Mass Attenuation and Energy- Absorption Coefficients from 1 keV to 20 MeV (Hubbell J.H.) 	Hava kerma hızı sabitleri, nokta kaynak ve nokta dedektör arası 1 m mesafe için fotonların havadaki kütlesel enerji transfer katsayıları kullanılarak hesaplanmıştır.

Çizelge 2.1. Literatürdeki bazı doz dönüşüm katsayısı çalışmalarına ait özellikler

Yazarlar	Yıl	Çalışma	Kullanılan Veri Setleri	Yöntem
Smith D.S. ve Stabin M.G.	2012	Exposure Rate Constants and Lead Shielding values for over 1100 Radionuclides	 Nuclear Decay Data for Dosimetric Calculations (ICRP 107) Tables of X-Ray Mass Attenuation Coefficients and Mass Energy- Absorption Coefficients 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest (Hubbell J.H.) 	Maruziyet hızı sabitleri, nokta kaynak ve nokta dedektör arası 1 m mesafe için fotonların havadaki kütlesel enerji soğurma katsayıları kullanılarak hesaplanmıştır.
Pibida L. vd.	2008	The Air Kerma Rate Constant: Application to Air Kerma Measurements for Homeland Security	- Farklı özelliklere sahip ve ticari amaçlı kullanılan bazı iyon odası dedektörleri	İyon odası dedektörleri yardımıyla ölçülen hava kerma hızı sabitleri, literatürdeki hesaplanmış HKHS ile kıyaslanmıştır.
Zankl M. vd.	2012	Electron Specific Absorbed Fractions for the Adult Male and Female ICRP/ICRU Reference Computational Phantoms	 EGSnrc Nuclear Decay Data for Dosimetric Calculations (ICRP 107) Adult Reference Computational Phantoms (ICRP 110) 	Mono-enerjik elektronların SAF değerleri, 63 kaynak ve 67 hedef bölge için referans fantomlar kullanılarak elde edilmiştir.
Hadid L. vd.	2013	Evaluations of Absorbed and Effective Doses to Patients from Radiopharmaceuticals Using the ICRP 110 Reference Computational Phantoms and ICRP 103 Formulation	 MCNPX Report of the Task Group on Reference Man (ICRP 23) Radionuclide Transformations Energy and Intensity of Emissions (ICRP 38) 1990 Recommendations of the International Commision on Radiological Protection (ICRP 60) The 2007 Recommendations of the International Commision on Radiological Protection (ICRP 103) Radiation Dose to Patients from Radiopharmaceuticals (ICRP 106) Nuclear Decay Data for Dosimetric Calculations (ICRP 107) Adult Reference Computational Phantoms (ICRP 110) 	Aktivite başına soğrulan organ dozları ve aktivite başına etkin dozlar, farklı fantomlar, farklı bozunum verileri ve farklı hesaplama teknikleri ile elde edilerek birbirleri ile karşılaştırılmıştır.

Çizelge 2.1.'in devamı

Yazarlar	Yıl	Çalışma	Kullanılan Veri Setleri	Yöntem
Andersson	2014	Effective Dose to	- 1990 Recommendations	Radyofarmasötiklere
M. vd.		Adult Patients from	of the International	özgü aktivite başına
		338	Commision on	etkin doz değerleri,
		Radiopharmaceuticals	Radiological Protection	referans fantom
		Estimated Using	(ICRP 60)	verilerinin MIRD
		ICRP Biokinetic	- The 2007	yaklaşımında
		Data, ICRP/ICRU	Recommendations of the	kullanılması ile
		Computational	International Commision	hesaplanmıştır.
		Reference Phantoms	on Radiological Protection	
		Tissue Weighting	(ICKF 103) Nuclear Decay Data for	
		Factors	- Nuclear Decay Data for Desimetric Calculations	
		ractors	(ICRP 107)	
			- Adult Reference	
			Computational Phantoms	
			(ICRP 110)	
Manabe K.	2014	Comparison of	- MCNPX 2.6.0	Yutma veya solunum
vd.		Internal Doses	- Dose Coefficients for	yoluyla gerçekleşecek
		Calculated Using the	Intakes of Radionuclides	maruziyet sonucu
		Specific Absorbed	by Workers (ICRP 68)	aktıvıte başına etkin doz
		Fractions of the	- The 2007	degerleri, referans erkek
		Average Adult	Recommendations of the	fantom ve yetişkin Japon
		Departer with those	on Rediclogical Protection	lantomu için
		of the Reference	(ICPP 103)	arasındaki farklılıklar
		Computational	- Nuclear Decay Data for	incelenmistir
		Phantom Adult Male	Dosimetric Calculations	meelenmiştir.
		of ICRP Publication	(ICRP 107)	
		110	- Adult Reference	
			Computational Phantoms	
			(ICRP 110)	
			- Construction of average	
			adult Japanese voxel	
			phantoms for dose	
			assessment (Sato K.)	
Lamart S.	2015	S Values for I-131	- MCNPX 2.7	I-131 izotopuna ait S
va.		Based on the ICRP	- Nuclear Decay Data for	degerleri, referans
		Adult Voxel	(ICDD 107)	lantomiar yardimiyla 55
		Phantoms	(ICKP 107) A dult Deference	kaynak ve 42 hedel
			- Adult Reference	beşanlanmıştır
			(ICRP 110)	nesapianiniştir.
Otto T.	2016	Personel Dose-	- Nuclear Decay Data for	Personel doz eşdeğeri
		Equivalent	Dosimetric Calculations	dönüşüm katsayıları,
		Conversion	(ICRP 107)	30*30*15 cm'lik su dolu
		Coefficients for 1252		ISO levha fantom
		Radionuclides		kullanılarak
				hesaplanmıştır.

Çizelge 2.1.'in devamı

Yazarlar	Yıl	Çalışma	Kullanılan Veri Setleri	Yöntem
Ören Ü. vd.	2016	IDACSTAR: A	- MCNP5	IDACSTAR programını
		MCNP Application to	- MCNP6	test etmek amacıyla Tc-
		Perform Realistic	- The 2007	99m izotopunun deri
		Dose Estimations	Recommendations of the	kontaminasyonu ve F-18
		from Internal or	International Commision	izotopunun
		External	on Radiological Protection	extravazasyonu, referans
		Contamination of	(ICRP 103)	fantomlar ile simüle
		Radiopharmaceuticals	- Adult Reference	edilerek doz
			Computational Phantoms	karşılaştırmaları
			(ICRP 110)	yapılmıştır.
Soares A.D.	2018	Determination of the	- MCNPX	Vücut doz hızı sabitleri,
		Dose Rate Constant	- Adult Reference	radyofarmasötiklerin
		through Monte Carlo	Computational Phantoms	bio-dağılımları referans
		Simulations with	(ICRP 110)	fantomlar ile
		Voxel Phantoms		modellenerek
				hesaplanmıştır.

Çizelge 2.1.'in devamı

Tschurlovits ve arkadaşlarının (1992) yaptıkları bir çalışmada, spektrumları literatürden elde edilen ve pratikte çok fazla kullanılan 205 radyonüklit için hava kerma sabiti (mGy m²/GBq/sa), ortam doz eşdeğeri sabiti ve yönlü doz eşdeğeri sabiti (mSv m²/GBq/sa) tablolar halinde verilmektedir (Tschurlovits vd. 1992). Foton spektrumuna γ radyasyonuna ek olarak anihilasyon fotonları, karakteristik x ve sürekli (bremsstrahlung) x ışınları dahil edilmiştir. Pratikte kullanılan radyonüklitleri her zaman çevreleyen bir kapsül olduğu ve bu kapsülün 20 keV altı fotonları soğuracağı veya saçacağı düşünülerek 20 keV değerinde bir eşik enerjisi belirlenmiştir. Kaynak idealize edilerek nokta kaynak biçiminde ele alınmış ve hava ortamında kaynaktan 1 m uzaklıktaki bir noktada,

$$\Gamma_{\delta} = \frac{1}{4\pi} \sum_{i} \left(\frac{\mu_{en}}{\rho} \right) Y_i E_i \left(\frac{1}{(1-g_i)} \right)$$
(2.2)

bağıntısından hava kerma hızı sabitleri belirlenmiştir. Burada diğer hava kerma hızı sabiti hesaplarından farklı olarak bulunan g_i terimi, ikincil elektronların enerjisinin bremsstrahlung fotonlarına dönüştürülme oranını temsil etmektedir.

Wasserman ve Groenewald (1988) tarafından yapılan bir çalışma, maruziyet hızı sabitini (R cm2/mCi/sa), SI birimdeki karşılığı olan hava kerma hızı sabiti (Gy m²/Bq/sn) değerlerine dönüştürmek için gerekli olan hesaplamaları içerir (Wasserman ve Groenewald 1988). Hesaplamalar sonucunda bulunan bir katsayı kullanılarak literatürden derledikleri 10 keV-10 MeV aralığındaki tek enerjili fotonlar ve nükleer tıp ve brakiterapide kullanılan 30 kadar radyonüklit için önceden bilinen maruziyet hızı sabiti değerleri, hava kerma hızı sabitine dönüştürülmüş ve tablolar halinde verilmiştir. Çalışmada ayrıca aynı radyonüklitler için yukarıda anılan niceliklerin yanı sıra, yumuşak doku ve havanın kütlesel enerji soğurma katsayısının oranı (ortalama 1.1) ile hava kerma hızı sabiti çarpılarak yumuşak dokuya özel doz eşdeğeri hızı sabitleri (μ Sv m²/GBq/sa) de hesaplanmıştır.

Ninkovic vd. (2005) yaptıkları benzer bir çalışmada, spektrumlarını literatürden elde ettikleri ve pratikte en sık kullanılan foton yayan radyonüklitler (35 tane) için hava kerma hızı sabitlerini (μ Gy m²/GBq/sa) hesaplamışlardır (Stabin ve Da Luz 2002; Ninkovic vd. 2005). Hava kerma hızı sabiti için, verimi Y olan ve E enerjisine sahip fotonların havadaki kütlesel enerji transfer katsayılarını (μ_{tr}/ρ) içeren (2.1) numaralı bağıntı kullanılmıştır.

$$\Gamma_{\delta} = \frac{1}{4\pi} \Sigma_i \left(\frac{\mu_{tr}}{\rho}\right) Y_i E_i \tag{2.3}$$

Radyonüklit spektrumlarında yayımlanma frekansı 10^{-2} 'den büyük ve enerjisi 20 keV'den yüksek olan γ ışını ve karakteristik x ışınları bu hesaba dahil edilmiştir ($\Gamma_{\delta} = \Gamma_{20 \text{ keV}}$). Ninkovic bu çalışmasında belirlediği hava kerma hızı sabitlerinin ortalama 1.1 katı olarak hesaplanabilecek olan yumuşak doku eşdeğer doz hızı sabitlerinin (μ Sv m²/GBq/sa), literatürde bulunabilecek ve o zamana kadar yapılmış en doğru veriler olduğunu öne sürmektedir.

Smith ve Stabin (2012) tarafından yapılan bir çalışma, spektrumları ICRP 107'de yer alan bütün (1100'den fazla) foton yayıcı radyonüklitler için maruziyet hızı sabiti (R cm²/mCi/sa) içerir (Smith ve Stabin 2012). Ayrıca çalışma ile, *f*-faktörü olarak belirtilen ve radyonüklide özgü bir dönüşüm katsayısı yardımıyla havadaki maruziyet hızı ile dokudaki doz hızı arasında dönüşüm katsayıları da verilmiştir. Bu çalışmada maruziyet hızı sabiti hesabında, fotonların havadaki kütlesel enerji soğurma katsayılarını (μ_{en}/ρ) içeren,

$$\Gamma_{\delta} = \frac{1}{4\pi} \Sigma_i \left(\frac{\mu_{en}}{\rho}\right) Y_i E_i \tag{2.4}$$

bağıntısı kullanılmıştır. Foton spektrumlarına yayımlanma frekansı 10^{-4} 'ten büyük ve enerjisi 15 keV'den yüksek olan γ ışınları, x-ışınları, anhilasyon fotonları ve kendiliğinden fisyon sonucu açığa çıkan ani ve gecikmiş fotonlar dahil edilmiştir ($\Gamma_{\delta} = \Gamma_{15 \text{ keV}}$).

Bu üç çalışma sonucunda bulunan sabitler yardımıyla aktivitesi ve mesafesi bilinen foton kaynakları için (2.3) denklemi kullanılarak maruziyet hızı (R/sa) hesaplanabilmektedir. Bunun yanı sıra, sırasıyla \dot{K} ve \dot{H} olarak ifade edilen hava kerma hızı (Gy/sa) ve doz eşdeğeri hızı (Sv/sa) bulunabilmektedir.

$$\dot{\mathbf{X}} = \Gamma_{\delta} \times \frac{A}{d^2} \tag{2.5}$$

Bu çalışmalarda, herhangi bir şekilde kaynak veya dedektör geometrisi göz önüne alınmamış, bir nokta kaynaktan yayımlanan fotonların 1 m uzaktaki bir noktada birim aktivite başına havanın birim kütlesinde oluşturacakları iyonlaşma miktarını temsil edecek şekilde maruziyet hızı sabitleri ya da birim kütlede soğrulan enerjiyi temsil edecek şekilde hava kerma hızı sabitleri elde edilmiştir. Ayrıca çalışmaların kapsadığı hesaplamalar Monte Carlo yöntemi gibi radyasyon etkileşimlerini modellemede günümüzde yaygın kullanılan bir tekniği ve detaylı dedektör modellerini veya vücut geometrileri temel alınarak hesaplanmış dozimetrik nicelikleri içermemektedir. Pibida ve arkadaşları (2008) tarafından yapılan bir çalışmada, ulusal güvenlik uygulamalarında kullanılan radyasyon dedektörlerinin performansını test etmek amacıyla Co-57, Co-60 ve Cs-137 radyoizotopları için ölçüm yoluyla bulunan hava kerma hızı (Gy m²/Bq/sn) sabitleri, literatürdeki değerlerle kıyaslanmıştır (Pibida vd. 2008). Ölçümler yerden 1.4 m yükseklikte alınmakta olup dedektör olarak farklı özelliklere sahip 3 tane iyon odası kullanılmıştır. Kaynaklar iki farklı konteynerde muhafaza edilerek kaynak ve dedektörün merkezleri arasındaki uzaklık 1, 1.5 ve 2 m olacak şekilde ölçümler tekrarlanmıştır. İyon odalarının net akımı I_{net} (C/s) ve kalibrasyon katsayısı N_K (Gy/C) olmak üzere Bağıntı (2.10) ile hava kerma hızı (Gy/s), ardından da *d* kaynak-dedektör arası mesafe ve *A* kaynağın aktivitesi olmak üzere bağıntı (2.11) ile hava kerma hızı sabiti hesaplanmıştır.

$$\dot{K}_{\delta} = N_K \times I_{net} \tag{2.6}$$

$$\Gamma_{\delta} = \dot{K}_{\delta} \times \frac{d^2}{A} \tag{2.7}$$

Çalışmada, farklı detektörlere, farklı kaynak-dedektör arası mesafelere ve farklı konteynerlere göre hesaplanan hava kerma hızı sabitleri tablo halinde verilmektedir. Bulunan sabitler literatürdeki değerlerle kıyaslandığında yüksek farklılıklar olmakla beraber, bazı yayınlarda artan foton enerjisi ile paralel olarak iyi eşleşmeler olduğu da görülmüştür (Podgorsak 2004; Seltzer 2004; Ninkovic vd. 2005). Bunun bir sonucu olarak literatürdeki hava kerma hızı sabitlerinin doğruluğu ve kullanılabilirliği de test edilmiştir. Ayrıca hesaplama yöntemine karşın ölçüm yolu ile bulunan değerler için belirsizlik saptanabilmekte ve bu çalışma için en fazla 5% olarak bulunmaktadır.

Zankl ve arkadaşları (2012) tarafından yapılan bir çalışma, içsel ışınlanmadaki radyasyon dozlarının hesaplanmasında kullanılan mono-enerjik elektronlar için SAF değerlerini içermektedir (Zankl vd. 2012). ICRP 30 raporunda elektronların, kaynak organda tamamen soğrulduğu varsayılmakla beraber, 300-500 keV'den yüksek enerjiye sahip elektronlar için bu yaklaşım her zaman doğru değildir (ICRP 1980). Çalışmada elektronların SAF değerlerinin daha doğru bir şekilde belirlenebilmesi için ICRP 110'da tavsiye edilen referans erkek ve dişi fantomları, Monte Carlo simülasyonu yapan EGSnrc kodunun içerisinde tanımlanmıştır. Gerçekleştirilen elektron transportu sonucunda 63 kaynak ve 67 hedef bölge için SAF değerleri elde edilmiş ve bazı kaynak-hedef çiftleri için grafikler halinde verilmiştir.

SAF değerlerinin yanı sıra ICRP 107'den alınan foton ve elektron spektrumları kullanılarak radyonüklitlerin aktivite başına soğrulan organ dozları elektronların taşınımı hem göz önüne alınarak hem de göz ardı edilerek MIRD metodu ile ayrı ayrı belirlenmiştir. İki farklı şekilde bulunan soğrulan organ dozları kıyaslandığında, spektrumunda birkaç yüz keV altı enerjilere sahip elektronlar ağırlıkta olan radyonüklitler için farklılık yaklaşık 2-3% olmak üzere, daha yüksek enerjili elektron spektrumlarına sahip olan radyonüklitler için 20% civarında olduğu görülmüştür. En beklenmedik sonuç ise mesane duvarında ICRP 30 yaklaşımından 60-150% daha yüksek çıkmıştır ve genellikle mesane duvarı dozu, uygulanabilecek olan aktivite miktarını sınırlayan dozlar arasında olduğu için bu çalışmanın radyofarmasötiklerin dozajı için önemli bir bulgu olabileceği yorumu yapılmıştır. Bu makalede iç radyasyon dozu çalışılmakla beraber, ICRP 110 referans fantomlarının ve radyasyon taşınımı yapan bir kodun kullanılması

SAF değerlerinin belirlenmesinde gerçeğe yakın sonuçlar vermiştir. Ancak soğrulan organ dozlarının MIRD metodu ile hesaplanması, organ boyutlarını veya yapısını göz ardı etmektedir.

Hadid ve arkadaşlarının (2013) yaptığı bir çalışmada, ICRP'nin 53, 80 ve 106 nolu yayınlarında yer alan bazı radyofarmasötikler (11 tane) için organ dozlarına etki edebilecek parametreler farklı yöntemler kullanılarak incelenmiştir (Hadid vd. 2013). Her yöntem sonucunda bulunan aktivite başına organ dozları (mGy/MBq) tablolar halinde verilmiştir. Bu yöntemlerle farklı organ yoğunluklarının, farklı fantomların, farklı hesaplama tekniklerinin, farklı voksel boyutlarının ve farklı radyoaktif bozunum verilerinin kullanımı yorumlanmaktadır.

İlk olarak, ICRP 110'daki referans erkek ve dişi fantomları, MCNPX kodu içerisine tanımlanarak ve ICRP 38'deki radyoaktif bozunum verileri kullanılarak her iki fantom için de aktivite başına soğrulan organ dozları (D/A_0) belirlenmiştir. Simülasyonlarda *F8 tally'si kullanılmış, soğrulan organ dozlarının hatası 5%'i geçmeyecek şekilde 1 keV'den yüksek enerjili elektron ve proton taşınımı yapılmıştır. Bulunan D/A_0 değerleri daha önce stilize fantom ve MIRD yaklaşımı ile hesaplanmış olan ICRP yayınlarındaki değerlerle kıyaslanmıştır (ICRP 1988, 1998, 2008a). Bu kıyaslama ile ICRP değerlerinin daha yüksek olduğu görülmüş ve bu durum ise organlar arası mesafeye ve organ kütleleri arasındaki farklılığa bağlanmıştır.

Organlar arasındaki yoğunluk farklarının soğrulan organ dozlarının üzerine etkisini anlamak amacıyla ICRP 23'ten alınmış ve stilize fantomda kullanılan akciğer, iskelet ve yumuşak doku yoğunlukları referans fantomlar üzerinde değiştirilerek MCNPX koduna tanımlanmıştır. Sonuçlar referans fantomun kendi yoğunluklarıyla belirlenmiş D/A_0 değerleriyle karşılaştırıldığında, değiştirilen dokular için ihmal edilebilecek düzeyde ve daha düşük soğrulan organ dozları bulunmuştur.

Hesaplama tekniklerinin soğrulan organ dozlarının üzerindeki etkisini incelemek için stilize fantom MCNPX koduna yerleştirilmiştir. ICRP yayınlarında stilize fantom ile hesaplanan organ dozları için elektronların transportu sadece kaynak organ için düşünülmüş, diğer organlarda foton dozu önemsenerek MIRD formülü uygulanmıştır. Ancak MCNPX ile yapılan simülasyonda elektronların transportu da bütün organlar için dikkate alınmaktadır. Sonuçta elde edilen organ dozlarında 100%'den fazla farklar bulunmuştur ve bu durum hesaplama tekniklerinin öneminin yüksek olduğunu göstermiştir.

Soğrulan organ dozlarına, başka bir parametre olarak özellikle referans erkek fantomundan yola çıkılarak küçük organlarda voksel etkisinin yüksek olabileceği düşünülmüştür. Bu durumu incelemek üzere stilize fantom, NURBS (Non-uniform Raional B-Spline) formatı kullanılarak daha küçük voksel boyutlarından oluşan vokselize fantom haline getirilerek MCNPX kodu ile simülasyon gerçekleştirilmiştir. Alınan sonuçlar stilize fantomun MCNPX koduyla kullanımı ile karşılaştırılmıştır. Tüm organlar için farklılıklar göz ardı edilebilir düzeyde kalmakla beraber en yüksek tutarsızlıkların küçük organlarda görüldüğü belirtilmiştir. Ayrıca geometri etkisinin organ dozlarına etkisini araştırmak için stilize fantomun voksel versiyonu ile referans voksel fantomların sonuçları kıyaslanmış ve çoğu organda yüksek farklılıklar (200%'den fazla) olduğu görülmüştür. Son olarak, farklı radyoaktif bozunum verilerinin soğrulan organ dozlarına etkisini incelemek için en güncel ICRP bozunum verilerini içeren 107. yayın ile tüm çalışma boyunca kullanılan ICRP 38 bozunum verileri karşılaştırılmıştır (ICRP 1983, 2008b). Bunun için ICRP 107 kullanılarak referans voksel fantomlar MCNPX ile simüle edilmiştir. İki durum arasında tüm radyofarmasötikler için düşük farklar gözlenmiş ve farklı radyoaktif verilerin kullanımının önemli değişikliklere sebep olmadığı sonucuna varılmıştır. Tüm bunlara ek olarak bu çalışma, ICRP yayınlarında belirlenmiş olan radyofarmasötikler için etkin doz karşılaştırılmasını içermektedir. ICRP 110'daki voksel fantomlar, ICRP 38 bozunum verileri ile hazırlanmış olan MCNPX kodlarının sonuçları kullanılarak ICRP 103'te gösterildiği şekilde (Bağıntı 2.10), ICRP 60'daki ve ICRP 103'deki farklı organ ağırlık faktörleri kullanılarak farklı aktivite başına etkin dozlar belirlenmiştir. Bu değerler ICRP yayınları ile kıyaslanmış ve çoğu radyofarmasötik için simülasyon ile hesaplanmış olan etkin dozlarda azalma gözlendiğine dikkat çekilmiştir.

Hadid, çalışması boyunca içsel radyasyon maruziyetinin sebep olduğu soğrulan organ dozlarının belirlenmesinde birçok yöntem farklılığını farklı bozunum verilerinin, farklı vücut modellerinin, el ile yapılan hesaplama yöntemlerinin ve farklı organ verilerinin kullanılmasını ele alarak kıyaslamıştır. Asıl olan etkin doz hesaplamalarında benimsediği yöntemi ise ICRP 103 doğrultusunda olmakla birlikte, bozunum verilerinin ICRP 38'den alınarak referans erkek ve dişi fantomlarının MCNPX kodunda simülasyonlarına dayandırmıştır. Benimsediği bu yöntemde bozunum verileri olarak eski raporların kullanılması yerine ICRP 107'nin kullanılması daha güncel doz tahminleri sunmuştur.

Andersson ve arkadaşlarının (2014) nükleer tıpta kullanılan radyofarmasötiklerin yetişkin hastalardaki stokastik etkisini belirlemek amacıyla yaptıkları bir çalışmada, ICRP 106'da yer alan (338 tane) her bir radyofarmasötiğe özgü aktivite başına etkin doz (mSv/MBq) değerleri bulunmuştur (Andersson vd. 2014). Bu değerlere ulaşabilmek için önce, radyoizotop spektrumları ICRP 107'den, hedef doku veya organların ağırlıkları ise ICRP 110'daki referans dişi ve erkek fantom verilerinden elde edilerek aşağıda sırasıyla ifade edilen MIRD yaklaşımına göre soğrulan organ dozları belirlenmiştir.

Tıbbi dahili radyasyon dozu (MIRD) yaklaşımına göre, \tilde{A}_s kaynak bölgenin kümülatif aktivitesi olmak üzere bir hedef bölgedeki *ortalama soğrulan doz* (Gy),

$$D_t = \sum_s \tilde{A}_s S_{t \leftarrow s} \tag{2.8}$$

şeklinde hesaplanır. Hedef bölgenin S değeri ise,

$$S_{t\leftarrow s} = \sum_{i} \frac{E_i Y_i \varphi_{i(t\leftarrow s)}}{m_t}$$
(2.9)

bağıntısı kullanılarak bulunur. Burada E_i ve Y_i , i radyasyon türüne ait enerjiyi ve o enerjinin verimini, $\varphi_{i(t \leftarrow s)}$ ise kaynaktan çıkan *i* türü radyasyonun m_t kütlesine sahip hedef bölgedeki soğrulma oranını ifade etmektedir.

Daha sonra ICRP 103'te belirtildiği şekilde tüm vücut dozunu temsilen *etkin doz*a (Sv),

$$E = \sum_{T} w_T \sum_{R} w_R D_{T,R}$$
(2.10)

denklemi kullanılarak geçilmiştir. Bu denklemde yer alan w_R , radyasyon ağırlık faktörünü ifade etmekte olup, değeri tanı amaçlı tıbbi maruziyette kullanılan tüm radyasyon türleri (foton ve elektronlar) için 1 olarak alınmaktadır. Organ ağırlık faktörü olan w_T ise hem ICRP 60 hem de ICRP 103 raporlarından alınarak aynı radyofarmasötik için iki farklı aktivite başına etkin doz (E/A_0) değeri belirlenmiştir. Bu değerler ise daha önce stilize (MIRD) fantom ve ICRP 60 verileri kullanılarak hesaplanmış olan ve hali hazırda ICRP 106'da bulunan E/A_0 değerleri ile birlikte tablo halinde verilmektedir. Aynı tabloda, eski veriler ile yeni veriler de kıyaslanmış ve radyofarmasötiklerin yaklaşık 80%'i için ICRP 106'da belirlenmiş olan E/A_0 değerlerinin daha yüksek olduğu anlaşılmıştır. Ayrıca, yetişkin hesaplamalı referans fantomlarla birlikte en yeni organ ağırlık faktörlerinin kullanımı ile belirlenmiş olan etkin doz değerlerinin de yaklaşık 25% daha düşük olacağı sonucuna varılmıştır.

Çalışmada, dahili radyasyon dozu hesaplamaları, en güncel ICRP tavsiyelerinden alınan organ ve spektrum verileri kullanılarak yapılmasına karşın, bu hesaplamalarda insan vücudunu temsil eden bir model yerine MIRD metodu ile aktivite başına etkin doz değerleri hesaplanmıştır. Bu yöntem herhangi bir radyasyon taşınım programı kadar ayrıntılı sonuç vermemekte ve sadece el ile yapılan doz hesaplarına dayanmaktadır.

Manabe ve arkadaşları (2014) yaptıkları bir çalışmada, kaza veya kontaminasyon durumunda yutma veya solunum yolu ile vücut içine alınabilecek radyoizotopların neden olacağı içşel ışınlanma sonucunda, erkek radyasyon çalışanları için aktiviteden etkin doza dönüşüm katsayılarını (Sv/Bq) hesaplamışlardır (Manabe vd. 2014). Bu hesaplama, vücut boyutlarının ve organ ve doku kütlelerinin etkin doz katsayısına etkisini incelemek amacıyla hem ICRP 110'daki referans erkek fantomu (RCP-AM) için hem de ortalama yetişkin Japon erkek fontomu (JM-108) için yapılmıştır. Her iki fantom da MCNPX 2.6.0 kodunun içerisinde modellenerek 41 kaynak organdan 33 hedef organa elektron ve foton taşınımı, takip kesme (cut off) enerjileri 1 keV altı olmak üzere gerçeklestirilmiştir. Enerji aralığı 10 keV-5 MeV olarak belirlenmiş 15 enerji için SAF değerleri elektron ve fotonlar için ayrı ayrı belirlenmiş ve bazı kaynak-hedef çiftleri grafikler halinde verilmiştir. yutma yoluyla alinabilecek radyoizotoplarin kimyasal yapılarının Calismada, sınıflandırılması ve solunum yoluyla alınabilecek radyoizotopların ise kandaki emilim çeşitleri, ICRP 68 yayını doğrultusunda ele alınmıştır. ICRP 107'deki bozunum verileri kullanılarak sadece elektron ve foton yayıcı 923 radyoizotop için, 1873'ü solunum ve 1021'i yutma yoluyla gerçekleşen toplam 2894 vaka incelenmektedir.

Simülasyon sonucu hesaplanan *SAF* değerleri arasında radyoaktif izotopun incelenen enerjileri için interpolasyon yapılarak Bağıntı 2.11 yoluyla *SEE* değeri (özgün etkin enerji) hesaplanmıştır.

$$SEE_{(t \leftarrow s)} = \sum_{R} E_{R} Y_{R} SAF_{R(t \leftarrow s)}$$
 (2.11)

Bu bağıntıda E_R ve Y_R , sırasıyla R türü radyasyon türüne ait enerjiyi ve o enerjinin yayımlanma frekansını, $SAF_{R(t \leftarrow s)}$ ise kaynak organdan (s) çıkan R türü radyasyonun

ilgilenilen hedef organın (t) kütlesinde soğrulan oranını ifade etmektedir. *SEE* değeri (Sv/Bq/sn), kaynak organdaki bozunum başına hedef organdaki eşdeğer dozun bir ölçütüdür. Bu değer kullanılarak bir radyasyon çalışanının radyasyonun vücuduna girişi sonrasındaki süre boyunca (ortalama 50 yıl) hedef organ veya dokularının alacağı yüklenmiş eşdeğer doz (Sv/Bq),

$$H_t = \sum_R U_s(50)SEE_{(t \leftarrow s)}$$
(2.12)

bağıntısından bulunmuştur. $U_s(50)$, yutma veya solunum yoluyla vücuda alınan akut dozda radyasyonun kaynak organda 50 yıl boyunca devam eden nükleer dönüşümlerin (Bq sn cinsinden) sayısıdır. Organ eşdeğer dozlarının ardından, ICRP 103'teki radyasyon ve organ ağırlık faktörleri ile yine aynı rapora uygun şekilde etkin doz katsayıları, RCP-AM ve JM-108 fantomları için hesaplanmış ve bazı vakalar için karşılaştırmalı olarak tablolanmıştır. Sonuçlar incelendiğinde, iki fantom arasında maksimum tutarsızlık 40% olup vakaların yaklaşık 97%'sinde etkin doz katsayısı farkının 10%'dan az olduğu görülmüştür. Bazı vakalarda farklılıkların yüksek olması, radyonüklitlerin vücuttaki dağılımına ve yaydıkları radyasyonun özelliklerine bağlanmıştır. Bu bulgu ile, ICRP tarafından geliştirilen etkin doz katsayılarının, vücut boyutları ve organ veya doku kütleleri beyaz Avrupalı ırktan (Caucasian) farklı olan ırklarda da kullanılmasına uygun olduğu yorumu yapılmıştır.

Yapılan bu çalışmada, erkek çalışanları temsil etmesi için ICRP 110 referans erkek fantomun ve yetişkin Japon erkek fantomun MCNP koduna tanımlanması, monoenerjik radyasyonların SAF değerlerinin belirlenmesinde daha gerçekçi sonuçların elde edilmesine olanak sağlamaktadır. Ayrıca çalışanların iç maruziyet durumlarının, radyoaktif bozunum verilerinin, yüklenmiş eşdeğer ve etkin dozların da ICRP'nin tavsiyeleri doğrultusunda seçilmesi daha güncel ve doğru doz tahminleri sunacaktır.

Lamart ve arkadaşları (2015) tarafından yapılan bir çalışma, nükleer tıpta, tiroit kanseri ve hipertiroit tedavisinde kullanılan I-131 izotopunun, radyoaktif bozunum spektrumu ICRP 107'den alınarak hesaplanan S değerlerini (mGy/Bq/sn) içermektedir (Lamart vd. 2016). ICRP 110'daki referans erkek ve dişi fantomları, bir Monte Carlo simülasyonu kodu olan MCNPX 2.7 içerisine tanımlanarak 55 kaynak organ ve 42 hedef organ için bulunan *S* değerleri her iki fantom türü için de tablolar halinde sunulmuştur. Bu simülasyonlarda *F8 tally'si kulllanılarak sonuçlardaki hatalar 1%'i geçmeyecek şekilde elektron ve foton taşınımı sonlandırılmıştır. Daha önceleri ORNL'nin stilize fantomu kullanarak yayınlanan raporlarda 22 kaynak organ ve 24 hedef organ için el ile hesaplanmış değerlere karşılık, bu çalışmada birçoğu ICRP 103'te radyasyon duyarlılığı yüksek olarak ifade edilmiş organ veya dokular için 1662 tane yeni *S* değeri hesaplanmıştır. Ayrıca stilize fantom değerleri ile kıyaslandığında dişi fantomda ortalama 1.1 ve erkek fantomda ortalama 1.3 kat daha yüksek *S* değerleri elde edilmiş ve bunun yanı sıra bazı kaynak-hedef çiftlerinde ise 10 kata varan farklılıklar gözlenmiştir.

Otto (2016) tarafından yapılan bir çalışmada, radyonüklid kaynakların üretimi, işlenmesi, depolanması veya kullanımı sırasında aktiviteye bağlı olarak, bir radyasyon personelinin maruz kalacağı dozu tahmin edebilmek amacıyla doz eşdeğeri dönüşüm katsayıları (Sv/Bq/sa) bulunmaktadır (Otto 2016). Aynı çalışma daha önceleri, ICRP

38'de radyoaktif bozunum verileri bulunan 800 kadar radyoizotop için yapılmıştır (Petoussi-Henss vd. 2005). Ancak ICRP 38, günümüzde kullanılan birçok radyoizotopu listelemediğinden doz eşdeğeri dönüşüm katsayıları en güncel radyoaktif bozunum verilerini içeren ICRP 107 yayınındaki 1252 radyoizotop için tekrar derlenmiştir. $H_p(d)$, personel doz eşdeğeri (Sv), kaynaktan r kadar uzaklıkta çalışan radyasyon personelinin radyasyonun zararlı etkilerinden korunması için doz tahmininde kullanılan operasyonel bir niceliktir. Radyoaktif kaynağı kullanan operatörün tipik maruz kalma durumunda, kritik organları ve göz merceği kaynaktan 100 cm uzaklıkta olurken, eller kaynağa yaklaşık 10 cm uzaklıktadır. Bunun sonucu olarak Otto çalışmasında, tüm vücut dozu ve göz-lens dozu için sırasıyla $H_p(10)$ ve $H_p(3)$ 'u 100 cm'de hesaplarken, eller için kullanılan miktar H_p (0.07)'yi 10 cm uzaklık için hesaplamıştır. H_p (10), etkin dozun tahmin edilerek radyasyonun stokastik etkilerinin belirlenmesine yardımcı olurken, $H_p(3)$ ve $H_p(0.07)$ ise eşdeğer dozun tahmin edilmesi ve radyasyonun zararlı doku reaksiyonlarının engellenmesi için kullanılır. $h_n(d, r)$, kaynaktan r kadar uzaklıkta ve d derinliğindeki kişisel doz eşdeğeri katsayısı (Sv sa/Bq) ve A kaynak aktivitesi (Bq) olmak üzere, kişisel doz eşdeğeri (Sv),

$$H_p(d) = h_p(d, r)A \tag{2.13}$$

bağıntısından hesaplanır. Söz konusu çalışmada, yalnızca dışsal maruziyete sebep olan parçacıklar dikkate alınmış ve havada veya derinin ölü tabakasında durdurulabileceği tahmin edilen enerjilere sahip fotonlar ve elektronlar ihmal edilmiştir. Bunun sonucunda radyonüklide özgü kişisel doz eşdeğeri (Sv), her biri farklı bir radyasyon türünün neden olduğu bileşenlerin toplamı olarak temsil edilebilir:

$$H_p(d) = H_p(d)_{\gamma} + H_p(d)_e + H_p(d)_n$$
(2.14)

$$H_p(d) = \left[h_p(d,r)_{\gamma} + h_p(d,r)_e + h_p(d,r)_n\right]A$$
(2.15)

Denklem 2.15'de $h_p(d,r)$, her bir radyasyon türünün farklı enerjileri için literatürdeki 30*30*15 cm'lik su dolu ISO levha fantom kullanılarak elde edilen akıştan eşdeğer doza dönüşüm katsayıları (Sv/cm²) kullanılarak hesaplanmıştır.

Ören ve arkadasları (2016) yaptıkları bir çalışmada, nükleer tıp uygulamalarında en sık kullanılan I-131, Tc-99m ve F-18 radyonüklitleri için radyasyondan korunma amacıyla kullanılan IDACstar programının doğruluğunu test etmek istemişlerdir (Ören 2016). IDACstar, Monte-Carlo tabanlı bağımsız bir vd. program olup, radyofarmasötiklerin içsel ve dışsal kontaminasyonlarında aktivite başına soğrulan organ dozu (Gy/Bq), etkin doz ve kişisel doz (Sv/Bq) (self-dose) değerlendirmeleri yapabilmektedir. MATLAB'de geliştirilmiş olan program, ICRP 110'daki referans dişi ve erkek fantomları üzerinden, seçilebilen kaynak vokseller, radyasyon tipi, öykü sayısı ve bağıl hata doğrultusunda MCNP(5-6) girdi dosyası oluşturup çalıştırmaktadır. Bu simülasyonlarında *F8 tallysi kullanmakta ve buldukları soğrulan organ dozları neticesinde ICRP 103 raporuna göre etkin veya kişisel doz belirlemektedir.

Radyofarmasötiklerin vücuda uygulandıktan sonraki ektravazasyonu (damar dışına kaçma) yönetilmesi zor bir durumdur. Bu problem hastada bölgesel ağrılara veya görüntü kalitesinde bozukluklulara sebep olmaktadır. Bunun yanı sıra nükleer tıp

personeli radyofarmasötiği hasta vücuduna uygularken deri kontaninasyonları ile karşılaşabilir. Kontaminasyon sonucu, deride (özellikle ellerde) izin verilen yıllık limitlerin aşılması bile söz konusu olabilmektedir. Buna bağlı olarak IDACstar'ı test etmek için bu çalışmada, belli bir aktiviteye sahip Tc-99m'nin deri kontaminasyonu ve F-18'in ekstravazasyonu olmak üzere iki farklı durum simüle edilmiştir. Hem erkek hem de dişi fantom kullanılarak elde edilen dozlar çalışmada gösterilmekte ve sonuçlar daha önceki yayınlarla kıyaslanmaktadır. Karşılaştırmalar sonucunda IDACstar programının herhangi bir kaza durumunda, doz tahmininde büyük kolaylık sağlayacağı ve hatta Monte Carlo simülasyonu bilmeyen radyasyon çalışanlarının bile doz değerlendirmeleri yapabileceği etkili bir araç olduğu doğrulanmıştır. IDACstar içsel veya dışsal kontaminasyon için kullanılabilen bir program olmakla beraber ICRP'nin tavsiyelerini dikkate alarak doz tahminlerini hassas bir şekilde yapmaktadır. Bu programın

Soares ve arkadaşlarının (2018) yaptıkları bir çalışmada, nükleer tıpta radyofarmasötik uygulanan hastaların 1 m uzağındaki bir noktada olmak üzere vücut doz hızı sabitleri (Sv m²/Bq/sn) belirlenmiştir. Bu amaç doğrultusunda radyasyon transportunun simüle edilmesi için MCNPX kodunun içerisine ICRP 110'da tavsiye edilen referans erkek fantom, F5 tally'si kullanılmak üzere tanımlanmıştır. Toplamda 30 radyonüklit ve 57 radyofarmasötiğin bio-dağılımları bu şekilde modellenerek hasta vücudunun zayıflatması temsil edilmiş ve hesaplanan vücut doz hızı sabitleri ile vücut zayıflatma yüzdeleri tablo halinde verilmiştir. Hasta vücudunun zayıflatması 6-94% aralığında değişmekle beraber, hesaplanmış olan sabitler literatürle uyuşmaktadır. Çalışmada, Tc-99m izotopunun doz değerleri, farklı yükseklik ve farklı uzaklıklar için ayrı ayrı hesaplanmıştır. Bunun için yerden 18 cm yükseklikten başlayarak kafa hizasına (180 cm) kadar 10 dedektör ve yatay yönde 1 m uzaklıktan 4 m uzaklığa kadar 4 dedektör yerleştirilerek referans erkek fantom için simülasyonlar gerçekleştirilmiştir. Bulunan doz değerleri normalize edilerek farklı uzaklıklar için yüksekliklere göre izodoz grafikleri cizilmiştir. Bu grafiklere göre 1 m'de, doz hızı sabitlerindeki değişim 52% iken uzaklığa bağlı olarak bu değişim giderek azalmış ve 4 m'de 4.3% olarak en aza inmiştir. Ayrıca, radyonüklitler için hastanın 4 m uzağındaki yönsel doz dağılımı üzerinde çalışılmıştır. Bunun için yerden yükseklikleri aynı şekilde seçilen 10 dedektör ve hasta etrafına 20 derecelik açılar ile verlestirilen 18 dedektör için simülasyonlar yapılmıştır. Yerden 90 cm yükseklikteki açıya bağlı izodoz haritaları sadece Tc-99m, F-18 ve I-131 izotopları için gösterilmektedir. Yapılan bu çalışma sonucunda radyanüklitlerin belirlenen baskın yükseklik ve açıları, vücut doz hızı sabitleri ile aynı tabloda verilmektedir. Bu çalışmada, hasta vücudunun ve radyofarmasötiğin bio-dağılımının Monte Carlo yöntemi kullanan bir kod ile simüle edilmesi, gerçek durumun temsilini doğru bir şekilde yapmıştır. Ancak maruziyet yaşayacak olan radyasyon çalışanının vücudunu temsil eden hiçbir yaklaşım uygulanmamıştır. Personelin geometrisinin de modellenerek ICRP tavsiyeleri ile hesaplanabilecek olan vücut doz hızı sabitleri daha doğru ve gerçekçi doz değerlendirmeleri sağlayacaktır.

Yukarıda özetleri verilen literatür çalışmalarında radyasyonun zararlı etkilerinden korunmak üzere farklı alanlarda uygulanabilirliği olan farklı araçlarla ve yöntemlerle belirlenmiş katsayılar ele alınmıştır. Genel olarak bakıldığında doz değerlendirmelerinde uygulamada pratik bir yol olan bu katsayılardan beklenen fayda, gerçek durumu en iyi şekilde temsil etmektir. Bu sayede, bir kaza veya rutin çalışma sırasında radyasyon maruziyeti neticesinde doz tahminlerinin daha doğru ve çabuk yapılması amaçlanır. Ancak literatürde mevcut çalışmalarda, hem materyal hem de hesaplama yöntemleri açısından gerçek bir maruziyet senaryosunu yansıtmak konusunda bazı eksiklikler bulunmaktadır. Önceki çalışmalardaki ışınlanma senaryolarının realistik bir şekilde modellemesi konusundaki bu eksikliler yapılan bu tez çalışmasında göz önünde bulundurulmuştur. Sonuçta, kullanılan anatomik modeller, seçilen radyoaktif bozunum verileri ve benimsenen hesaplama metodu ile harici radyasyon maruziyeti sırasında, gerçek durumun birebir temsili temel alınarak belirlenmiş olan yeni katsayılar ile daha doğru, güncel ve hassas doz tahminleri gerçekleştirmek mümkün olacaktır

3. MATERYAL VE METOT

3.1. Monte Carlo Yöntemi

İsmini Avrupa'nın Monte Carlo şehrinden alan bu yöntem, analitik çözümü bilinmeyen veya pratik olmayan matematiksel veya fiziksel problemlerin çözümleri için yaygın olarak kullanılan bir istatistiksel analiz tekniğidir. 1940'lı yıllarda atom bombasının geliştirilmesi kapsamında ortaya çıkan bu metot, çözümü olasılık dağılımları ve rastgele sayılar kullanarak yapması yönüyle diğer nümerik yöntemlerden farklıdır.

Monte Carlo (MC) yönteminin temellerinden biri olan *rastgele sayı* ifadesi seçilen bir değerin önceden tahmin edilemeyeceği anlamına gelmesine rağmen, MC simülasyonlarında kullanılan rastgele sayı dizileri bilgisayar algoritmaları ile belirlenir ve bu nedenle sözde rasgele sayılar (pseudo random numbers) olarak adlandırılır. Bu sayılar sistemin davranışını temsil edecek bir olasılık yoğunluğu ile örneklenerek aranan niceliğin istatistiksel bir tahmini (kabul edilebilir bir hata dahilinde) hesaplanmış olur. Doğasında sezgisellik olmasına karşın bu rastgeleliğin yeterli derecede tekrar eden örneklemeler ile iyi tanımlanmış bir probleme uygulanması, sonuçların neredeyse deterministik özellikte olmasını sağlayabilir.

MC yönteminin belli bir probleme uygulanabilirliği, incelenen sistemin stokastik yapısına bağlı olmayıp, yalnızca rastgele sayıları ve olasılık dağılım fonksiyonlarını kullanabilecek şekilde problemi formülize ederek çözümü oluşturmaktan geçer. Başka bir deyişle bu yöntem, stokastik bir sistemin istenen sonucu ile beklenen davranışı arasında denklik kurmanın mümkün olduğu her probleme uygulanabilir.

3.1.1. Monte Carlo Simülasyon Tekniği

MC yönteminde kullanılacak olan rastgele sayıların sıralaması tahmin edilemez ve bu yüzden aynı şekilde de tekrar üretilemez. Böyle bir rastgele örneklemenin fiziksel bir süreç ile temsil edilmesi pratikte oldukça zor olduğundan bu durumun üstesinden gelmek amacıyla bilgisayarlar kullanılmaya başlanmıştır. Modern bilgisayarların bilişimsel hızları, tekrar eden denemelerin hızlı bir şekilde işlenerek çözümü zor veya pratik olmayan matematiksel problemlerin Monte Carlo metodu ile simülasyonunu pratik hale getirmiştir.

Tarihsel olarak, MC simülasyon yöntemini kullanan ilk büyük ölçekli hesaplamalar, nötron saçılma ve soğrulma çalışmalarıdır. Parçacık taşınımı, doğasında rastgelelik bulunan bir süreçtir ve bu durum, MC simülasyonlarını parçacık taşınım problemleri için uygun ve yarayışlı bir çözüm haline getirmektedir. MC yöntemi, bir parçacığın konumunu, enerjisini, uçuş doğrultularını ve etkileşim olasılıklarını rastgele örneklemeler yardımı ile tanımlayarak parçacığın problem uzayının neresinde ve hangi tür etkileşime uğrayacağını, her bir etkileşimde enerjisinin ne kadarlık kısmını kaybedeceğini veya etkileşim sonrasında parçacığa ne olacağını belirler (Andreo 1991). Simülasyon sırasında her bir parçacık öyküsü, geometri içindeki materyallerde soğrulana veya ortam dışına kaçana kadar takip edilir.

Genel olarak rastgele süreçleri simüle etmekte kullanılan MC yönteminin, bilgisayar yardımıyla pratik bir karşılık bulması, olasılıksal bir yorumu olmayan
problemlere de bu yöntemin uygulanmasında etkili olmaktadır. Bundan dolayı günümüzde, MC simülasyonları sosyal bilimler, trafik akışı, nüfus artışı, finans, kuantum kimyası ve radyasyon bilimleri gibi bilimsel çalışmaların birçok alanında kullanışlı bir sayısal analiz aracı olarak görülmekte ve yaygın olarak tercih edilmektedir.

3.1.2. Radyasyon Taşımada Kullanılan MC Kodları

MC kodlarının ve bilgisayarların geçmişi tarihsel olarak yakından ilişkilidir. İlk elektronik bilgisayar olan ENIAC'ın imalatının bitmesine yakın istatistiksel metodlarda kullanılması önerilerek 1947 yılında, nükleer silah çalışmalarında MC hesaplamalarının yapılması için ilk bilgisayar programı geliştirilmiştir. ENIAC'ta çalıştırılan bu program ile 100 nötronun 100 çarpışmasının simülasyonunun yaklaşık 5 saat sürdüğü belirlenmiştir (LANL 2010). Bilgisayar özelliklerinin hızlı bir şekilde ilerleme kaydetmesi, MC kodlarına, yeni özelliklerin ve tekniklerin eklenmesini kolaylaştırmıştır. MC kodlarının ilk ortaya çıkmasından bu tarihe kadar geçen 70'den fazla yılda, araştırma ve geliştirme çalışmaları yapılmıştır. Tüm bu faaliyetler sonucunda ortaya, uzun vadede kullanılabilir olan ve yetkin dereceye sahip genel amaçlı MC kodları çıkmıştır.

Radyasyon taşınım süreci birçok yönüyle istatistiksel olduğundan, maddesel ortamlarda parçacık taşınımı yapmak üzere geliştirilmiş MC kodları, radyasyonun problem için modellenen geometrideki davranışını ve etkileşim parametrelerini MC tekniğini kullanarak kestirmek amacıyla geliştirilmiş bilgisayar programlarıdır. Radyasyonun kaynakta yaratılıp problem uzayı boyunca izleyeceği yolda karşılaşacağı ve kayıt altına alınacak etkileşimler ilgili Monte Carlo kodunun anlayacağı şekilde bilgilerin yer aldığı girdi dosyalarına kaydedilir. Günümüzde, radyasyonun madde içindeki transportunu modelleyen kodlardan bazıları aşağıda listelenmiştir (Pia vd. 2009).

- FLUKA (FLUktuirende KAskade): FLUKA kodu, birkaç keV'den kozmik ışın enerjisi aralığında değişen enerjilere sahip hadronların, ağır iyonların ve elektromanyetik parçacıkların, herhangi bir materyalde taşınımını simüle edebilen bir MC kodudur. Bunun yanı sıra nötron taşınımı ise termal enerjilere kadar incelenebilir. Mümkün olan en iyi fiziksel modellerin tam ve hassas bir şekilde modellenebilmesi amacıyla tasarlanmıştır. CERN ve INFN tarafından ortaklaşa geliştirilmiş olan FLUKA, hadron etkileşimlerini en iyi temsil edebilen kod olarak bilinir (Battistoni vd. 2015).
- **GEANT4:** Başka bir MC kodu olan Geant4, yüksek enerji fiziği, astrofizik ve uzay bilimi, tıbbi fizik ve radyasyondan korunma dahil olmak üzere çeşitli uygulama alanlarında çok sayıda deney ve proje tarafından kullanılmaktadır. Optik fotonlar ve termal nötronlardan, LHC ve kozmik ışın deneylerindeki enerjilere sahip reaksiyonlara kadar geniş bir enerji aralığında, çeşitli etkileşimleri simüle edebilir. Kapsamlı detektör ve fizik modelleme yeteneklerine sahiptir. C++ programlama dili le yazılmıştır ve izlenen parçacıklar arasında leptonlar, fotonlar, hadronlar ve iyonlar bulunur (Allison vd. 2006). Gamos, gate gibi özel amaçlar için geliştirilmiş varyasyonları da vardır.
- EGS (Electron Gamma Shower): EGS sistemi, medikal fiziğin ve radyasyon fiziğinin çeşitli alanlarında sıklıkla kullanılan ve enerjisi birkaç keV'den 10 GeV'e kadar değişen elektron ve fotonların birlikte taşınımını MC simülasyonu ile yapan bir pakettir. Elektron taşıma modellemesinde, zamandan verim kazanabilmek amacıyla kapsamlı bir şekilde optimize edilmiştir (Hadid vd. 2010; Yegin 2003).

- **PENELOPE (PENetration and Energy LOss of Positrons and Electrons):** Bir MC kodu olan PENELOPE, birkaç keV'den 1 GeV'e kadar enerjilere sahip foton, elektron ve pozitron taşınımını karmaşık geometrilerde ve çeşitli materyallerde simüle edebilir. Fotonların taşınımında geleneksel yöntem kullanırken, elektron ve pozitron için daha karma bir prosedür izler. İlk çıkan varyasyonlarına göre zamanla geliştirilmiş, orta ve yüksek enerjili elektron transportunda parçacığı daha ayrıntılı izleme algoritmaları eklenmiştir. Bu algoritmalar doğruluktan ödün vermeden simülasyonların hızlandırılmasına da izin verir (Sempau vd. 2003).
- VMC++ (Voksel Monte Carlo): VMC kod ailesinin bir üyesi olan VMC++, C++ programlama dili ile yazılmış, nesne yönelimli tasarım kullanarak elektron ve foton taşınımı yapabilen bir MC kodudur. İlk ortaya çıktığında sadece elektronlar için kullanılabilen VMC koduna zamanla yeni yetenekler eklenerek elektron taşıma simülasyonlarını çok daha hızlı gerçekleştirebilen VMC++ kodu haline gelmiştir. Bu simülasyon paketinin geometri, dış kaynak ve skorlamadan sorumlu nesnelerle etkileşimi, abstract classes belirli yöntemleriyle gerçekleştirilir. Bu sayede kodun esnekliği büyük ölçüde geliştirilir (Kawrakow 2001; Gardner vd. 2007).
- **OpenMC (Open Monte Carlo):** MIT tarafından geliştirilen ve diğer MC kodlarına göre daha yeni olan OpenMC'nin ilk sürümü 2012 yılında yayımlanmıştır. Eski kodları kullanmak yerine yeni bir MC kodu geliştirmelerinin sebebi yüksek performanslı, ücretsiz erişilebilirliği olan ve yeni standartlara uygun bir programlama diliyle (Fortran 2008) yazılmış bir koda sahip olmaktı. OpenMC ile yapılan ilk çalışmalar, nükleer reaktörlerin kritiklik hesaplamalarına dayanan simülasyonlardır. İlk ortaya çıktığı günden bu yana nötron etkileşimlerine odaklanan kod, ikincil nötronlar üreten tüm nükleer reaksiyonları doğru bir şekilde simüle edebilmektedir. Bu reaksiyonlara (n,2n), (n,2n), fisyon ve inelastik saçılma dahil olmakla beraber, henüz foton (nükleer reaksiyon sonucu oluşan ikincil γ ışınlarının (n, γ) da dahil) transportunu yapamamaktadır (Romano vd. 2015).

Bu kodların haricinde, radyasyon transportunu incelemek üzere yazılmış başka bir MC kodu olan MCNP, özellikle nötron, foton ve elektron taşımada yaygın olarak bilinen ve kullanılan, genel amaçlı 3 boyutlu bir simülasyon programıdır. MCNP'nin daha detaylı anlatımı Bölüm 3.2'de mevcuttur.

3.2. MCNP'nin Genel Özellikleri

MCNP, 1970'li yıllarda ABD'nin Los Alamos Ulusal Laboratuvarı tarafından Monte Carlo metodunu kullanarak radyasyon taşınım yapmak üzere geliştirilmiş bir programdır. Kodun ilk sürümleri nötronların, fotonların ve nötron etkileşiminden kaynaklanan ikincil fotonların transportunu simüle edebildiğinden ismini 'Monte Carlo Neutral Particles' söz diziminin baş harflerinden almaktaydı. Daha sonraları, birincil elektronların ve ayrıca foton etkileşimi yoluyla oluşan ikincil elektronların da davranışını modellemek üzere güncellendiğinde kodun siminin açılımı da 'Monte Carlo N-Particles' olarak değiştirildi. Radyasyonun herhangi bir ortamdaki etkileşimini tesir kesiti kütüphaneleri yardımıyla gerçekleştiren ve üç boyutu bilgisayar ortamında modelleyebilen MCNP kodu, şu anda, geniş enerji aralıklarında birçok parçacık türünü izleme yeteneğine sahiptir (Goorley vd. 2012).

MCNP kod paketinin nükleer reaktör tasarımı (fisyon veya füzyon), nükleer kritiklik güvenliği, radyasyon zırhlama, nükleer güvence, dedektör tasarımı ve analizi,

personel dozimetrisi ve sağlık fiziği, hızlandırıcı hedef tasarımı, medikal fizik ve radyoterapi, uzay uygulamaları, radyografi, atık bertarafı, dekontaminasyon ve servisten çıkarma gibi birçok kullanım alanı bulunmaktadır (Hendricks ve Briesmeister 1992).

Bir problem MCNP yardımı ile çözüleceği zaman kaynak yapısı, yaydığı parçacıkların türü, enerjisi ve uçuş doğrultusu bilgileri, parçacığın etkileşim yapacağı ortamların geometrik ve materyal özellikleri ile etkilesim sonucunda programdan istenilen bilgilerin alınacağı parametreler metin formatında hazırlanmış bir giriş dosyası içinde uygun kartlarla istenilen şekilde tanımlanmalıdır. Bir MCNP giriş dosyasında hücre kartı, yüzey kartı ve veri kartı olmak üzere üç ayrı bölüm bulunur. Hücre kartları bloğunda, her hücrenin etiketi ile birlikte materyal özelliği, yoğunluğu ve geometrisi tanımlanır. Yüzey kartları bloğunda, hücre kartları bloğunda oluşturulan hücrelerin geometrisini oluşturmada kullanılacak yüzey ve düzlemler etiket numaraları ve yüzey parametreleri ile birlikte verilir. Veri kartları bloğunda ise parçacık kaynağının türü, enerji spektrumu, uzaysal dağılımı ve yöneliminin tanımı, problem geometrisinde yer alan hücrelerin materyal bilesimlerinin tanımları, programdan skorlanması istenen bilgiye (akış, enerj, doz vs.) uygun tally (dedektör) tanımları ile öykü sayısı gibi yardımcı bilgiler belirtilir. MCNP, girdi dosyasının her üç bloğunda verilen bilgileri kullanarak istenilen sayıda öykü için (kaynak parçacığı) geometri içerisinde taşıma yapar, parçacık etkileşimlerini gerçekleştirir ve detektörlere ulaşan sayı ya da niceliği kayıt altına alarak sonuçta tüm öyküler üzerinden istenilen niceliği parçacık başına ortalama değer şeklinde bağıl hatası ile birlikte rapor eder.

3.2.1. MCNP6'nın Genel Özellikleri

MCNP6, MCNP kod paketinin MCNPX ve MCNP5 kodlarının yeteneklerinin birleşimini kapsayan ve ek olarak yeni özelliklere sahip olan son sürümüdür. Bu özelliklerden bazı önemlileri, yeni fiziksel verilerin dahil edilmesi, default davranışların değiştirilmesi, yeni veya geliştirilmiş atomik ve nükleer verilerin eklenmesi ile hata düzeltmelerinin iyileştirilmesi olarak sıralanabilir (Shultis ve Faw 2011).

Yeni yetenekler eklenmiş MCNP'nin bu versiyonu, 37 farklı parçacık tipinin transportunu gerçekleştirebilir. Bu parçacık tiplerine temel parçacıklar, kompozit parçacıklar, kompozit anti parçacıklar ve bazı çekirdek türleri dahildir. Her bir parçacığın kodun işleyebileceği enerji düzeni birbirinden farklıdır. Ayrıca MCNP6, fotonları 1 eV'e, elektronları ise 10 eV'e kadar takip etme üzerine özelleşmiştir.

MCNP6, yüksek kaliteli nükleer ve atomik veri tabanlarını içeren ENDF (Evaluated Nuclear Data Files) dosyaları ile birlikte kullanıma sunulmaktadır ve ENDF/B-VII sürümünü kullanmaktadır. Bu sürüm, birincil ve ikincil parçacıkların farklı tip ve enerjileri için aşağıda kısaca listelenen nükleer ve atomik verileri içerir (Goorley vd. 2012).

- Nötron etkileşimlerinin 150 MeV'e kadar olanlarının yanı sıra termal nötronlar için 20 farklı malzemenin etkileşim verileri,
- Proton için 48 izotop ve 150 MeV'e kadar olan etkileşim verileri,
- Fotonlar için 100 GeV ve elektronlar için 1 GeV'e kadar olan foto-atomik etkileşim verileri,
- Fotonükleer etkileşimler için 157 izotop ve 150 MeV'e kadar olan veriler. Hadronlar

için yukarıdaki enerjilerden daha yüksek enerjili etkileşimler, deneysel düzeneklerle yapılan teorik modellere dayanmaktadır.

• Ayrıca MCNP6'da 100 TeV'e kadar parçacık taşınımı yapılabilirken sadece 1 TeV'e kadar olan enerjiler için etkileşimler doğruluk açısından incelenmiştir.

3.2.2. MCNP'de Geometrik Modelleme

MCNP, problem geometrisini, 3 boyutlu kartezyen koordinat sistemi içerisinde modeller. Bir geometriyi oluşturmak için, ilk önce birinci veya ikinci dereceden yüzeyler, yüzey kartları bölümünde tanımlanır. Tanımlanan her yüzeyin bir pozitif tarafı ve bir negatif tarafı bulunur. Daha sonra bu yüzeylerin pozitif veya negatif tarafları ile sınırlandırılarak hacimsel bir bölge önceden tanımlı bu yüzeylerle oluşturulur. Üç boyutlu herhangi bir cismin geometrisinin, bu şekilde, belli tanımlanmış düzlemler veya yüzeyler yardımıyla elde edilmesine *kombinatoryal geometri* denir. Oluşturulan hacimsel bölgelerin kesişimleri, birleşimleri veya tümlemeleri ile farklı malzemeler içeren hücreler, hücre kartları bölümünde oluşturulur. Modellenecek geometride takip edilen parçacığın sonraki adımda hangi yüzeyi keseceğini kestiremeyeceği hiçbir tanımlanmamış uzay bölgesi kalmamalı ve tüm geometri bitişik hücreler şeklinde tanımlanmalıdır (Werner 2017).

MCNP'de oluşturulacak olan geometrik modelin tamamı, sınırları belli ve genellikle küre olarak tercih edilen ve her şeyi kapsayacak şekilde tanımlanan bir sınır ile çevrelenir. Genellikle vakum olarak tanımlanan bu sınırın dışına geçen radyasyon parçacıkları için transport yapılmaz ve bir sonraki öyküye geçilir.

Örneğin, EK 1'de verilen MCNP girdi dosyası için 3 boyutlu görünüşü Tinkercad programı ile elde edilmiş Şekil 3.2'de gösterilen ve 7*7*7 tane küpten oluşan sistemin geometrisinin nasıl tanımlandığını inceleyelim. Aynı boyutlara sahip 343 tane küpten oluşan büyük küpü tanımlamak için ilk önce, yüzey kartları bölümünde, her küçük küp, her birine farklı yüzey etiket numaraları verilerek tek tek oluşturulmuştur. Küp tanımı için rpp yüzeyi ifadesi kullanılmış ve ilk yüzey '111 rpp -3.5 -2.5 -2.5 -3.5 -2.5 -2.5 -3.5 -2.5 -3.5 -2.5 -2.5 -3.5 -2.5 -2.5 -3.5 -2.5 -3.5 -2.5 -

Geometrik etiketleri yüzey kartları bölümünde tanımlanan küpler, daha sonra hücre kartları bölümünde hücreleri oluşturma üzere kullanılmıştır. Her bir küp geometrisinin negatif tarafı (yani iç kısmı) belirlenerek ve bu küplerin içleri su materyali ile doldurularak hücreler modellenmiştir. Hücre etiketleri, yüzey etiketlerine paralel seçilerek 111 numarası ile başlatılmış ve ilk hücre 111 1 - 1.0 - 111 imp:p=1'deyimi ile oluşturulmuştur. Şekil 3.1'de her bir katmana ait olan küplerin, hücre etiketleri görülebilmektedir. Modelde, farklı hücre etiketlerine sahip olan her bir küp, hava ile tanımlı 998 numaralı iç dünyaya dahil edilmiştir. En son olarak ise, su ile tanımlı ve küp görünümüne sahip olan yapıdan, Şekil 3.2.c'deki küreye yakın bir yapı elde etmek amacıyla kenarlardaki hücrelerin materyali hava olarak değiştirilmiştir. Bu sayede, bir anlamda küp yapısının kenarları kırpılarak küre görünümü verilmiştir. Voksel sayısının artırılmasına bağlı olarak küre görünümünün daha belirgin hale getirilmesi mümkündür.

Şekil 3.1. 7*7*7'lik küp yapısının ayrı ayrı küplerin manuel tanımlanması sonucu MCNP'den görüntülenen katmanları

3.2.3. MCNP'de Kaynak Tanımı

Bir MCNP probleminin kaynak tanımları, veri kartları bölümünde sdef komutu altında yapılır. Bu komut, izotropik veya yönlü bir radyasyon kaynağının yaydığı parçacıkların türü, enerji dağılımı, konumu gibi başlıca parametreleri tanımlar. Bunun yanı sıra MCNP'de dağıtık (çok değerli) kaynakların da tüm özelliklerini doğru bir şekilde temsil etmek amacıyla kullanılan birçok değişken ve parametre bulunur. Bu parametreler ile bir veya birden fazla noktasal, çizgisel, yüzeysel veya hacimsel kaynakların hepsi için çok çeşitli türlerde kaynaklar karakterize edilebilir.

Şekil 3.2. 7*7*7 adet küp örgüsü ile oluşturulan bir voksel kürenin geometrik gösterimi.
a) Örgüyü (lattice) oluşturan küp kesitleri; b) Küp örgüsü; c) Voksel küre

EK 1'de verilen MCNP girdi dosyası için kaynak tanımının nasıl yapıldığını inceleyelim. Dosyada, kullanılan sdef komutunda par, erg, pos, vec ve dir kartları ile noktasal ve izotropik bir kaynağın özellikleri belirtilmiştir.

Parçacık türü 'par 2' şeklinde foton olarak seçilen kaynağın konumu, 'pos 0.0 -10.0 0.0' şeklinde y ekseninde -10.0 cm olarak belirlenmiştir. Bu konumdaki nokta foton kaynağına, enerji spektrumu için 'erg d1' ile gösterilen dağıtık değerler verilmiştir (izotop spektrumu ICRP 107'den alınmış). Spektrumundaki foton enerjileri ve ilgili intensiteler sırasıyla si1 ve sp1 kartında listelenmiştir. Geriye kalan diğer iki kart vec ve dir ise kolime kaynak tanımlamada kullanılır. Kaynakta üretilen parçacıkların, uçuş doğrultuları 'vec 0 1 0' kartında +y yönü olarak belirlenmiş ve kolimasyon açısı da 'dir d2' ile belirtilerek bir dağılım olarak verilmiştir. Sonuç olarak bu problem için (0,-10,0) konumunda, belli bir spekruma sahip nokta foton kaynağı kolime edilmeden problemin kaynak karakterizasyonu yapılmıştır.

3.2.4. MCNP'de Dedektör Türleri

MCNP kodunda simüle edilen bir problem için istenilen sonuçlar veri kartları bölümünde yer alan dedektörler (tally) yardımıyla belirlenir. Hesaplanacak olan niceliğe uygun olarak seçilen dedektör parçacık başına ortalama değeri kaydeder. Dedektör konumu olarak belirlenen bir noktada, yüzeyde veya hacimsel alanda, istenilen parçacık türünün sebep olacağı akı, akım veya enerji birikimi gibi değerler skorlanabilir. En sık tercih edilen F1, F2, F4, F5 ve F6 dedektör çeşitleri kullanılarak sırasıyla yüzey akımı, ortalama yüzey akışı (fulence), bir hücredeki ortalama akış, bir nokta veya halkadaki akış ve bir hücredeki enerji birikimi sonuçları hesaplanabilir. EK 1'de verilen girdi dosyası incelendiğinde, 'F4:p 444' şeklinde dedektör tanımı yapıldığı görülmektedir. Bu problem için, oluşturulan 7*7*7'lik küresel yapının merkezinde bulunan hücrede fotonların sebep olacağı ortalama akı hesabı yapılmıştır.

3.2.5. MCNP Simülasyonları ve Pratik Hususlar

MCNP simülasyonlarında yukarıdaki başlıklarda bahsedilen kartların haricinde çeşitli özelliklerin de temsil edilmesine yarayan kartlar mevcuttur. Bunlara örnek olarak EK 1 girdi dosyasında verilen e0, nps, mode, print, imp ve materyal kartı (mx) gibi bazı temel komutların kullanım amaçları aşağıda açıklanmıştır.

- e0 kartı, dedektörden istenilen bilgiyi alırken sonucu farklı enerji gruplarına göre incelemek üzere kullanılan ve her enerji aralığını ayrı ayrı listelemeye yarayan komuttur. EK 1'de 'e0 0.25 0.5 0.75 1 1.25 1.50 1.75' deyimi ile 0 ve 1.75 MeV arasındaki 7 farklı enerji grubu için ortalama akı sonucu alınmıştır.
- nps kartı, bir simülasyonda seçilmiş olan kaynak parçacıklarından kaç tane yaratılacağının belirtildiği karttır. Başka bir ifadeyle, problemin çözümü için kaç tane deneme yapılacağı ve istenen sonucun ortalamasının kaç öykü üzerinden alınacağı bu kartta gösterilir. Bir problemin ne kadar süre çalışacağını belirlemenin yollarından biridir. Programı sonlandırmak için diğer bir seçenek olarak ise programın kaç dakika çalışacağını tanımlamak üzere ctme kartı kullanılabilir. EK 1'deki problem için ise simülasyonu sonlandırmak üzere 'nps 1e7' olarak 10 milyon öykü sayısı belirlenmiştir.
- mode kartı, par kartında belirlenen ve üretilen parçacık türünün etkileşimleri neticesinde problemde üretilecek ve takip edilecek olan parçacıkların seçildiği karttır. EK 1'de, etkileşim sonucu üretilen ve takip edilen parçacık 'mode p' şeklinde foton olarak girilmiştir. Eğer bir problemde par kartı tanımlı değilse, mode kartı dikkate alınır.
- print kartı, MCNP'nin çıktı dosyasında istenen ayrıntıları verecek tabloların numarasının verildiği bölümdür. Bu komut kullanılmadığında çıktı dosyasında, bazı temel tablolar görülebilmesine karşın tablo numarası verilmeden kullanıldığında ise bütün tabloların oluşturulmasını sağlar ve bu nedenle çıktı dosyasının boyutunun büyümesine yol açar. EK 1 girdi dosyasında, ilk 50 öykü parçacığının özelliklerini listeleyen 110. tablonun çıktı dosyasında oluşturulmasını sağlamak amacıyla 'print 110' ifadesi bulunmaktadır.
- imp kartı, bir parçacığın bir hücre içerisinde takip edilmesini belirlemek amacıyla kullanılır. Hücre veya veri kartları bölümünde kullanılabilen bu kart, EK 1'deki

simülasyon için hücre kartları bölümünde tanımlanmıştır. Her hücre satırının sonunda verilen imp:p=1' ile bütün hücrelerin içerisinde foton takibi yapılırken sadece geometriyi çevreleyen sınır olarak belirtilen 999. hücrenin dışı için ise imp:p=0' belirlenerek burada parçacık takibi yapılmamıştır.

- mx kartı, izotop ID yardımıyla materyal içeriklerinin verildiği ve böylece seçilen parçacık türüne uygun tesir kesit tablolarının belirlendiği bölümdür. Hücrelerin oluştuğu materyaller, bu bölümdeki materyal numaraları yardımıyla tanımlanır. EK 1'de materyal olarak kullanılan hava ve su, sırasıyla 'm1' ve 'm2' olarak numaralandırılmıştır. 'm1' kartının tanımına bakıldığında, su materyalini oluşturan elementlerin önce atom numaralarının sonra ağırlık yüzdelerinin verildiği görülmektedir.
- Bu komutların haricinde sık tercih edilen phys ve cut, sırasıyla parçacıkların hangi etkileşiminin dikkate alınacağını ve parçacıkların takibinin hangi enerjide sonlandırılacağını ifade etmektedir. Ayrıca, prdmp ise MCNP çalışırken output dosyalarına veri atımı için gerekli bilgilerin işlenebildiği bir karttır.

3.2.6. MCNP'de Tekrarlanan Yapıların Modellenmesi

MCNP'de, aynı geometrik şekle sahip çok sayıda hücre oluşturulacağı zaman kullanılabilen *tekrar eden yapılar* özelliği mevcuttur. Bu özellik, bir geometride birden fazla görünen herhangi bir yapının hücrelerini ve yüzeylerini yalnızca bir kez tanımlayarak bu temel tanım üzerinden çoklamayı mümkün kılar. Bir sonraki bölümde değinilecek voksel fantomlar gibi tekrar eden hücreler içeren problemlerin modellenmesinde bu özellik kullanılarak MCNP girdi dosyası daha kolay hazırlanabilir ve böylece bilgisayarın bellek kullanımı azaltılabilir. Ancak, bu özelliğin tercih edilmesinin problemin çalışma süresi üzerinde herhangi bir etkisi yoktur. Başka herhangi bir yolla tanımlanmış problemden daha hızlı çalışmayacaktır (Werner 2017).

EK 1'deki girdi dosyası ile oluşturulan voksel küre, aynı boyuttaki küplerin defalarca tanımlanması ile elde edilmiş olup bu tip bir yapı için tekrar eden yapılar özelliğini kullanmak oldukça uygun olur. EK 2 olarak verilen MCNP girdi dosyasında, EK 1 dosyasındaki voksel kürenin tekrar eden yapılar kullanılarak oluşturulması gösterilmiştir. Bu özellik, hücre kartlarında u (universe - evren), lat (lattice - örgü) ve fill (doldurma) komutları ile uygulanır. Geometri kartlarında sadece evrenin, evrenin sınırının ve elde edilecek olan son yapının geometrik şekil ve boyutlarının birbirine uygun şekilde belirlenmesi yeterli olur.

EK 2'deki MCNP girdi dosyası üzerinden tekrar eden yapının nasıl oluşturulduğunu inceleyelim.

- Yüzey kartları bölümünde, aynı geometrilere sahip evren (101) ve evren sınırının (102) boyutları ve aynı zamanda sonuçta elde edilecek olan küp yapısının (201) boyutları belirtilmiştir.
- Hücre kartlarının ilk adımında biri hava (voksel kürenin dışı) biri su (voksel kürenin içi) olmak üzere farklı materyaller içeren iki (u=1 ve u=2) evren, 101. geometrik etiket yardımıyla tanımlanmıştır.
- İkinci adımda, ilk adımda tanımlanan evrenler bir başka evren (u=3) ile 102. yüzey etiketinin içi olarak sınırlandırılmıştır.

- Üçüncü adımda, her bir küpü yan yana sıralamak amacıyla uygun indisleme (`fill=-3:3 -3:3 -3:3') yapılarak istenilen örgü (`lat=1') elde edilmiştir.
- Dördüncü adımda ise elde edilen bu örgü yapısı ile sonuçta ortaya çıkacak olan ve boyutları 201. yüzey etiketinin içi olarak ifade edilen voksel küre (görünümü küp) hücresi (22) doldurulmuştur ('fill=3').

EK 1 ve EK 2 aynı işleve sahip sadece geometrik tanımları farklı MCNP girdi dosyalarıdır. Ancak, EK 2'nin boyutları ve hazırlanışındaki pratiklik göz önüne alındığında, tekrar eden yapılar özelliğinin, uygulanmasının mümkün olduğu problemlerde kullanılması avantaj sağlamaktadır.

3.3. Vücut Fantomları

Radyasyon dozimetrisi, radyasyona maruz kalan bir nesnede iyonlaştırıcı enerjinin miktarının, birikiminin ve dağılım modelinin belirlenmesi ile ilgilenen temel bilim dalıdır. Radyasyon ile ilgilenen her alanda, yasal mevzuat gereğince, çalışanların ve halkın güvenliğini temin etmek için radyasyonun insan vücudu ile olan etkileşiminin anlaşılmasına ihtiyaç duyulmaktadır. İnsan vücudundaki radyasyon dozimetrisi, her bir organ veya dokunun yoğunluk ve bileşiminin birbirinden farklı olması, her bir radyasyon türünün farklı enerjilerde madde ile etkileşiminin farklı olması ve ayrıca her bir maruziyet durumunda insan ile kaynak arasında farklı soğurucu ortam veya cisimlerin bulunması sebebiyle oldukça karmaşık bir konudur. Bunun sonucu olarak genellikle, radyasyona maruz kalan bireyin organ veya dokularındaki dozun doğrudan ölçülemeyeceği açıktır.

Yaşayan bir insandan ölçüm ile doz bilgisinin alınamayacağı gerçeği insana ait niteliklerin insan dışındaki bir varlığa yüklenerek fantom adı verilen üç boyutlu (antropomorfik) yapıların ortaya çıkmasında rol oynamıştır. Fantom, radyoloji biliminin literatüründe, insan vücudunu taklit eden fiziksel bir yapı olmasının yanı sıra radyasyondan korunma literatüründe, bilgisayar ortamında tanımlanmış bir anatomik modeli belirtmek için de kullanılmaktadır. Radyasyon doz değerlendirmelerinde, kullanım alanlarına uygun olarak seçilen fantomlar, oldukça yarayışlı ve pratik araçlardır. Doz tahminlerindeki doğruluk, fantomun insan vücudunun geometrisinin ve organ zayıflatma özelliklerinin ne kadar iyi tanımlandığına bağlıdır.

Fantomlar, fiziksel ve hesaplamalı olmak üzere iki temel başlık altında incelenebilir. Fiziksel fantomlar, somut nesneler olup insan dokularına eşdeğer katı materyallerden yapılır. İnsan vücudunun çoğu su içeriğine sahip olduğu için, genellikle su eşdeğeri veya plastik yapılı fiziksel fantomlar üretilmektedir. Bu tür fantomlar, tedavi sistemleri ve radyasyon dedektörlerinin kalibrasyonunda, ayrıca laboratuvar ve hastaneler arası rutin standardizasyon ölçümlerinde tercih edilir. Bunun yanı sıra ilgilenilen organdaki küçük boşluklara dozimetri yerleştirilerek doz ölçümleri yapılabilmektedir. Ancak bu süreç radyasyon güvenliği ve deneysel prosedürler sebebiyle pahalı ve zaman alıcıdır. Ticari amaçla kullanılan fiziksel fantomlar sınırlı materyal ve boyutlara sahip olduğu için insanın biyolojik ve fiziksel gerçekçiliğini yansıtmaz.

Hesaplamalı fantomlar, insan vücudunun homojen olmayan ve karışık geometrik yapısının bilgisayar ortamında tasarlanarak elde edilmiş matematiksel bir modelidir. Bu tür fantomlarda, organ veya dokuların kütle, hacim, konum, şekil, yoğunluk ve kimyasal bileşim gibi bilgileri ile insan vücudunun iç ve dış özellikleri ayrıntılı olarak tanımlanabilir. İnsan vücudunun bu şekilde detaylı olarak modellemesi özellikle radyasyona duyarlı organların da gerçeğe yakın şekilde temsil edilmesi açısından önemli bir noktadır. Karmaşık maruziyet ve ışınlama koşullarında kullanılabilen hesaplamalı fantomlar, fiziksel fantomlara göre hem dahili hem harici doz değerlendirmelerinde verimli, hassas, gerçekçi, güvenli ve pratik olmaları sebebiyle avantajlıdır.

Bilgisayarların gelişmesiyle birlikte hesaplamalı fantomlar, insan vücudundaki radyasyon taşınımını simüle edebilmek amacıyla MC kodlarıyla birleştirilmiştir. MC kodu, ilgilenilen organ veya doku için etkileşim olasılıklarını karşılaştırarak bir parçacığın öyküsünü belirler ve parçacığı üç boyutlu anatomik modelin dışına kaçana ya da enerjisi önemsiz düzeylere düşene kadar izler. Birçok parçacık için tekrarlanan bu simülasyon ile organ veya dokulardaki enerji birikimi rahatlıkla belirlenebilir.

Bilgisayarlar ve MC simülasyonları ile uygulanabilirlik kazanan ve 1960'larda ortaya çıkan hesaplamalı fantomlar, radyasyon maruziyeti hesaplamalarında yeni bir araştırma alanına dönüşmüştür. İnsan vücudunun geometrik modellemesi, karmaşık ve benzersiz şekillere sahip organ yüzeylerinden oluşması nedeniyle zordur ve bu durumun üstesinden gelmek amacıyla anatomik modelleme teknikleri üzerine çalışmalar yürütülmüştür. 1960'lı yıllardan itibaren başlayan bu çalışmalar sonucunda anatomik modelleme teknikleri zamanla hızlı bir gelişim göstermiştir. Şekil 3.3'de görselleri bulunan hesaplamalı fantom çeşitleri, tarihsel olarak sırasıyla aşağıdaki şekilde listelenebilir (Xu 2015).

- Matematiksel denklemlere dayanan stilize (matematiksel) fantomlar (1960 -2000): Hesaplamalı fantomların ilk versiyonları basit matematiksel denklemler ile insan anatomisini kabaca temsil edebilen stilize fantomlardan oluşmaktadır. Anatomik basitliğine rağmen o dönemde mevcut olan en iyi doz tahmin araçlarıydı. Zamanla yüksek mertebeli denklemlere dayanan stilize fantomlar geliştirilerek insan anatomisini daha detaylı içeren versiyonları elde edilmiştir.
- Tomografik görüntülere dayanan vokselize (tomografik) fantomlar (1980 günümüz): 1980'lerden sonra bilgisayarların yaygınlaşması ve tıbbi görüntüleme tekniklerinin insan anatomisini üç boyutlu görselleştirmeyi mümkün kılması ile insan anatomisinin daha ayrıntılı olarak temsil edildiği vokselize fantomlar ortaya çıkmıştır. Voksel fantomlar, insan anatomisinin CT, MRI ve anatomik fotoğrafçılık yardımıyla elde edilen görüntü kesitleri kullanılarak çok sayıda vokselden meydana gelen modelleridir.
- Stilize ve voksel fantomun birleşiminden oluşan ve deforme edilebilen **BREP** (**Boundary REPresentation**) fantomlar (2000 -günümüz): Son 20 yılda ortaya çıkan bu yeni çeşit hesaplamalı fantom daha gelişmiş geometrilere dayanmaktadır. Bu fantomu inşa etmek için hibrit bir yaklaşım olan NURBS veya polygon mesh (çokgen birleştirme) adı verilen animasyon teknolojileri uygulanır. NURBS metodu, pürüzsüz üç boyutlu yüzeyler elde etmek için bilgisayar grafiklerinde uygulanan matematiksel bir modelleme tekniğidir. Standart analitik şekillerin yanı sıra insan anatomisini modellemek için gerekli olan üç boyutlu eğrileri ve yüzeyleri tanımlamak için kullanılabilen matematiksel formlar içermektedir. Ayrıca stilize veya voksel fantomlar ile kıyaslanınca, kontrol noktalarını değiştirerek organ hacimlerini ve vücut hatlarını kolayca değiştirmeyi mümkün kılan tasarım esnekliği özelliğine sahiptir (Lee vd. 2007; Michael 2012).

Şekil 3.3. Hesaplamalı fantom çeşitleri. a) Stilize fantom; b) Vokselize fantom; c) BREP fantom

Yukarıda bahsedilen fantomların oluşturulma yöntemlerinin görsel olarak ifade etmek üzere Şekil 3.4'de üç farklı fantomun akciğerleri ve bunun yanı sıra Şekil 3.5'de ise her üç fantom için modellenmiş sindirim sistemi bulunmaktadır. Bu iki şekil incelendiğinde stilize fantomların organları, kabaca ifade ettiği açıktır. Ancak vokselize ve BREP fantomların, organ şekillerini modelleyebilme yeteneği açısından daha ileri teknikler olduğu da görülmektedir.

3.3.1. Hesaplamalı Stilize Fantomlar

Stilize fantomlar, vücuttaki organ ve dokuları basit geometrik şekiller veya analitik denklemler kullanarak tanımlayan fantomlardır. Organ boyutları ve hareketleri değiştirilmek istendiğinde, organı temsil eden analitik denklemler üzerinde değişiklik yapılarak bu işlem kolaylıkla gerçekleştirilebilir. Ancak bu analitik denklemlerin dayandığı basitlik sebebiyle stilize fantomların insan anatomisini gerçek bir şekilde temsil yetenekleri sınırlıdır.

Şekil 3.4. Hesaplamalı fantom çeşitlerine ait metotların akciğer üzerinde gösterimi. a) Stilize akciğer; b) Vokselize akciğer; c) BREP akciğer

Şekil 3.5. Farklı hesaplamalı fantomlarda sindirim sisteminin tanımlanması. **a**) Stilize fantom; **b**) Vokselize fantom; **c**) BREP fantom (Lee vd. 2007)

İlk üç boyutlu stilize fantomlardan biri olan MIRD (ya da ORNL) fantomu, iç veya dış kaynaklar için organ dozu hesaplamalarında kullanılmıştır. Bu fantom, Şekil 3.3.a'da görüldüğü üzere elips, silindir ve dikdörtgen geometrili hacimlerden oluşmaktadır. Basit denklemler, organ konumlarını ve geometrilerini sadece genel olarak (kabaca) kapsadığı için iç organların temsili oldukça basit ve yüzeyseldir.

Stilize fantomlarda kullanılan ikinci dereceden denklemler, insan anatomisinin detaylarını gerçekçi yansıtmakta yetersiz kalmıştır. Ancak, bu fantomları yüksek dereceli ve daha karışık denklemler kullanılarak oluşturmak ise oldukça zahmetli ve yoğun işlem gerektiren bir süreçtir. Zaman içerisinde, bu iki durumu optimize edebilmek için çalışmalar yapılmış ve sonuçta sırasıyla 4D MCAT ve süperkuadratik matematiksel fantom modellenmiştir. Bu modellerde, geometrik açıdan organların kesişimi ve örtüşmesi daha uyumlu ve doğru bir şekilde tanımlanmıştır. Şekil 3.5'te stilize fantomların gelişimi gösterilmektedir. Şu anda kullanılan ORNL tarafından geliştirilmiş, farklı yaş gruplarındaki yetişkin ve çocuk hastaları temsil eden bir dizi stilize fantom ve aynı zamanda MIRD'in güncel versiyonları mevcuttur (Michael 2012).

Şekil 3.6. Stilize fantomların gelişimi. **a**) MIRD fantomu; **b**) 4D MCAT fantomu; **c**) Süperkuadratik fantom

3.3.2. Hesaplamalı Vokselize Fantomlar

Güçlü bilgisayarlar ve tomografik (kesitsel) görüntüleme teknolojilerinin geliştirildiği 1980'li yıllarda anatomik modellemede yeni bir tür olarak vokselize fantomlar ortaya çıkmıştır. Tıbbi görüntüleme teknikleri, insan iç yapısının ilk kez üç boyutlu olarak görselleştirilmesine ve bu görsel verilerin depolanabilmesine olanak sağlamıştır. Bu imkanlar yeni tür hesaplamalı fantom olan vokselize fantomların üretilmesine yol açmıştır. Bir tomografik görüntü veri seti, her biri insan anatomisinin iki boyutlu piksel haritasını gösteren birçok görüntü kesitinden oluşmaktadır. Üç boyutlu bir voksel, bir pikselin, görüntü kesitinin kalınlığı ile çarpılması sonucunda elde edilir. Başka bir ifade ile, hacimsel görüntü elemanı olan bir voksel, Şekil 3.7'te gösterildiği gibi basitçe, piksel adı verilen iki boyutlu görüntü elemanının üç boyutlu halidir.

Şekil 3.7. Pikselden piksel dizisine ve voksel örgüsüne dönüşüm

Hesaplamalı vokselize fantom, anatomik yapıların çeşitliliğini temsil edecek şekilde gruplandırılmış birçok vokselden oluşmaktadır. Şekil 3.8'de oluşturulma aşamaları kısaca gösterilen vokselize fantomu elde etmek için ilk önce insan vücudunun tüm hacmini kapsayan bir dizi tomografik görüntü setine ihtiyaç vardır. Mevcut durumda, bu veri seti CT, MRI veya anatomik fotoğrafçılık ile elde edilir. Bu kesitsel görüntü setinin her bir kesiti ayrı ayrı incelenir ve her piksele bir kimlik numarası atanarak ilgilenilen görüntü kesitinde organ veya dokular tanımlanır. Organ veya dokuların bu şekilde birbirinden ayrıştırılması işlemine *segmentasyon* denir. Her bir organ veya dokunun yoğunluğu ve element bileşimi belirlenir. En son olarak, segmente edilmiş her bir görüntü kesiti, üç boyutlu görselleştirme yapılarak MC kodlarında kullanılmak üzere kaydedilir.

Vokselize fantomda kullanılan görüntüleme teknikleri sonucunda elde edilen görüntülerin piksel çözünürlüğü ve kesit kalınlığı önemli noktalardır. Artan piksel çözünürlüğüne ve incelen kesit kalınlığına paralel bir şekilde daha detaylı bir segmentasyon işlemi gerçekleştirilebilir. Sonuç itibariyle, bu iki kriterin insan vücudunun daha ayrıntılı modellenmesi üzerinde etkilerinin büyük olduğu anlaşılmaktadır.

Voksel fantomların ortaya çıkışından günümüze kadar farklı ırklarda, farklı cinsiyetlerde, farklı yaş gruplarında, farklı boy ve kilolarda, farklı görüntüleme teknikleri

kullanılarak birçok vokselize fantom rapor edilmiştir (Xu 2015). Stilize ve voksel fantomun aynı kesitine ait görüntülerin karşılaştırıldığı Şekil 3.9'den, vokselize fantomların, insan vücudundaki büyük organları ve aynı zamanda stilize fantomda modellenemeyecek kadar küçük organları gerçekçi ve ayrıntılı olarak içerdiği kolaylıkla görülebilmektedir.

Şekil 3.8. Vokselize fantom oluşturma aşamaları

Şekil 3.9. Stilize ve vokselize fantomların aynı aksiyal kesitlerinin karşılaştırılması. **a**) Stilize fantom; **b**) Vokselize fantom (Petoussi-Henss vd. 2002)

3.4. ICRP Yetişkin Referans Fantomları

Radyasyon taşıma kodları ile entegre edilen hesaplamalı vücut modellerinin radyodozimetrik kullanımlarından biri de doz dönüşüm katsayılarının hesaplanmasıdır. Doz dönüşüm katsayıları mesleki, tıbbi ve çevresel radyasyondan korunma konusunda doz değerlendirmelerinin pratik bir şekilde yapılmasını sağlamak amacıyla hesaplanır ve genellikle tablolar halinde kullanıma sunulur.

ICRP, doz dönüşüm katsayılarının hesaplanması doğrultusunda kullanılmak üzere hesaplamalı voksel fantomları geliştirmiştir. Bu amaca yönelik, tüm popülasyonları büyük ölçüde temsil edecek şekilde ICRP Yetişkin Erkek (ICRP-AM) ve Yetişkin Dişi (ICRP AF) fantomları geliştirilerek araştırmacıların kullanımına sunmuştur (ICRP 2009).

Hesaplamalı vokselize fantomların ortaya çıkışı ile birlikte çalışmalara başlayan bir grup araştırmacı tarafından Alman Çevre Sağlığı Araştırma Merkezi'nde (eski adı GSF) 1980'lerin sonunda sağlıklı gönüllüler ve hastaların CT görüntüleri yardımıyla 2 pediatrik, 4 erkek ve 6 dişi olmak üzere 12 tane voksel fantom modellenmiştir (Xu 2015). Modellenen bu fantomlar arasında bulunan GOLEM ve LAURA, radyasyona duyarlı organların hepsini barındırması ve aynı zamanda dış boyutları ve organ kütleleri açısından radyasyon çalışanlarını, tıbbi radyasyon uygulamalarındaki hastaları ve halkı yansıtması dikkate alınarak ICRP-AM ve ICRP-AF fantomlarını oluşturmak üzere seçilmiştir.

ICRP referans fantomlarını oluşturmak üzere incelenen modellerde aranan ilk özellik ICRP-89'da yer alan Referans Erkek ve Dişi'nin dış özellikleri ile uyum göstermesiydi (Zankl vd. 2007). Bunun sebebi modellerin dış özelliklerinde hafif değişiklikler yapılarak oluşturulacak olan fantomların anatomik gerçekliğini bozma ihtimalini en aza indirmekti. ICRP-89 yayınında, Referans Erkek ve Dişi'nin boy ve kiloları sırasıyla 176 cm - 73 kg ve 1.63 cm - 60 kg olarak belirtilmiştir. GOLEM ve LAURA modelleri ise sırasıyla 176 cm - 69 kg ve 167 cm - 59 kg boy ve kiloya sahiptir.

Beyaz Avrupalı ve 38 yaşındaki erkek bir hastanın CT verileri kullanılarak modellenmiş olan GOLEM'in tomografik veri seti 256*256 piksel çözünürlüğünde 220 adet kesitten oluşmaktadır. Her bir pikselin boyutu 2.08 mm ve her bir vokselin yüksekliği 8 mm olmak üzere voksel hacmi 34.611 mm³'tür. LAURA modelinin veri seti, Beyaz Avrupalı ve 43 yaşındaki bir hastanın CT görüntülerine dayanmaktadır. Bu veri seti, iki 256*256 piksel çözünürlüklü baş ve gövdeye ait 174 kesiti ve bacaklara ait 43 kesiti içermektedir. Baş ve gövdenin voksel yüksekliği 5 mm olup bacaklarınki 2 cm'dir. Bacak voksel yükseklikleri interpolasyon yardımıyla 5 mm olacak şekilde ayarlanmış ve toplamda 346 kesitten oluşan LAURA'nın, her bir piksel boyutu ve voksel yüksekliği, 1.875 mm - 5mm, her bir vokselinin hacmi ise 17.57 mm³'tür. Bunlara ek olarak GOLEM modelinde 67'si kemik dokuya ait olmak üzere 122 organ ve doku segmente edilirken, LAURA modelinde 19'u kemik dokuya dahil olan 88 organ ve doku segmente edilmiştir.

GOLEM ve LAURA, ICRP referans erkek ve dişi fantomlarını temsil etmek için seçildikten sonra organ ve dokular için tanımlanan referans kütle verileri ICRP-89'dan ve yoğunluk verileri ICRU-46'dan alınarak bu fantomlar üzerinde bazı düzenlemeler yapılmıştır (Zankl vd. 2007). Yapılan bu değişiklikler neticesinde, geliştiricileri tarafından REX ve REGINA (Latince'de kral ve kraliçe) olarak adlandırılan fantomlar

için ICRP tarafından ICRP-AM ve ICRP-AF isimleri benimsenmiştir. ICRP yetişkin referans erkek ve dişi fantomlara ait bazı temel özellikler Çizelge 3.1'de ve görseller de Şekil 3.10'da verilmiştir (ICRU 1992; Zankl ve Wittmann 2001; ICRP 2002; Zankl vd. 2007; ICRP 2009).

Çizelge 3.1. ICRP yetişkin referans erkek (ICRP-AM) ve dişi (ICRP-FM) fantomunun temel özellikleri

Özellikler	ICRP-AM	ICRP-AF
Boy (cm)	1.76	1.63
Kilo (kg)	73.0	60.0
Toplam doku vokseli sayısı	1 946 375	3 886 020
Toplam voksel sayısı	7 161 276	14 255 124
Voksel hacmi (mm ³)	36.54	15.25
Bir kesitteki sütun sayısı	254	299
Bir kesitteki satır sayısı	127	137
Toplam kesit sayısı	222	348

Şekil 3.10. ICRP yetişkin referans voksel fantomların önden görünümü (boyutlar mm cinsinden). a) Yetişkin erkek (ICRP-AM); b) Yetişkin dişi (ICRP-AF)

'Yetişkin Referans Hesaplamalı Fantomlar' adlı ICRP 110 yayını, tüm vücut dozimetrileri için gelecekteki hesaplamalarda kullanılmak üzere modellenmiş ICRP yetişkin erkek ve dişiye ait bir rapor olup bu fantomların detaylı bilgileri dosya ekleri halinde bu raporda mevcuttur. Bu dosyalarda, organ kimlik numaraları ve yoğunlukları, doku numaraları ve bileşimleri, tüm vücut fantomunun segmente edilmiş indis numaraları bloğu, spongiosa (süngerimsi kemik) dokuya ait bazı oranlar ve aynı zamanda dokuların kan içeriği oranları bulunmaktadır. ICRP 110'da, her iki fantom için 140 farklı organı segmente etmek üzere belirlenmiş organ kimlik numaraları aracılığıyla 26 tanesi kemik dokuya ait olmak üzere toplamda 52 doku tanımlanmıştır. Çizelge 3.2'de referans erkek ve dişi fantomlar için tanımlanan dokular listelenmiştir.

Doku İsimleri					
Kemik doku	Mide	Safra kesesi			
Cilt	İnce bağırsak	Lenf bezi			
Kan	Kalın bağırsak	Meme			
Kas doku	Dalak	Yağ doku			
Karaciğer	Tiroit	Akciğer			
Pankreas	Mesane	Sindirim sistemi içeriği			
Beyin	Testis	İdrar			
Kalp	Yumurtalık	Prostat			
Göz	Böbreküstü bezi	Rahim			
Böbrek	Yemek borusu	Hava (vücut içindeki)			

Çizelge 3.2. ICRP yetişkin referans voksel fantomlarında segmente edilmiş (bölütlenmiş) dokular

Organ kimlik numaraları yardımıyla tüm vücut için segmentasyonu yapıldıktan (bölütlendikten) sonra erkek ve dişi fantoma ait indis numaraları bir blok halinde herhangi bir radyasyon taşıma programında vücut geometrisini modellemeye hazır hale getirilmiştir. Fantomlar bu haliyle herhangi bir radyasyon alanı içinde bir hastayı veya çalışanı ya da halktan bireyi temsil edecek şekilde radyasyon taşıma işleminde kullanılabilir ve simülasyonlar gerçekleştirilerek doz hesabı yapılabilir. Ancak her Monte Carlo programının kendine özgü bir girdi formatı vardır ve fantomların indis numaraları bloğunun bu sintaksa uygun olacak şekilde tekrar düzenlenmesi gerekir.

Referans erkek ve dişiye ait indis numaraları bloğu, bu tez kapsamındaki radyasyon taşıma simülasyonlarında kullanılan MCNP kodunun içerisine de yerleştirilmeden önce MCNP sintaksına dönüştürülmüştür. Satır ve sütunlardan oluşan indis veri dosyası, Çizelge 3.1'de verilen kesit, satır ve sütun bilgileri doğrultusunda tekrar şekillendirilmiştir. Tekrar şekillendirme için her bir kesitsel veriye satır ve sütun düzenlemesi yapılarak her kesit ayrı bir metin dosyası şeklinde kaydedilmiştir. Kaydedilmiş bu kesitlerden beyin dokusuna ait bir kesit Şekil 3.11'de görselleştirilmiştir. Daha sonra MCNP'nin girdi formatına uygun olarak satır başlarında 5 boşluk ve her bir satır 82 karakteri geçmeyecek şekilde kesit dosyaları sırasıyla alt alta eklenmiş ve voksel bloğu MCNP girdi dosyasına aktarılmıştır. Referans yetişkin fantomların indis numaraları bloğunun MCNP formatına dönüştürülmüş halinin görünümü Şekil 3.12'de verilmiştir.

Şekil 3.11. Referans yetişkin dişiye ait indis numaraları bloğunun MCNP formatına dönüştürüldükten sonraki görüntüsü (325. Kesit; beyin ve etrafındaki dokular)

199 199 199 122 116 116 116 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61

Şekil 3.12. Referans yetişkin dişiye ait indis numaraları bloğunun MCNP girdi dosyasındaki birkaç satır görüntüsü (199: hava, 122: cilt, 116: artık doku, 26-27: kafatası, 61: beyin)

3.5. Radyonüklidler ve İzotop Bozunum Verileri

'Dozimetrik Hesaplamalar için Nükleer Bozunum Verileri' adlı ICRP 107 yayını, dahili ve harici maruziyet durumlarında radyasyon dozunun hesaplanmasında ihtiyaç duyulan

radyonüklitler için bozunum verilerini içeren en güncel yayındır (ICRP 2008b). Bu yayında, atom numarası 101'den küçük olan 97 elemente ait 1252 adet radyoizotopun nükleer dönüşümleri ile yayımlanan farklı türde radyasyonların yarı ömürleri, bozunum zincirleri, enerjileri ve intensiteleri mevcuttur.

ICRP 107 yayını, radyasyondan korunma hesaplamalarında yaygın kullanılan alfa bozunumu, beta bozunumu, elektron yakalama, izomerik dönüşümler, gama bozunumu, X ışını ve Auger elektronları verilerini ve ayrıca bunların haricinde kalan nükleer dönüşümlerden kaynaklanan radyasyonlar da dahil olmak üzere toplamda Çizelge 3.3'te verilen 14 farklı radyasyon türüne ait verileri içerir.

Radyasyon türleri					
y işini	Beta (+) parçacığı	Alfa parçacığı			
Ani γ ışını	Beta (-) parçacığı	Alfa geri tepen çekirdeği			
Gecikmiş y ışını	Gecikmiş beta parçacıkları	Fisyon ürünleri			
X ışını	İç dönüşüm elektronları	Nötron			
Anihilasyon fotonları	Auger elektronları				

Çizelge 3.3. ICRP 107'de spektrum bilgileri yer alan radyasyon türleri

Bu tez çalışmasındaki radyasyon simülasyonlarında incelenen her bir radyoizotop için gerekli bozunum verileri ICRP 107 yayınından derlenmiştir. Radyasyondan korunma konusunda fotonlar için geliştirilmiş olan nicelik doğrultusunda, ilk önce 1252 radyoizotop arasından bütün foton yayıcı (1179 tane) izotoplar seçilmiştir. Foton spektrumuna ise γ ışınları, ani ve gecikmiş γ ışınları, X ışınları ile anhilasyon fotonları dahil edilmiştir. Seçilen radyoizotopların spektrumları filtrelenerek sadece enerjileri 10 keV'in ve intensiteleri 10⁻⁴'ün üzerinde olan foton pikleri spektruma alınmıştır. Pratik uygulamalarda radyoaktif bir kaynaktan yayımlanan fotonlar hasta veya radyasyon çalışanının vücuduna ulaşmadan önce ilk olarak belli bir hava katmanı ile etkileşim geçireceğinden, 10 keV altındaki enerjilerin pratikte önemli bir radyasyon tehlikesi oluşturmayacağı hesaba katılarak, foton spektrumlarının enerji alt sınırı bu şekilde belirlenmiştir. Bunun yarı sıra intensite alt sınırının 10⁻⁴ olarak seçilmesi, bu değer altındaki intensiteye sahip fotonların yayınlanma ihtimalinin çok düşük olması ve dolayısıyla spektruma ve dolayısıyla doz hesabına katkılarının ihmal edilebilir olması nedeniyledir.

İzotop, enerji ve intensite ayıklaması yapıldıktan sonra geriye kalan foton spektrumu, her bir radyoizotopun kendi adında ayrı bir metin dosyasına kaydedilmiştir. Daha sonra bu radyoizotop spektrum dosyaları MCNP kodunda dağıtık kaynak olarak kullanılmak üzere her satırın başında 5 boşluk olacak şekilde MCNP formatına dönüştürülmüştür.

3.6. Etkin Doz Hesabı

İyonize radyasyonun insan vücudu üzerindeki etkileri, zararlı doku reaksiyonları ve stokastik etkiler olmak üzere iki başlık altında incelenir (ICRP 2007). Zararlı doku

reaksiyonları, iyonlaştırıcı radyasyonun maruz kalınan dozu ile insan vücudunda yol açtığı etkinin şiddeti arasında kesinlik ilişkisi kurulan etkilerdir. Aynı zamanda alınan doz arttıkça bu tür etkilerin şiddetinin arttığı bilinmektedir. Stokastik etkiler ise, iyonlaştırıc radyasyonun maruz kalınan dozu ile insan vücudunda meydana getireceği etkinin şiddeti arasında olasılık ilişkisi bulunan etkilerdir. Kısaca, eğer bir radyasyon dozunun miktarı ile biyolojik ortamdaki etkisi arasında kesinlik varsa zararlı doku reaksiyonları, ihtimal varsa stokastik etki olarak değerlendirilir.

Radyasyonun iki farklı etkisinin bilinmesi doğrultusunda, radyasyondan korunma iki temel amaca hizmet eder. Birincisi, radyasyonun zararlı doku reaksiyonlarını ortaya çıkarmasını engellemektir. Bunun için çalışma ortamında söz konusu olan maruziyet düzeylerinin bilinen eşik dozların altında tutulması yeterlidir. İkincisi ise radyasyonun stokastik etki risklerini azaltmaktır. Stokastik etkiler engellenemez, düşük dozlarda bile ortaya çıkma ihtimali olduğu düşünülür. ICRP, her iki amacı gerçekleştirmek üzere eşdeğer dozu ve etkin dozu sınırlamayı, böylece zararlı doku reaksiyonlarının oluşmasını önlemeyi ve stokastik etkilerin ortaya çıkma olasılıklarının düşürülmesi yaklaşımını benimsemiştir. Bir radyasyon alanında maruz kalınan dozları değerlendirmek ve ICRP 103 yayınında tanımlanan doz limitlerinin altında kaldığından emin olmak üzere soğrulan organ dozu, radyasyon ağırlık faktörleri, eşdeğer doz, organ ağırlık faktörleri ve etkin doz gibi niceliklerin bilinmesine ihtiyaç duyulur.

ICRP 103 yayını, radyasyona maruz kalmanın biyolojisi ve fiziği ile ilgili mevcut en son bilimsel bilgilere dayanarak oluşturulmuş en yeni tavsiyeleri içeren rapordur. Bu raporda, radyasyon ve doku ağırlık faktörleri, eşdeğer ve etkin doz nicelikleri ve dolayısıyla ilgili radyasyon hasarı kavramı da güncellenmiştir. Güncellenen veriler sayesinde, maruziyete sebep olan radyasyon kaynaklarına ve radyasyona maruz kalan bireylere radyasyondan korunmanın ilkelerinin nasıl uygulanacağı açıklığa kavuşmuştur. Bu kavramların temel tanımları aşağıda verilmiştir.

3.6.1. Soğrulan Organ Dozu

Kütlesi m olan herhangi bir organ veya doku (T) ortamına herhangi bir radyasyon türünün aktardığı enerji miktarı *soğrulan organ dozu* olarak bilinir. Gray (Gy: J/kg) cinsinden Bağıntı 3.1'de gösterildiği gibi hesaplanır:

$$D_{T,R} = \frac{E}{m_T} \tag{3.1}$$

Soğrulan organ dozu, tek başına radyasyonun biyolojik etkilerini açıklamakta yeterli değildir. Çünkü gelen radyasyonun türünü ve radyasyonun etki ettiği organ veya dokunun özelliklerini dikkate almadan sadece birim kütleye bırakılan enerjiyi ifade eder. Organın hacmi içerisinde ne tür biyolojik etkilere yol açacağı ile ilgili bilgi vermez. Bunun için eşdeğer dozun bilinmesine ihtiyaç vardır.

3.6.2. Eşdeğer Doz

Radyasyonun biyolojik etkileri incelendiğinde, ortamla etkileşime giren radyasyonun türünün önemli bir parametre olduğu görülür. Farklı radyasyon türlerinin madde ile etkileşim mekanizmaları ve dolayısıyla birim mesafede yaratacakları iyonlaşma miktarı da birbirinden farklıdır. Bu durum ortamda sebep olacakları biyolojik etkilerin de farklı olmasına yol açar. Biyolojik etkinlik, radyasyonun enerjisini kaybettiği mesafe ile ilişkili bir kavramdır. Bu amaçla, yüklü parçacıkların maddesel ortamda ilerlerken uyarılmaya ve iyonizasyona neden olan birim çarpışma başına kaybettikleri enerji anlamına gelen *lineer enerji transferi (LET)* kavramından faydalanılır (ICRU 1993). Yüksek LET değerli radyasyonlar, düşük LET'e sahip radyasyonlarla karşılaştırıldığında biyolojik bir ortama aynı miktar doz aktarsalar bile daha onarılamaz biyolojik hasarlara sebep olurlar

Ağır ve yüklü parçacıkların LET değerleri yüksektir. Enerjilerini kısa mesafede bırakarak birim mesafede çok fazla uyarılma ve iyonizasyona yol açarlar. Hafif yüklü parçacıklar ise enerji bırakımını daha uzun mesafelerde gerçekleştirdikleri için düşük LET'e sahiptirler. Doğrudan iyonlaştırıcı radyasyonlar olarak adlandırılan yüklü parçacıklar için tanımlanmış olan LET değeri, etkileşimleri sonucu ortama yüklü parçacıkların yayılmasından sorumlu olan ve dolaylı iyonizan olarak adlandırılan yüksüz parçacıklar açısından da ele alınabilir. Bu doğrultuda fotonlar düşük LET'li, nötronlar ise yüksek LET'li radyasyon türleri olarak incelenmektedir.

Sonuç olarak, Şekil 3.13'den de görüleceği gibi, bir radyasyon türünün sahip olduğu LET değeri ne kadar yüksekse o kadar çok biyolojik etkinlik göstereceği açıktır. Radyasyonun canlı bir organizma üzerindeki etkilerinin radyasyon türü ile olan bu yakın ilişkisi, boyutsuz bir nicelik olan *rölatif biyolojik etkinlik (RBE)* kavramı ile ele alınır. 'Rölatif (bağıl)' olarak ifade edilmesinin sebebi, fotonları referans alarak diğer radyasyon türlerinin biyolojik etkinliğinin fotonların biyolojik etkinliğine göre tanımlanıyor olmasıdır. Bir örnek verecek olursak, RBE değeri 2 olan bir radyasyon türünün 1 Gy'lik dozu, aynı dozda fotonlardan 2 kat daha fazla biyolojik hasara yol açar.

Pratikte, hesaplamalarda kolaylık sağlamak üzere ICRP tarafından *radyasyon ağırlık faktörlerinin* (w_R) kullanılması önerilir. Fotonlar referans alınarak diğer radyasyon türlerinin biyolojik etki oluşturma potansiyellerine göre her radyasyon türüne radyasyon ağırlık faktörleri olarak belirli katsayılar atanmıştır. ICRP 103'te bulunan ve Çizelge 3.4'de belirtilen bu katsayılar boyutsuzdur. Bu çizelgede fotonların ağırlık faktörlerinin 1 olması, referans alındıklarının göstergesidir (ICRP 2007).

Radyasyon maruziyeti durumunda *eşdeğer doz*, soğrulan organ dozunun $(D_{T,R})$ gelen radyasyonun ağırlık faktörü ile ağırlıklandırılması sonucunda elde edilir. Aynı zamanda ortamda birden fazla radyasyon türüne ait bir maruziyet söz konusu ise eşdeğer doz tüm katkıların toplamı olarak ifade edilir ve böylece farklı radyasyon türlerinin sebep olacağı biyolojik hasarın toplanmasına olanak sağlar. Bağıntı 3.2'de verilen eşdeğer dozun birimi de Sievert (Sv)'dir.

$$H_T = \sum_R w_R D_{T,R} \tag{3.2}$$

Eşdeğer doz terimi, radyasyon türlerinin sebep olacağı biyolojik etkiyi hesaba katmasına rağmen radyasyonun etki ettiği organ veya dokuya özel radyasyon hassasiyetini göz önüne almak konusunda yeterli bir nicelik değildir. Zararlı doku reaksiyonlarının engellenebilmesi için organ bazındaki doz sınırlamalarında kullanılmakla beraber tüm vücut dozu üzerinden belirlenecek olan stokastik etki risklerinin, sınırlandırılası için etkin doza ihtiyaç duyulmaktadır.

Şekil 3.13. Farklı radyasyon türlerinin RBE - LET ilişkisi (overkill: aşırı ve gereğinden fazla hücre ölümü)

Çizelge 3.4. ICRP tarafından farklı radyasyon türleri için tavsiye edilen radyasyon ağırlık faktörleri

Radyasyon türü	w _R
Fotonlar	1
Elektronlar ve muonlar	1
Protonlar ve yüklü pionlar	2
Alfa parçacığı, fisyon ürünleri, ağır iyonlar	20
Nötronlar	Nötron enerjisine bağlı bir fonksiyon
$E_n < 1 \text{ MeV}$	$2.5 + 18.2e^{-[\ln(E_n)]^{\frac{2}{6}}}$
$1 \text{ MeV} < E_n < 50 \text{ MeV}$	$5.0 + 17.0e^{-[\ln(2E_n)]^2/6}$
$E_n > 50 \text{ MeV}$	$2.5 + 3.25e^{-[\ln(0.04E_n)]^{2/6}}$

3.6.3. Etkin Doz

Radyasyona maruz kalan bir bireyde meydana gelecek biyolojik etkiler, sadece radyasyonun doğası ile bağlantılı değildir. İnsan vücudundaki her bir organ, yaşamsal işlevler üzerinde farklı bir öneme sahiptir. İçerik ve bileşim olarak farklılık gösteren her bir organın radyasyon hassasiyeti de birbirinden farklıdır. Bu durumun sonucunda ortaya çıkan kanser geliştirme veya genetik etki oluşturma potansiyelleri dikkate alındığında, vücuttaki her bir organ ayrı ayrı incelenmelidir. Organ veya dokuların bu radyasyon duyarlılığını hesaplamalara katmak amacıyla ICRP tarafından radyasyondan korunmanın yukarıda belirtilen amaçları açısından önemli görülen 15 doku/organ için *doku ağırlık*

faktörleri (w_T) tanımlanmıştır. Boyutsuz bir nicelik olan doku ağırlık faktörleri ICRP 103'e göre Çizelge 3.5'de listelenmiştir.

Çizelge 3.5. Organ veya dokular için ICRP tarafından önerilen doku ağırlık faktörleri

Dokular	w_T	$\sum w_T$
Kemik iliği (kırmızı), kalın bağırsak, akciğer, mide, meme, geri kalan	0.12	0.72
dokular*	0.12	0.72
Gonadlar (testis veya yumurtalık)	0.08	0.08
Mesane, yemek borusu, karaciğer, tiroit,	0.04	0.16
Kemik yüzeyi, beyin, tükürük bezi, cilt	0.01	0.04

*geri kalan dokular (14 tane): böbreküstü bezi, geniz bölgesi, safra kesesi, kalp, böbrek, lenf düğümleri, kas, ağız mukozası, pankreas, prostat, ince bağırsak, dalak, timus, rahim

Çizelge 3.5'deki ilgili doku ağırlık faktörleri ile çarpılan farklı organlardaki eşdeğer dozların toplamı sonucunda *etkin doz* elde edilir. Bağıntı 3.3'te verilen etkin doz, dahili veya harici radyasyon maruziyeti yaşayan bir bireyin aldığı tüm vücut dozunun bir karşılığıdır. Etkin dozun hesaplanması, fiziksel veya analitik bir denkleme dayanmaz. ICRP tarafından tanımı yapılmış yönetimsel bir nicelik olup birimi eşdeğer doz gibi Sv'dir.

$$E = \sum_{T} w_T H_T \tag{3.3}$$

Herhangi bir dahili veya harici radyasyona maruz kalan bir kişiye ait etkin dozun, ICRP 103'de belirtilen şekilde hesaplanmasına yönelik bir akış diyagramı Şekil 3.14'de gösterilmiştir.

Etkin doz, alınan radyasyon miktarının fonksiyonuna bağlı olarak kanser veya genetik etki gibi biyolojik değişikliklerin görülme sıklığını belirlemek ve bireylerin radyasyona maruziyetini izlemek için kullanılmaktadır. Bu sayede, etkin doz, radyasyondan korunmanın ilkeleri olan gerekçelendirme, optimizasyon ve doz sınırlarının uygulanmasında temel alınan nicelik olup radyasyonun stokastik etki risklerinin sınırlandırılması sürecinde yardımcı olur.

Şekil 3.14. Etkin dozun fantomlar kullanılarak hesaplanma adımları

3.7. Etkin Doz Hızı Dönüşüm Katsayısı (EDDK)

Radyonüklitler için doz dönüştürme katsayıları, radyasyondan korunma konusunda rutin hesaplamalar için kullanışlı bir araçtır. Radyoizotop kaynakların üretimi, işlenmesi ve depolanması sırasında, genellikle sadece kaynağın aktivitesine dayalı olarak basit ve yeterli bir doz tahmini yapma olanağı sağlar. Bu tez kapsamında, radyasyonun stokastik etkilerini değerlendirmek üzere kullanılan etkin doz, birim zaman, birim mesafe ve birim aktivite ile ilişkilendirilerek *etkin doz hızı dönüşüm katsayısı* olarak adlandırılan yeni bir nicelik türetilmiştir. Bu yeni birimi türetmek için aşağıda sıralanan adımlar takip edilmiştir.

- 1. Yetişkin referans erkek ve dişi fantomlar tekrar eden yapılar özelliği yardımıyla MCNP6 kodunun içerisine modellenerek fantomları merkezinden 1 m uzağa radyonüklit kaynak yerleştirilmiştir.
- 2. ICRP 107'den ayıklanan her radyonüklit kaynağın foton spektrumu için kesme enerjisi 1 keV olacak şekilde MCNP ile foton ve elektron transportu yapılmıştır.
- 3. Bileşimleri ICRP 110'dan derlenen her bir organ birer tally olarak tanımlanmış ve +F6 tally tipi yardımıyla, her bir organın +F6 dedektörünün ortalama sonucu olarak voksel başına soğrulan dozu (MeV/g/par/vok) belirlenmiştir.

- 4. Her organın MCNP'den alınan voksel başına soğrulan organ dozu ile organdaki voksel sayısı çarpılarak modeldeki her organ için soğrulan organ dozları (MeV/g/par) elde edilmiştir.
- 5. MCNP simülasyonu sonucunda bütün organlar için soğrulan dozlar belirlenebilmesine rağmen etkin doz hesaplamalarında tamamının kullanılmasına gerek duyulmaz. ICRP 110'da verilen hedef organların etkin doza katkıda bulunanları Çizelge 3.6-8'de mevcuttur. Çizelge 3.6'da bulunan kemik dokuları için aynı organların yüzdelik katkıları da belirtilmiştir.
- 6. MCNP6 kodu ile yetişkin referans erkek ve dişi fantomlarını simülasyonların gerçekleştirilmesi sonucunda Çizelge 3.6-8'de belirtilen organların parçacık başına soğrulan dozları (MeV/g/par), Bağıntı 3.4 ile Gy/par birimine dönüştürülmüştür.

$$D_T^{E-D} = \left(\frac{\frac{\text{MeV}}{\text{g}}}{\text{par}}\right) \left(1.60218 * 10^{-13} \frac{\text{J}}{\text{MeV}}\right) \left(10^3 \frac{\text{g}}{\text{kg}}\right)$$
(3.4)

 Elde edilen soğrulan organ dozları, fotona ait radyasyon ağırlık faktörü ile ağırlıklandırılarak Bağıntı 3.5 yardımıyla hem erkek hem dişi fantomun eşdeğer organ dozları (Sv/par) hesaplanmıştır.

$$H_T^{E-D} = D_T^{E-D} \times w_R \tag{3.5}$$

 Yetişkin referans fantomlar için bulunmuş olan eşdeğer organ dozları, Çizelge 3.5'deki dokular için Bağıntı 3.6'da gösterilen şekilde, cinsiyet ortalaması alınmış eşdeğer organ dozlarının (Sv/par) hesaplanmasında kullanılmıştır.

$$H_T = \frac{H_T^E + H_T^D}{2}$$
(3.6)

9. Çizelge 3.5'de yer alan geri kalan dokular (gkd) olarak tanımlanmış doku için, cinsiyet ortalaması alınmış eşdeğer organ dozu belirlenmeden önce, Bağıntı 3.7 kullanılarak içeriğindeki organların eşdeğer doz ortalaması alınmış ve o dokuya ait eşdeğer organ dozu bulunmuştur.

$$H_{gkd}^{E-D} = \frac{1}{13} \sum_{T} H_{T}^{E-D}$$
(3.7)

- Bağıntı 3.6'dan elde edilmiş olan eşdeğer organ dozları, etkin dozu (Sv/par) belirlemek üzere, her biri kendine ait doku ağırlık faktörleri ile çarpılarak Bağıntı 3.3'de belirtildiği şekilde hesaplamalara dahil edilmiştir.
- En son olarak, belirlenmiş olan parçacık başına etkin doz, zaman, mesafe ve aktiviteye normalize edilerek Bağıntı 3.8'den etkin doz hızı dönüşüm katsayısı (EDDK; Sv m²/Bq/sn) hesaplanmıştır.

$$EDDK = \left(\frac{Sv}{par}\right) \left(\frac{par}{bozunum}\right) \left(\frac{\frac{bozunum}{sn}}{Bq}\right) (m^2)$$
 (3.8)

- 13. Her bir radyoizotop için EDDK değeri, bağıl hatası %5'i geçmeyecek şekilde 1.2 milyar ile 10 milyar arasında değişen öykü sayısı için gerçekleştirilen simülasyonlar sonucu belirlenmiştir.
- 14. Ayrıca Şekil 3.15'de görselleştirilen yönelimlerin her biri için simülasyonlar tekrar edilmiştir.

Şekil 3.15. EDDK değeri hesaplanan kaynak yönelimleri (AP: anterior-posterior / önarka eksen; RA: right-anterior / sağ-ön eksen; RL: right-lateral / sağ-yan eksen: RP: rightposterior / sağ-arka eksen; PA: posterior-anterior / arka-ön eksen; LP: left-posterior / solarka eksen; LL: left-lateral / sol-yan eksen: LA: left-anterior / sol-ön eksen)

	Kırmızı	Kemik
Organlar	kemik iliğine	yüzeyine
	katkı oranı	katkı oranı
Kol kemiği, üst yarı, süngerimsi	0.185	0.465
Köprücük kemikleri, süngerimsi	0.178	0.478
Kafatası, süngerimsi	0.164	0.581
Kalça kemiği, üst yarı, süngerimsi	0.268	0.143
Çene kemikleri, süngerimsi	0.208	0.47
Leğen kemiği, süngerimsi	0.354	0.281
Kaburgalar, süngerimsi	0.559	0.213
Kürek kemiği, süngerimsi	0.26	0.336
Servikal omurga, süngerimsi	0.482	0.321
Torasik omurga, süngerimsi	0.574	0.192
Omurga, süngerimsi	0.424	0.404
Kuyruk sokumu kemiği, süngerimsi	0.634	0.107
Göğüs kemiği, süngerimsi	0.588	0.172
Kol kemiği, alt yarı, süngerimsi	0	0.348
Dirsek kemiği ve yarıçaplar, süngerimsi	0	0.348
Bilekler ve el kemikleri, süngerimsi	0	0.348
Kalça kemikleri, alt yarı, süngerimsi	0	0.348
Kaval kemiği, baldır kemiği ve diz kapağı, süngerimsi	0	0.348
Ayak bileği ve ayak kemikleri, süngerimsi	0	0.348
Kol kemiği, üst yarı, ilik boşluğu	0	1
Kol kemiği, alt yarı, ilik boşluğu	0	1
Dirsek kemiği ve yarıçaplar, ilik boşluğu	0	1
Kalça kemikleri, üst yarı, ilik boşluğu	0	1
Kalça kemikleri, alt yarı, kemik iliği	0	1
Kaval kemiği, baldır kemiği ve diz kapağı, kemik iliği	0	1

Çizelge 3.6. ICRP yetişkin referans voksel fantomlarında yer alıp kemik yüzeyi ve kırmızı (aktif) kemik iliği doz hesabına dahil edilen dokular ve bunların katkı oranları

Dokular	Organlar
Kalın bağırsak	Karın bölgesinin sağ tarafındaki kalın bağırsak duvarı
-	Enine kalın bağırsak duvarı, sağ
	Enine kalın bağırsak duvarı, sol
	Karın boşluğunun sol tarafındaki kalın bağırsak duvarı
	Sigmoid kalın bağırsak duvarı
	Rektum (kalın bağırsağın son kısmı) duvarı
Akciğer	Akciğer, sol, kan
-	Akciğer, sol, doku
	Akciğer, sağ, kan
	Akciğer, sağ, doku
Mide	Mide duvarı
Meme	Meme, sol, yağ doku
	Meme, sol, salgı bezi dokusu
	Meme, sağ, yağ doku
	Meme, sağ, salgı bezi dokusu
Gonad (Yumurtalık)	Sol yumurtalık
	Sağ yumurtalık
Gonad (Testis)	Sol testis
	Sağ testis
Mesane	Mesane duvarı
Yemek borusu	Yemek borusu
Karaciğer	Karaciğer
Tiroit	Tiroit
Beyin	Beyin
Tükürük bezi	Sol tükürük bezleri
	Sağ tükürük bezleri
Cilt	Cilt, baş
	Cilt, gövde
	Cilt, kollar
	Cilt, bacaklar

Çizelge 3.7. ICRP yetişkin referans voksel fantomlarında yer alan ve etkin doza katkısı bulunan doku ve organlar (kemik dokusu ve arta kalan dokular hariç)

Dokular	Organlar			
Böbreküstü bezi	Böbreküstü bezi, sol			
	Böbreküstü bezi, sağ			
Geniz bölgesi	Ön geniz			
	Arka geniz, aşağı gırtlak			
Safra kesesi	Safra kesesi duvarı			
Kalp	Kalp duvarı			
Böbrek	Böbrek, sol, korteks			
	Böbrek, sol, öz			
	Böbrek, sol, pelvis			
	Böbrek, sağ, korteks			
	Böbrek, sağ, öz			
	Böbrek, sağ, pelvis			
Lenf düğümleri	Lenfatik düğümler, ekstratorasik hava yolları			
	Lenfatik düğümler, torasik hava yolları			
	Lenfatik düğümler, baş			
	Lenfatik düğümler, gövde			
	Lenfatik düğümler, kollar			
	Lenfatik düğümler, bacaklar			
Kas	Kas, baş			
	Kas, gövde			
	Kas, kollar			
	Kas, bacaklar			
Ağız mukozası	Ağız mukozası, dil			
	Ağız mukozası, dudaklar ve yanaklar			
Pankreas	Pankreas			
Prostat	Prostat			
İnce bağırsak	İnce bağırsak duvarı			
Dalak	Dalak			
Timus	Timus			
Rahim/rahim ağzı	Rahim			

Çizelge 3.8. ICRP yetişkin referans voksel fantomlarında geri kalan dokular arasında yer alan doku ve organlar

4. BULGULAR VE TARTIŞMA

4.1. Çalışmada İncelenen Durumlar

Bu tez kapsamında, radyoizotop kaynakların bulunduğu ortamlarda çalışan kişilerin, harici olarak (vücut dışı) radyoaktif materyallere maruz kalmaları neticesinde doz değerlendirmelerini yapmak ve böylece stokastik etki riskini tahmin etmek amaçlanmıştır. İlk olarak insan vücudunu temsil eden gerçekçi fantomlar (erkek ve dişi vücut modelleri) bir Monte Carlo radyasyon taşıma programında modellenmiştir. Daha sonra hava ortamında, fantomların 1 m uzağına yerleştirilen nokta radyonüklit kaynaklar için simülasyonlar gerçekleştirilerek fantomlardaki soğrulan organ dozları belirlenmiş ve bu dozlar kullanılarak önce her ışınlanma durumuna ilişkin etkin dozlar hesaplanmış ve ardından ilgili EDDK değerleri ($10^{-18} \frac{Sv m^2}{Bq sn}$ cinsinden) türetilmiştir. Bu birim cinsinden ifade edildiğinde hesaplanan her bir EDDK değeri, ilgili radyoizotopun 1 Bq'lik aktivitesi için kaynaktan 1 m uzakta, 1 sn zaman geçiren bir kişinin maruz kalacağı etkin dozu kaynak yönelimini de dikkate alacak şekilde temsil edecektir. Bu şekilde hesaplanan etkin doz ile bu ışınlanma durumuna ilişkin stokastik etki riski de ICRP'nin $\frac{10^{-2}}{Sv}$ şeklinde belirtilen metodolojisi ile tahmin edilebilecektir. Böylece, herhangi bir maruziyet durumu için hava ortamında kerma hızı cinsinden hesaplanan Gy cinsinden soğurulan dozlar yerine, radyasyonun vücut ortamındaki etkilesimlerini ve dolayısıyla biyolojik etkilerini de içerecek şekilde Sv cinsinden etkin doz ile kaynak yönelimine özel risk değerlendirmesi yapmak mümkün olacaktır.

EDDK değerlerinin hesaplanması kapsamında, MCNP 6.1 kodu ile foton yayıcı 1179 farklı radyonüklit için 2 farklı fantomla (yetişkin erkek (adult male - AM)) ve dişi (adult female - AF)) ve 8 farklı kaynak yöneliminde (AP, RA, RL, RP, PA, LP, LL, LA) olmak üzere toplamda 18864 tane simülasyon çalıştırılmıştır. Her bir durum için belirlenen soğrulan organ/doku dozları, bir MATLAB kodu yardımıyla ICRP 103 metodolojiisine uygun olarak etkin doza ve ardından EDDK değerine dönüştürülmüş ve ayrıca ilgili bağıl hatalar da organ dozlarındaki istatistik hatalar yardımıyla hesaplanmıştır. İncelenen tüm ışınlanma durumları için elde edilen EDDK değerleri ve bağıl hatalar EK 3'de listelenmiştir.

4.2. Simülasyonların Öykü Sayısı, Süresi ve Bağıl Hatası

Bu çalışma kapsamında yapılan Monte Carlo simülasyonları Intel Xeon Silver 4110 model iki işlemciye sahip bir iş istasyonunda gerçekleştirilmiştir. Bu bilgisayarın bazı özellikleri Çizelge 4.1'de verilmektedir. İş istasyonunda Çizelge 4.1'de özellikleri belirtilen işlemcinin kullanılabileceği 2 adet soket bulunmaktadır. Böylece toplamda 16 fiziksel çekirdek ve 32 mantıksal çekirdek ile işlem yapılabilmektedir. Aynı zamanda bu iş istasyonu, toplamda 64 Gb'lık RAM'i oluşturan 16 Gb'lık 4 adet DDR4 modülü içermektedir. Bu RAM modülleri işlemci ile uyumlu olan 2400 MHz frekans ile çalışmaktadır.

Intel Xeon Silver 4110					
Mimari	x86_64 bit				
İşlemci sayısı	2				
Fiziksel çekirdek sayısı	8				
Mantıksal çekirdek sayısı	16				
Temel -Turbo frekans	2.1 GHz - 3 GHz				
Ön bellek	11 Mb				

Çizelge 4.1. Çalışmada simülasyonların yapıldığı bilgisayarın özellikleri

Başlangıçta her yönelim için sadece 100 milyon parçacık öyküsü ile elde edilen simülasyon sonuçları, elde edilen her bir EDDK değerindeki bağıl hata oranını %5'in altına düşürmek amacıyla ilave öykü sayısı ile kademeli olarak yeniden çalıştırılmış ve böylece etkin doz bazında hedeflenen bağıl hata oranlarına ulaşılmıştır. Her radyoizotop için elde edilen simülasyonlar kendi aralarında kıyaslandığında, AP yöneliminde en az sayıda öykü ile (1.2 milyar) %5'in altında bağıl hata değerlerine ulaşıldığı, RP-LP yönelimlerinde ise genellikle diğer yönelimlere göre hedeflenen bağıl hatalara özellikle bazı izotoplar için için daha fazla sayıda öykü çalıştırılarak (10 milyar) ulaşılabildiği görülmüştür. Diğer RA-LA, LL ve PA-RL yönelimlerinde ise bağıl hatanın %5'in altına düşürülebilmesi için sırasıyla en fazla 2, 6 ve 7 milyar parçacık öyküsü çalıştırılmıştır.

EDDK değerlerindeki bağıl hata oranlarının düşürülmesi için yapılan devam simülasyonlarında öykü sayısının yukarıdaki belirtilen değerlere ulaşmasında iki temel etken göze çarpmaktadır. Bunlardan birincisi kaynağın fantoma göre yönelimi, ikincisi ise radyonüklit kaynağın enerji spektrumudur.

Kaynak yöneliminin simülasyon sonuçlarının bağıl hatası üzerindeki etkisini anlamak üzere yönelimlerin kabul edilebilir bağıl hata oranı için gerektirdiği öykü sayısına bakıldığında, AP yöneliminde en az sayıda parçacık öyküsüne ihtiyaç duyulması, etkin doza katkısı olan organların yoğun olarak vücudun ön yüzeyine yakın konumlanmış olması ile açıklanabilir. Bu durumda organ dozları istatistiksel olarak anlamlı sayıda öykü ile hesaplanmakta böylece simülasyon sonuçları kabul edilebilir bağıl hatalar ile elde edilebilmektedir. Diğer "anterior" yönelimler olan LA ve RA yönelimleri için gerekli parçacık sayılarının da görece daha düşük olması bu etkiyi destekleyen niteliktedir. Durumu tam tersi açıdan düşündüğümüzde ise "posterior" konumdaki kaynak yönelimlerinde çalıştırılan öykü sayılarının yüksek olması gerekmektedir ki bu çalışmada, LP ve RP yönelimleri en fazla öykü ile sonuçlandırılan yönelimler olmuştur. Başka bir ifadeyle, "posterior" dahilindeki yönelimlerde etkin doza katkısı büyük olup vücudun ön kısmında yer alan organlara daha az sayıda foton enerjisi takip için önemsiz hale gelmeden ulaşabilmektedir. Bu durumda simülasyon sonucunda soğrulan doz hesaplanacak bu organlara istatistiksel olarak anlamlı sayılabilecek sayıda öykü ulaşamadığından simülasyon sonuçlarındaki bağıl hatalar kabul edilebilir düzeyde elde edilememektedir. Bu yüzden posterior (PA, RP ve LP) yönelimlerde daha fazla sayıda öykü parçacığı ile istenilen bağıl hataya ulaşılabilmiştir.

Simülasyon sonuçlarındaki bağıl hatalar ile radyonüklit kaynakların enerji spektrumları arasındaki ilişki incelendiğinde, bir radyoizotopun spekturumundaki foton pikinin yayılma sıklığı (intensite) azsa veya enerjisi düşükse, istatistiksel olarak anlamlı etkin dozlar elde etmek için daha fazla sayıda foton öyküsüne ihtiyaç duyulduğu görülmüştür. Çizelge 4.2'de, kabul edilebilir düzeyde bağıl hata için ihtiyaç duyulan öykü sayısının genellikle en fazla olduğu izotoplar ve bu izotoplara ait enerji ve intensite oran bilgileri yer almaktadır. Bu izotoplar, hepsinde ortak olarak gözlenen aşağıda listelenmiş özellikleri taşımaktadır.

- Maksimum foton pikinin enerjisi yüksek olsa da intensitesi ihmal edilebilecek düzeydedir.
- Maksimum intensiteli foton pikinin enerjisi çok düşüktür.
- Baskın foton piklerinin intensiteleri yüksek olsa da enerjileri çok düşüktür.
- Bu izotopların 20 keV altındaki (organ dozuna katkısı düşük sayılabilecek) piklerinin intensitelerinin toplamı 1'e yakındır (yani yayılan fotonların tamamına yakını düşük enerjilidir).

Çizelge 4.2. Tüm yönelimlerde genellikle en fazla sayıda parçacık öyküsüne ihtiyaç duyan radyonüklitlerin özet spektrum bilgileri

Nüklit	Maksimum Enerji (MeV)	$\frac{I_{\gamma,mak}}{I_{\gamma,t}}$	Minimum Enerji (MeV)	$\frac{I_{\gamma,min}}{I_{\gamma,t}}$	Baskın Enerji (MeV)	$\frac{I_{\gamma,bas}}{I_{\gamma,t}}$	$\frac{I_{\gamma,20keV}}{I_{\gamma,t}}$
Br-82m	1.47488	0.00046	0.011832	0.29338	0.011881	0.56644	0.98713
Cm-246	1.73	0.00189	0.012168	0.02401	0.018393	0.35991	0.87346
Nb-91m	1.20467	0.03643	0.015649	0.01109	0.016578	0.50779	0.95313
Nb-94m	0.871	0.01165	0.016481	0.28677	0.016578	0.54762	0.98666

Örneğin Çizelge 4.2'de Br-82m izotopunun EDDK değerleri incelendiğinde, bu izotopun diğer izotoplara göre tüm kaynak yönelimlerinde en yüksek sayıda parçacık öyküsü ile %5'in altında etkin dozlar verebildiği görülmektedir. Bu izotopun spektrumundaki maksimum enerjili foton piki (1.47488 MeV) çok düşük bağıl intensiteye sahip olduğu için (0.00046) organ dozlarına önemli sayılabilecek bir katkı sağlayamamaktadır. Benzer şekilde spektrumundaki çoğu pikin yayılım frekansları yüksek olsa da enerjileri 20 keV altında yer aldığından doza katkılarının ihmal edilebilir olduğu söylenebilir. Her bir bozunumda yüksek enerjilerde çok az foton yayınlandığından ve yayınlanan intensitesi yüksek fotonun da düşük enerjili olmasından dolayı etkin doz açısından önemli organlara istatistiksel açıdan anlamlı sayılabilecek doz bırakımı için gerekli parçacık öyküsü sayısının fazla olması gerektiği anlaşılmaktadır. Bu çalışma için gerçekleştirilen simülasyonların 1 milyar öykü sayısı için ne kadar sürede tamamlandığını anlamak üzere Br-82m radyonükliti için erkek ve dişi fantomların MCNP çıktı dosyaları incelenmiş ve MCNP'nin geometrik modelin oluşturulması ve hücrelerdeki materyallere göre tesir kesiti bilgilerinin işlenmesi aşamasında harcadığı süre (cp0) ile parçacık transportu için harcadığı süre (ctm) bilgileri Çizelge 4.3'de verilmiştir.

 $(1 \ 1)$

	Fantom					
Yönelim	A	Μ	AF			
	cp0 ctm		cp0	ctm		
AP	80.19	521.02	260.21	494.29		
RA	82.91	484.14	256.40	462.22		
RL	81.65 453		258.96	437.49		
RP	83.59	455.87	260.33	437.42		
PA	83.70	489.36	259.07	474.69		
LP	81.99	462.93	260.45	438.33		
LL	81.79	467.74	258.65	438.92		
LA	82.67	490.95	258.61	461.64		

Çizelge 4.3. Br-82m izotopunun 1 milyar parçacık için cp0 ve ctm süreleri (dk)

Çizelge 4.3'deki erkek ve dişi fantomların süre bilgilerine bakıldığında tüm yönelimlerde, AF fantomunun AM fantomuna göre yaklaşık 3 kat fazla cp0 süresi gerektirdiği ve ctm sürelerinin ise her iki fantom için kıyaslanabilir olduğu gözlenmektedir. Çizelge 3.1'de verilen fantom özelliklerine bakılarak cp0 sürelerindeki farklılığın fantomların voksel sayılarındaki farktan kaynaklandığı söylenebilir. ICRP erkek vücut modeli (AM) yaklaşık 7 milyon voksele sahipken, dişi fantom (AF) yaklaşık 14 milyon vokselden oluşmaktadır. MCNP'nin AF fantomundaki tüm vokseller için geometri, materyal ve bileşim bilgilerini (dolayısıyla ilgili tesir kütüphanesi verilerini) işlerken AM fantomuna göre daha fazla zaman harcadığı görülmektedir. Bu önişleme aşamasından sonra kod radyasyon taşıma kısmına geçmekte ve bu süreçte harcadığı toplam süreyi ctm verisi ile raporlamaktadır. Her iki fantomun ctm süreleri arasındaki fark ise fantomların ebatlarındaki fark ile açıklanabilir. Erkek fantom 1.76 cm boyunda ve 73 kg kütleye sahip iken, daha hafif ve kısa olan dişi fantom ise 1.63 cm boyunda ve 60 kg'dır. Bu durumun sonucu olarak, kaynakta üretilen bir foton AM fantomunda doz takibi yapılan bir hedef dokuya ulaşana kadar daha fazla sayıda etkileşim geçirmekte ve böylece AF fantomuna göre bu aşamada MCNP kodu görece daha fazla zaman harcamaktadır. Özetle, cp0 sürelerindeki fark voksel çözünürlüğü ile ilişkiliyken, her iki fantomun ctm sürelerinin farklı olması ise anatomik özelliklere dayanmaktadır.

4.3. EDDK Değerlerine Etki Eden Faktörler

Kaynak yönelimi ile EDDK değerleri arasındaki ilişkiyi anlamak amacıyla EK 3'deki her bir radyonüklit için en yüksek ve en düşük EDDK değerine sahip yönelimlere bakılmıştır. Radyoizotopların genelinde incelenen kaynak yönelimlerinin EDDK değerleri arasında Denklem 4.1'deki gibi bir ilişkinin varlığından söz edilebilir.

$$AP > LA > RA > PA > LL > LP > RL > RP$$
^(4.1)

Çalışma kapsamında EDKK değeri hesaplanan 1179 radyonüklitin tamamında baskın yönelimin AP (anterior-posterior / ön-arka eksen) ışınlaması olduğu ve diğer yönelimlere kıyasla en yüksek EDDK değerine yol açtığı gözlenmiştir. Yukarıda da açıklandığı üzere bu durum etkin doz hesabına dahil edilen organ ve dokuların büyük kısmının vücudun ön kısmında yer alması ve AP altında kaynaktan yayımlanan fotonların erkek veya dişi fantomların doz takibi yapılan organlarına doz bırakımının daha fazla olması ile açıklanabilir. AP yöneliminin ardından baskın yönelimler olarak görece anterior (vücudun ön kısmından ışınlama) olarak düşünülebilecek LA (left-anterior / solön eksen) ve RA (right-anterior / sağ-ön eksen) yönelimleri öne çıkmıştır. Bu durum da yine etkin doza katkısı olan organların çoğunluğunun sığ konumlarda yer almalarının bir sonucu olarak düşünülebilir. Bu davranışa benzer şekilde, RP (right-posterior / sağ-arka eksen) yöneliminin incelenen radyoizotopların büyük kısmı için (852 izotop) en düşük EDDK değerine sahip olması da bu açıklamayı destekleyen niteliktedir.

Radyoizotop spektrumu ile EDDK değerleri arasındaki ilişkiyi anlamak amacıyla EK 3'deki her bir kaynak yönelimi için en yüksek ve en düşük EDDK değerine sahip radyonüklitlere bakılmıştır. Bütün kaynak yönelimleri için çalışma kapsamında hesaplanan EDDK değerleri en yüksek üç radyoziotop sırasıyla Cf-254, Cm-250 ve Fm-256 (EDDK AP (Sv m2/Bq/sn), sırasıyla (10⁻¹⁸): 389.4, 308, 288.4) olmuştur. Bu durumun sebebi Şekil 4.1'de bu izotoplar için verilen spektrum verileri ile açıklanabilir. Maksimum EDDK değerlerine sahip her üç izotopun da yüksek enerjili (~1 MeV civarı) piklere sahip olduğu ve bu foton piklerinin dikkate değer bağıl intensiteleri de bulunduğu anlaşılmaktadır. EK 3'de listelenen tüm radyonüklitlerin toplam intensiteleri sıralandığında, bu üç izotopun EDDK sırası ile paralel olarak en yüksek toplam intensitelere sahip oldukları görülmüştür. Bu durumun bir sonucu olarak, bu izotoplar için yapılan Monte Carlo simülasyonları spektrumlarındaki yüksek enerjili fotonlardan dolayı görece yüksek organ dozlarına yol açmakta ve bu dozlar yardımıyla hesaplanan etkin dozlarının da yüksek çıkmasına neden olmaktadır. Böylece, izotopun ilgili yönelim için hesaplanan görece yüksek etkin doz değerleri ile yine görece yüksek bağıl intensiteleri kullanılarak belirlenen EDDK değerleri de haliyle yüksek çıkmaktadır.

Şekil 4.1. Maksimum EDDK değerine sahip izotopların spektrumları

Bütün kaynak yönelimleri için çalışma kapsamında hesaplanan EDDK değerleri en düşük radyoziotop Sm-151 olmuştur ve Co-58m ile Pa-235 (EDDK_RP (Sv m2/Bq/sn): 0.0000301, 0.0000541, 0.0000553 (10⁻¹⁸)) radyoizotopları da ikinci ve üçüncü sıralarda yer almıştır. Bu durum, Çizelge 4.4'de verilen bu radyonüklitlere ait spektrum bilgisi yardımı ile yorumlanabilir. Her üç radyoizotopun, düşük enerjili tek bir foton pikine ve bu foton piklerinin de önemsenmeyecek düzeyde düşük intensitelere (bir anlamda radyonüklitin toplam intensitesi) sahip olduğu görülebilmektedir. Böylece, bu izotoplar için gerçekleştirilen Monte Carlo simülasyonları, spektrumundaki düşük enerjili ve düşük intensiteli tek fotondan dolayı düşük organ dozları ile sonuçlanmıştır. Ayrıca bu organ dozlarının yardımıyla hesaplanan etkin doz değerleri ve tek foton pikine ait intensite kullanılarak belirlenen EDDK değerlerinin de düşük çıkmasına yol açmıştır.

(Cizelg	e 4.4.	Minimum	EDDK	değeri	ine sahir	o olan	izoto	pların s	pektrumları
-	- LUIS	• •• ••	1,11111110,111		a gen		. 01011	ILCCC		

Radyonüklit	Enerji (MeV)	İntensite (par/boz)
Sm-151	0.0215	0.000314
Co-58m	0.0249	0.000398
Pa-235	0.0130	0.000999

Yukarıda değinilen hususlara ek olarak, EK 3'de belirtilen tüm kaynak yönelimleri ve radyoizotoplar için, maximum etkin dozun AP yöneliminde Cf-254 izotopu maruziyeti ile, minimum etkin dozun ise RP yöneliminde Sm-151 izotopu maruziyeti ile gerçekleşeceği gözlenmiştir.

4.4. Simülasyon Sonuçlarının Literatür Değerleri ile Kıyaslanması

Radyasyonun farklı alanlarda kullanılmaya başlanması sonucunda, maruz kalmış bireyleri radyasyonun zararlı etkilerinden korumak amacıyla yapılacak değerlendirmelere esas olmak üzere ilk önce gama sabiti ve daha yakın zamanda hava kerma hızı sabiti (HKHS) gibi katsayılar türetilmiştir. Literatürde mevcut olan HKHS değerleri ile bu çalışmada hesaplanan EDDK değerlerini karşılaştırmak üzere 3 farklı çalışma belirlenmiştir (Wasserman ve Groenewald 1988; Ninkovic vd. 2005; Smith ve Stabin 2012). Bu çalışmalarda, genellikle vakum ortamındaki bir nokta kaynağın 1 m uzağındaki bir nokta dedektörde oluşturduğu kerma hızı pratik uygulamalarda kullanılan bazı radyoizotoplar için hesaplanmıştır.

Literatürden seçilen çalışmalardaki mevcut radyoizotoplar için verilen HKHS değerleri (Gy m²/Bq/sn cinsinden) ile çalışmamızda hesaplanan EDDK değerleri (Sv m²/Bq/sn cinsinden) arasındaki farka neden olan etkenleri incelemeden önce, bu iki niceliğin farklı birimlere sahip olduklarına dikkat edilmelidir (EDDK: Sv m²/Bq/sn; HKHS: Gy m²/Bq/sn). Birimler arasındaki bu uyuşmazlık, her iki niceliği hesaplamak için izlenen yöntemlerin farklı olması ile açıklanabilir. EDDK değeri, ortamdaki radyasyon türünün, fotonların insan vücudundaki etkileşimlerinin ve aynı zamanda radyasyona duyarlı organların hesaplamalara dahil edilmesi kapsamında tavsiye edilen metodolojiye uygun olarak radyasyon ve organ ağırlık faktörlerinin kullanımı doğrultusunda ortaya çıkan ve kaynak-vücut yönelimine özel olarak belirlenmiş etkin doz hızını temel alan bir katsayıdır. HKHS değeri ise radyasyonun dedektör dışındaki
etkileşimleri ayrıntılanmadan sadece belli mesafedeki bir nokta için havadaki foton enerji soğurma katsayıları yardımıyla belirlenen ve havadaki kerma hızını temel alan bir sabittir. Sonuç olarak, hesaplamalar için benimsenen ve uygulanan farklı yaklaşımlar, bu niceliklerin farklı birimler ile ifade edilmesine yol açmaktadır. Bundan dolayı, bu iki farklı niceliğin potansiyel farklılıkların sebeplerine ışık tutmak üzere Çizelge 4.5-7 oluşturulmuştur.

D a J #1-1:4	HKH	S (Gy m ² /	Bq/sn)	EDD	$I_{\gamma,20keV}$		
кайуопикит	Hava	Vakum	%fark	Hava	Vakum	%fark	$I_{\gamma,t}$
Ba-137m	22.55	22.61	0.26	16.23	16.21	0.12	0
C-11	38.49	38.58	0.23	28.27	28.34	-0.24	0
N-13	38.50	38.59	0.23	28.28	28.35	-0.24	0
O-15	38.54	38.63	0.23	28.31	28.38	-0.24	0
F-18	37.32	37.40	0.21	27.41	27.48	-0.25	0
Na-24	120.00	120.30	0.24	86.31	84.77	1.78	0
K-42	9.01	9.03	0.23	6.49	6.398	1.47	0
K-43	36.04	36.12	0.22	26.51	26.62	-0.41	0
Cr-51	1.17	1.17	0.17	0.89	0.8932	0.02	0
Fe-52	27.05	27.10	0.18	20.44	20.58	-0.68	0
Fe-59	40.78	40.88	0.24	29.32	28.95	1.26	0
Co-57	5.81	6.21	6.43	3.42	3.425	-0.29	0.08674
Co-58	35.78	35.87	0.25	25.87	25.91	-0.15	0
Co-60	84.89	85.09	0.23	61.09	60.3	1.29	0
Ga-67	5.27	5.27	0.03	4.37	4.369	0.09	0
Ga-68	35.67	35.75	0.22	26.17	26.21	-0.15	0
Se-75	31.44	42.39	25.83	10.91	10.98	-0.64	0.2344
Mo-99	5.94	5.99	0.88	4.00	4.011	-0.40	0.09302
Tc-99m	5.02	5.10	1.56	3.55	3.556	-0.16	0.06423
In-111	21.13	21.36	1.07	11.99	12.04	-0.41	0
I-123	10.70	10.76	0.55	5.53	5.578	-0.92	0
I-125	9.76	9.87	1.07	2.47	2.521	-2.10	0
I-131	14.46	14.49	0.20	10.72	10.77	-0.46	0
Xe-127	14.31	14.36	0.34	8.59	8.66	-0.76	0
Xe-133	3.62	3.63	0.16	1.82	1.839	-0.82	0
Tl-201	9.17	11.47	20.06	2.81	2.862	-1.88	0.16615
Ta-182	44.95	45.32	0.81	32.61	32.23	1.16	0.00838
Ir-192	31.16	31.68	1.64	22.79	22.83	-0.17	0.01231
Au-198	15.30	15.40	0.64	11.28	11.31	-0.26	0.00623

Çizelge 4.5. Bazı radyonüklitler için hava ve vakum ortamlarda MCNP ile hesaplanan HKHS ve EDDK (AP) değerlerinin (10^{-18}) kıyaslanması

Bu çalışmada etkin dozu hesaplamak üzere kullanılan erkek ve dişi fantomların gerçekçi bir durumu temsil etmesi açısından hava ortamında modellenmesi tercih edilmistir. Literatürdeki çalışmalarda ise HKHS değerleri genellikle foton enerji soğurma katsayıları kullanılarak vakum ortamında elde edilmiştir. Bu durumun sonuçlar üzerindeki etkisini anlamak üzere MCNP yardımı ile hava ve vakum ortamları için HKHS değerleri ayrı ayrı hesaplanmıştır. Bir nokta kaynak-küçük hacimli dedektör sistemi tanımlanarak izotopların çalışmamızda kullanılan kaynak spektrumları için soğurulan dozlar simülasyonlar gerçekleştirilerek belirlenmiştir. Her bir izotop için hava ve vakum ortamında hesaplanan HKHS değerleri Çizelge 4.5'te yüzde farkları ile birlikte görülebilir. HKHS değerleri arasındaki farklar incelendiğinde genellikle her iki ortam için hesaplanan HKHS değerlerinin birbiri ile uyumlu olduğu yani çoğu izotop için dedektörün vakum veya hava ortamına yer almasının dedektörde bırakılan enerji acısından bir fark yaratmadığı anlasılmıştır. Ancak Se-75, Tl-201 ve Co-57 izotoplarında yüksek farklılıklar (%25.83, %20.06, %6.43) görülmüştür. Bu farkların sebebi, aynı cizelgede mevcut olan ve bu radyonüklitlerin spektrumunda yer alan 20 keV altı foton piklerinin oranı çerçevesinde açıklanabilir. Vakum ortamında bir radyoaktif kaynağın foton spektrumu, herhangi bir zayıflamaya uğramadan bir anlamda kaynaktan yayımlandığı şekliyle detektöre ulaşmaktadır. Hava ortamında ise radyonüklitin spektrumundaki fotonlar detektöre ulaşana kadar hava molekülleri ile soğrulma veya saçılma ile sonuçlanan etkileşimler geçirmektedir. Bu durum 20 keV altındaki fotonların detektöre ulaşamamasına veya ihmal edilebilir düzeyde doz katkısı sağlamasına neden olmaktadır. Vakum ve hava ortamındaki HKHS değerleri arasında bazı radyonüklitler için gözlenen yüksek farkların sebebi bu şekilde açıklanabilir.

Ortam etkisinin vücut fantomu kullanıldığında nasıl sonuçlanacağını görmek üzere MCNP yardımı ile hava ve vakum ortamları için EDDK değerleri AP kaynak yönelimi için ana simülasyonlarda takip edilen yöntem kullanılarak ayrı ayrı hesaplanmış ve elde edilen değerler yüzde farklar ile birlikte Çizelge 4.5'de ayrıca listelenmiştir. Bütün izotoplar için, iki farklı ortamda hesaplanan EDDK değerleri arasında düşük farklar olduğu görülmektedir. Buradan, ortam farklılığının EDDK değeri üzerinde bir etkisinin olmadığı sonucu çıkarılabilir ve bu durum etkin dozun organ dozları temelinde hesaplanıyor olması ile açıklanabilir. Foton spektrumunda vücut ortamına girmeden önce gerçekleşebilecek değişimler vücutta meydana gelen etkileşimler sonrasındaki enerji kayıplarına göre daha düşük düzeyde olduğundan fantomlarla yapılan hesaplamalarda ortam etkisi belirgin olmamaktadır.

Herhangi bir ortamda, bir radyoaktif kaynağın sebep olacağı dozun dedektör tarafından kaydedilmesi sürecinde iki aşama söz konusudur. Birincisi, radyoaktif kaynaktan yayımlanan fotonların spekturumunda, ortam boyunca yaptığı etkileşimler sonucunda detektör hacmine ulaşana kadar zayıflamaların meydana gelmesidir. İkincisi ise detektöre ulaşan fotonların dedektör hacminde geçirdiği etkileşimlerin yine foton spektrumunda oluşturacağı değişimlerdir. Bu iki aşama göz önünde bulundurulduğunda, HKHS ve EDDK değerinin hesaplanması sürecinde ortamın etkisi daha iyi kavranabilir. HKHS değeri hücresel bir dedektör kullanılarak belirlenir. Bunun anlamı, detektöre ulaşan foton spektrumunun, dedektör hacminde bir değişime uğratılmadan doz değeri kaydedilmesidir. Buradan farklı ortamlar için MCNP ile belirlenen HKHS değeri ise tüm vücudun hacimsel bir dedektör olarak tanımlanmasıyla belirlenir. Bunun sonucunda hem ortam hem de detektördeki hedef bölgeler boyunca radyonüklit spektrumlarının değişime uğratılacağı kadar bir hacmin mevcut olduğu söylenebilir. Dolayısıyla dedektör dışı ortamın etkisinde kalan foton spektrumunun dedektör içinde de bir yumuşamaya uğrayacağı anlaşılabilir. Bu durum, farklı ortamlar için hesaplanan HKHS değerlerindeki farkların belirgin olarak gözlenebilmesine olanak sağlarken yine farklı ortamlar için hesaplanan EDDK değerlerindeki ortam etkisinin sebep olduğu farklılıkların, dedektör içindeki etkileşimler ile kapandığını da açıklayabilir.

Literatürde raporlanan HKHS değerleri genellikle foton enerji soğurma katsayıları yardımıyla hesaplanmıştır. Bu şekilde hesaplanan değerlerin Monte Carlo yöntemi sonuçlarından farkını anlamak çalışmamızda türetilen EDDK değerlerinin literatür değerleri ile gözlenen farkları üzerindeki etkisini ele almak açısından önemlidir. Bunun için üzere XMUDAT programından monoenerjetik fotonlar için havanın kütlesel enerji transfer katsayıları çekilerek HKHS değerleri hesaplanmış ve ardından Çizelge 4.5'deki radyoizotopların her biri için spektrumdaki foton piklerine karşılık gelen değerler interpolasyon yardımıyla bulunarak Bağıntı 2.3'de gösterildiği gibi radyonüklitlerin HKHS değerlerine ulaşılmıştır. Bu yolla belirlenen HKHS değerlerinin MCNP ile hesaplanmış ve Çizelge 4.5'de verilen HKHS değerleri (vakum ortamı için) ile kıyası Çizelge 4.6'da yüzde farkları ile birlikte listelenmiştir. Görüldüğü gibi her iki yöntemle elde edilen HKHS değerleri arasında önemli bir fark gözlenmemiştir. Bu sonuç, MCNP'nin literatür verilerini elde etmede yeterince başarılı olduğunu göstermektedir.

Yukarıda bahsedilen farklı ortamların ve farklı hesaplama yöntemlerinin EDDK ve HKHS değerleri üzerindeki etkisine bakıldıktan sonra ek olarak her iki niceliği de birbiri ile kıyaslamak ve nicelik farkı konusunda fikir sahibi olmak açısından Çizelge 4.7 oluşturulmuştur. Bu çizelgede, hava ortamı için belirlenmiş AP yönelimindeki EDDK değerleri ile HKHS değerlerinin yüzde farkları da listelenmiştir. Çizelgeden her iki niceliğin ortalama %34 civarında birbirinden farklı olduğu görülmektedir. Her iki nicelik de temelde MCNP simülasyonları ile hesaplandığından ve sonuçlar aynı radyoizotop spektrumları ile belirlendiğinden gözlenen farkların niceliklerle ortaya konan yaklaşım farkından kaynaklandığı söylenebilir. HKHS değerleri, küçük hücresel bir dedektörden alınan soğrulan doz, radyonüklit kaynağın toplam intensitesi ile çarpılarak elde edilmiştir. EDDK değerleri ise, vücuttaki her bir organda biriken dozlar simülasyon sonuçlarından alınıp radyasyon ve organ ağırlık faktörleri ile ağırlıklandırılarak elde edilen etkin doza dayanır. Her bir durum için hesaplanan etkin doz (Sv/parçacık), kaynak aktivitesi aktivite (Bq), zaman (sn) ve mesafeye (m) normalize edilerek EDDK değerleri belirlenmiştir. Bu çalışmada, foton yayıcı radyoizotop kaynaklar kullanıldığı için radyasyon ağırlık faktörünün (foton için 1) HKHS ile EDDK değerleri arasındaki farka bir etkisinin olduğu söylenemez. Böylece, bu iki niceliğin farkının asıl sebebi, doku hassasiyetini göz önünde bulundurmak amacıyla organ ağırlık faktörlerinin kullanılması ile toplam bir vücut dozunun elde edilmesinden kaynaklandığı söylenebilir.

Radyonüklit	XMUDAT	MCNP	%fark
Ba-137m	22.66	22.61	0.22
C-11	38.68	38.58	0.26
N-13	38.7	38.59	0.28
O-15	38.74	38.63	0.28
F-18	37.51	37.40	0.29
Na-24	120.5	120.30	0.17
K-42	9.052	9.03	0.20
K-43	36.28	36.12	0.44
Cr-51	1.186	1.17	1.18
Fe-52	27.19	27.10	0.33
Fe-59	41.01	40.88	0.32
Co-57	6.23	6.21	0.26
Co-58	35.93	35.87	0.17
Co-60	85.39	85.09	0.35
Ga-67	5.313	5.27	0.79
Ga-68	35.85	35.75	0.28
Se-75	42.37	42.39	-0.05
Mo-99	6.002	5.99	0.18
Tc-99m	5.113	5.10	0.25
In-111	21.45	21.36	0.42
I-123	10.81	10.76	0.46
I-125	9.908	9.87	0.41
I-131	14.61	14.49	0.82
Xe-127	14.46	14.36	0.69
Xe-133	3.65	3.63	0.58
Tl-201	11.46	11.47	-0.09
Ta-182	45.5	45.32	0.40
Ir-192	31.89	31.68	0.66
Au-198	15.47	15.40	0.45

Çizelge 4.6. Bazı radyonüklitler için farklı yöntemler ile hesaplanan HKHS değerlerinin (Gy $m^2/Bq/sn$) (10⁻¹⁸) kıyaslanması

Radyonüklit	EDDK (Sv m ² /Bq/s)	HKHS (Gy m ² /Bq/s)	%fark
Ba-137m	16.23	22.55	28.03
C-11	28.27	38.49	26.55
N-13	28.28	38.50	26.55
O-15	28.31	38.54	26.54
F-18	27.41	37.32	26.55
Na-24	86.31	120.00	28.08
K-42	6.494	9.01	27.95
K-43	26.51	36.04	26.44
Cr-51	0.8934	1.17	23.64
Fe-52	20.44	27.05	24.44
Fe-59	29.32	40.78	28.10
Co-57	3.415	5.81	41.26
Co-58	25.87	35.78	27.70
Co-60	61.09	84.89	28.04
Ga-67	4.373	5.27	17.01
Ga-68	26.17	35.67	26.63
Se-75	10.91	31.44	65.30
Mo-99	3.995	5.94	32.72
Tc-99m	3.55	5.02	29.28
In-111	11.99	21.13	43.26
I-123	5.527	10.70	48.35
I-125	2.469	9.76	74.71
I-131	10.72	14.46	25.86
Xe-127	8.594	14.31	39.94
Xe-133	1.824	3.62	49.65
T1-201	2.809	9.17	69.36
Ta-182	32.61	44.95	27.45
Ir-192	22.79	31.16	26.86
Au-198	11.28	15.30	26.27

Çizelge 4.7. Bazı radyonüklitler için MCNP yardımıyla hesaplanmış EDDK (AP) ve HKHS değerlerinin (10^{-18}) kıyaslanması

Şu ana kadar, bu çalışma kapsamında belirlenen EDDK değerlerinin literatürdeki HKHS değerleri ile arasındaki farklılığa sebep olabilecek etkenler incelenmiştir. Bu etkenler fantomun yer aldığı ortam, simülasyonların gerçekleştirildiği hesaplama yöntemi ve niceliklerden kaynaklanan yaklaşım temelinde sırasıyla gözden geçirilmiştir. Sonuç olarak, EDDK ve HKHS değerleri için ortam ve hesaplama yönteminin önemsiz parametreler olduğu, EDDK değerleri ile MCNP ile elde edilen veya literatürde mevcut olan HKHS değerleri arasındaki farklılığının niceliksel olduğu söylenebilir.

Literatür verileri ile kıyaslamada ilk adım olarak MCNP ile çalışmamıza özel hava ve vakum ortamı için hesaplanmış HKHS değerleri ile literatürden seçilen üç farklı çalışmanın sonuçları arasındaki yüzde farklar Çizelge 4.8'de verilmiştir. Görüldüğü gibi, genel olarak hem vakum hem de hava ortamı için MCNP yardımıyla belirlenen HKHS

değerleri, literatürdeki vakum ortamı için hesaplanan değerler ile uyumlu sonuçlar vermişstir. Ancak başta Tl-201 ve Se-75 izotopları olmak üzere bazı radyonüklitler için MCNP sonuçları ile literatür sonuçları arasında farklar ortaya çıktığı gözlenmiştir. Bu durum, MCNP simülasyonları ile literatür verilerinde kullanılan radyonüklit spektrumlarının farklı kaynaklardan elde edilmesinin ve ayrıca hesaplamalar için farklı kesme enerjilerinin kullanılmış olmasının da bir sonucudur.

Çizelge 4.9'da, bu çalışma çerçevesinde belirlenmiş olan AP ve RP yönelimlerine ait EDDK değerleri ile literatürdeki HKHS değerleri verilmiştir. Literatürdeki HKHS değerleri ile kıyaslamak için bu çalışmadaki EDDK değerleri arasından AP ve RP yönelimlerinin tercih edilmesindeki temel sebep, AP yöneliminde bütün radyonüklit kaynakların en yüksek, RP yöneliminde ise genellikle en düşük (852 radyonüklit kaynak) değere sahip olmasıdır. Çizelge 4.6'dan görülebildiği gibi hem AP hem de RP yönelimlerinin EDDK değerleri ile HKHS değerleri arasında genel olarak çok yüksek farklar bulunmaktadır (ortalama AP: %29 ve RP: %68). Farkların bu kadar yüksek olmasında, daha önce Çizelge 4.7 üzerinden incelenmiş nicelik farklılığının sebep olduğu şeklinde yorumlanabilir.

EDDK değerlerinin literatürle karşılaştırılması durumunda, AP yöneliminin RP yönelimine göre tüm radyonüklitler için daha düşük farklar ile sonuçlandığı Çizelge 4.9'dan görülebilmektedir. Bu duruma sebep, daha önceki bölümlerde Bağıntı 4.1 ile ifade edilen, EK 3'teki kaynak yönelimlerinin hepsinde AP yöneliminin RP yöneliminden yüksek EDDK değerlerine sahip olması ile açıklanabilir. Yine Bağıntı 4.1'den anlaşıldığı gibi, AP yöneliminin diğer yönelimlerle karşılaştırıldığında her zaman literatürdeki HKHS değerlerine en yakın EDDK değerine sahip kaynak yönelimi olduğu anlaşılmaktadır. Bu incelemenin bir sonucu olarak HKHS değeri ile yapılacak olan doz hesaplamalarının EDDK değeri ile yapılacak olanlara kıyasla daha yüksek sonuçlar vereceği açıktır. Ayrıca, kaynak yöneliminden bağımsız olan HKHS değeri kullanılarak doz değerlendirmeleri yapılmasının da sağlıklı olmayacağının da bir kanıtıdır.

Sonuç olarak, kaynak yönelimine ve radyonüklite özgü belirlenmiş olan EDDK değerleri, literatürdeki HKHS verileriyle kıyaslandığında, radyasyon uygulamaları için gerçekçi doz değerlendirmeleri sunan yeni bir nicelik olduğu görülmektedir. Pratikte karşılaşılan ve radyasyon maruziyetine sebep olan durumlar için insan vücudunun her bir organının hassasiyetini göz önünde bulundurması neticesinde literatürde tek bir nokta için yapılan hesaplamalardan daha güvenilir ve doğru sonuçlar elde edilmesine olanak sağlayacaktır. Ayrıca yönelim açısından olaya bakıldığında geçmiş çalışmalarda hiçbir şekilde kaynak yönelimini dikkate alarak geliştirilen bir katsayı bulunmamaktadır. Hem bu sebeple hem de kullanılan radyoaktif bozunum verileri sebebiyle EDDK değerleri ile hassas ve güncel doz tahminlerinin yapılması mümkün olacaktır.

	MCND		(Wasserman ve Groenewald 1988)		(Smith ve Stabin 2012)			(Ninkovic vd. 2005)			
Radyonüklit	MCNF		%fark		%fark			%fark			
-	Hava	Vakum	HKHS	(Hava)	(Vakum)	HKHS	(Hava)	(Vakum)	HKHS	(Hava)	(Vakum)
Ba-137m	22.55	22.61	21.77	-3.58	-3.86	22.49	-0.27	-0.53	22.81	1.14	0.88
C-11	38.49	38.58	38.75	0.67	0.44	38.42	-0.18	-0.42	38.69	0.52	0.28
N-13	38.50	38.59	38.75	0.65	0.41	38.42	-0.21	-0.44	38.72	0.57	0.34
O-15	38.54	38.63	38.75	0.54	0.31	38.42	-0.31	-0.55	38.75	0.54	0.31
F-18	37.32	37.40	37.57	0.67	0.45	37.24	-0.21	-0.43	37.53	0.56	0.35
Na-24	120.00	120.30	119.3	-0.59	-0.84	119.3	-0.59	-0.84	121.3	1.07	0.82
K-42	9.01	9.03	8.851	-1.83	-2.07	8.982	-0.35	-0.58	9.111	1.08	0.85
K-43	36.04	36.12	36.72	1.85	1.63	35.93	-0.31	-0.53	35.5	-1.52	-1.75
Cr-51	1.17	1.17	1.075	-8.84	-9.02	1.167	-0.26	-0.43	1.172	0.17	0.00
Fe-52	27.05	27.10	112.8	76.02	75.98	27.01	-0.15	-0.33	27.01	-0.15	-0.33
Fe-59	40.78	40.88	40.65	-0.32	-0.57	40.65	-0.32	-0.57	40.53	-0.62	-0.86
Co-57	5.81	6.21	3.803	-52.88	-63.40	3.691	-57.52	-68.36	3.919	-48.35	-58.56
Co-58	35.78	35.87	36.19	1.13	0.88	35.67	-0.31	-0.56	35.83	0.14	-0.11
Co-60	84.89	85.09	84.97	0.09	-0.14	84.58	-0.37	-0.60	85.83	1.10	0.86
Ga-67	5.27	5.27	5.245	-0.46	-0.50	5.265	-0.08	-0.11	5.403	2.48	2.44
Ga-68	35.67	35.75	35.21	-1.31	-1.53	35.6	-0.20	-0.42	35.83	0.45	0.22
Se-75	31.44	42.39	12.98	-142.22	-226.58	13.31	-136.21	-218.48	13.4	-134.63	-216.34
Mo-99	5.94	5.99	9.507	37.54	36.98	6.012	1.23	0.35	5.492	-8.12	-9.09
Tc-99m	5.02	5.10	3.934	-27.61	-29.64	5.212	3.68	2.15	3.917	-28.16	-30.20
In-111	21.13	21.36	21.24	0.52	-0.56	22.68	6.83	5.82	23.09	8.49	7.49
I-123	10.70	10.76	10.03	-6.68	-7.28	11.67	8.31	7.80	10.03	-6.68	-7.28
I-125	9.76	9.87	9.244	-5.59	-6.74	11.47	14.90	13.98	10.48	6.86	5.85
I-131	14.46	14.49	14.16	-2.12	-2.33	14.42	-0.28	-0.49	14.5	0.28	0.07
Xe-127	14.31	14.36	14.1	-1.49	-1.84	14.95	4.28	3.95	14.19	-0.85	-1.20
Xe-133	3.62	3.63	3.39	-6.87	-7.05	3.724	2.71	2.55	3.981	8.99	8.84
Tl-201	9.17	11.47	2.95	-210.81	-288.81	2.95	-210.81	-288.81	2.839	-222.97	-304.02
Ta-182	44.95	45.32	44.85	-0.22	-1.05	44.26	-1.56	-2.39	44.44	-1.15	-1.98
Ir-192	31.16	31.68	30.42	-2.43	-4.14	30.16	-3.32	-5.04	30.31	-2.80	-4.52
Au-198	15.30	15.40	15.6	1.92	1.28	15.08	-1.46	-2.12	15.15	-0.99	-1.65

Çizelge 4.8. Bazı radyonüklitler için literatürdeki HKHS değerleri ile MCNP'den elde edilen HKHS değerlerinin (Gy m²/Bq/sn) (10 ⁻	18)
kıyaslanması	

	Sv m ² /	/Bq/sn		Gy m ² /Bq/sn							
Radyonüklit	MO	CNP	(Wasserman ve Groenewald 1988)		(5	Smith ve Stabir	n 2012)		(Ninkovic vd. 2	2005)	
	AP_EDDK	RP_EDDK	HKHS	%fark (AP)	%fark (RP)	HKHS	%fark (AP)	%fark (RP)	HKHS	%fark (AP)	%fark (RP)
Ba-137m	16.23	7.981	21.77	25.45	63.34	22.49	27.83	64.51	22.81	28.85	65.01
C-11	28.27	13.34	38.75	27.05	65.57	38.42	26.42	65.28	38.69	26.93	65.52
N-13	28.28	13.34	38.75	27.02	65.57	38.42	26.39	65.28	38.72	26.96	65.55
O-15	28.31	13.36	38.75	26.94	65.52	38.42	26.31	65.23	38.75	26.94	65.52
F-18	27.41	12.93	37.57	27.04	65.58	37.24	26.40	65.28	37.53	26.97	65.55
Na-24	86.31	51.54	119.3	27.65	56.80	119.3	27.65	56.80	121.3	28.85	57.51
K-42	6.494	3.674	8.851	26.63	58.49	8.982	27.70	59.10	9.111	28.72	59.68
K-43	26.51	12.53	36.72	27.81	65.88	35.93	26.22	65.13	35.5	25.32	64.70
Cr-51	0.8934	0.3902	1.075	16.89	63.70	1.167	23.44	66.56	1.172	23.77	66.71
Fe-52	20.44	9.333	112.8	81.88	91.73	27.01	24.32	65.45	27.01	24.32	65.45
Fe-59	29.32	15.9	40.65	27.87	60.89	40.65	27.87	60.89	40.53	27.66	60.77
Co-57	3.415	1.281	3.803	10.20	66.32	3.691	7.48	65.29	3.919	12.86	67.31
Co-58	25.87	13.12	36.19	28.52	63.75	35.67	27.47	63.22	35.83	27.80	63.38
Co-60	61.09	33.45	84.97	28.10	60.63	84.58	27.77	60.45	85.83	28.82	61.03
Ga-67	4.373	1.783	5.245	16.63	66.01	5.265	16.94	66.13	5.403	19.06	67.00
Ga-68	26.17	12.47	35.21	25.67	64.58	35.6	26.49	64.97	35.83	26.96	65.20
Se-75	10.91	4.496	12.98	15.95	65.36	13.31	18.03	66.22	13.4	18.58	66.45
Mo-99	3.995	1.947	9.507	57.98	79.52	6.012	33.55	67.61	5.492	27.26	64.55
Tc-99m	3.55	1.344	3.934	9.76	65.84	5.212	31.89	74.21	3.917	9.37	65.69
In-111	11.99	4.527	21.24	43.55	78.69	22.68	47.13	80.04	23.09	48.07	80.39
I-123	5.527	1.813	10.03	44.90	81.92	11.67	52.64	84.46	10.03	44.90	81.92
I-125	2.469	0.2852	9.244	73.29	96.91	11.47	78.47	97.51	10.48	76.44	97.28
I-131	10.72	4.804	14.16	24.29	66.07	14.42	25.66	66.69	14.5	26.07	66.87
Xe-127	8.594	3.149	14.1	39.05	77.67	14.95	42.52	78.94	14.19	39.44	77.81
Xe-133	1.824	0.4581	3.39	46.19	86.49	3.724	51.02	87.70	3.981	54.18	88.49
T1-201	2.809	0.9647	2.95	4.78	67.30	2.95	4.78	67.30	2.839	1.06	66.02
Ta-182	32.61	17.06	44.85	27.29	61.96	44.26	26.32	61.46	44.44	26.62	61.61
Ir-192	22.79	10.22	30.42	25.08	66.40	30.16	24.44	66.11	30.31	24.81	66.28
Au-198	11.28	5.137	15.6	27.69	67.07	15.08	25.20	65.94	15.15	25.54	66.09

5. SONUÇLAR

Radyasyonun stokastik etki risklerinin mümkün olduğunca düşük düzeylere (ALARA) indirilmesi radyasyondan korunma sürecinin temel amaçlarından biridir. Stokastik etkilerin ortaya çıkma ihtimalinin azaltılması olarak da ifade edilebilecek olan bu hedef, kişinin maruz kaldığı dozun takip edilerek belirlenen doz limitlerinin altında kalınması yolu ile mümkün olabilmektedir. Bu doz limitleri ise ICRP'nin tavsiyeleri ile eşdeğer ve etkin doz gibi kavramlar cinsinden ifade edilmek üzere zaman zaman güncellenmiştir.

Mevcut durumda, radyasyon uygulamalarındaki harici doz tahminleri, eşdeğer veya etkin doz terimlerini içermeyen ve fotonlar için enerji soğurma veya transfer katsayıları aracılığıyla hesaplanmış olan pozlanma hızı veya hava kerma hızı sabitleri yardımı ile yapılmaktadır. Ancak, bu nicelikler, vakum ortamda ilerleyen fotonların noktasal sayılabilecek bir detektörün hacminde oluşturacağı iyonlaşma miktarı temelinde pozlanma hızının belirlenmesine veya etkileşimler sonucu yaratılan ikincil yüklü parçacıkların dedektörün aktif hacmine aktaracağı kinetik enerji temelinde soğrulan dozun tahmin edilmesine dayanır. Tek bir noktadaki dozu belirlemeye yönelik türetilmiş pozlanma hızı veya hava kerma hızı sabitleri olarak ifade edilen bu niceliklerin hesaplanma prosedürü, insan vücudunun karmaşık yapısını göz önüne almamaktadır. Bu şekilde, hem radyasyonun vücut ortamında oluşturacağı biyolojik etkiler göz ardı edilmekte, hem de radyasyon kaynağının vücut modeline göre farklı yönelimlerde olabileceği gerçek durumları veya ışınlanma senaryolarını doğru temsil edememektedir. Her iki kavramın da çalışan veya toplum üyesi bireylerin harici doz değerlendirmelerinde kullanılması, realistik, hassas ve güvenilir sonuçlar elde edilmesine engel olmakta ve bu durum yukarıda bahsedilen stokastik etkilere karşı doz limitlerinin altında kalma hedefinin uygulanması zorlaştırmaktadır.

Doz hesaplamalarında karşılaşılan bu eksiklik, bu çalışma kapsamında, ICRP'nin en yeni tavsiyeleri çerçevesinde tanımlanan yeni bir nicelik olarak türetilmiş dönüşüm faktörleri esas alınarak giderilmeye çalışılmıştır. Bu tavsiyelerde yer alan referans vücut modelleri, radyonüklere ait bozunum verileri ve etkin doz hesaplama metodolojisi, dahili veya harici radyasyon maruziyeti yaşayan çalışanların doz tahminlerinin yapılması ve doz limitlerinin uygulanması doğrultusunda yol gösterici araçlardır. Bu çalışmada belirlenen ve dış radyasyon maruziyetinden korunmada yeni bir nicelik olan EDDK değerleri, ICRP 110'daki yetişkin referans fantomları, ICRP 107'deki radyoaktif bozunum verileri ve ICRP 103'deki etkin doz metodolojisi ile radyasyon transportunda yaygın olarak tercih edilen MCNP Monte Carlo kodu kullanılarak geliştirilmiştir. Kullanılan materyalin ve kullanılarak benimsenen yöntemin, EDDK değerleri yapılacak doz değerlendirmelerindeki avantajları aşağıda listelenmiştir.

- ICRP 110'da önerilen voksel tabanlı referans erkek ve dişi fantomlarının MCNP kodu içerisinde modellenmesi, insan anatomisinin realistik bir şekilde temsil edilmesine olanak sağlamaktadır. Bu durum özellikle radyasyona duyarlı organların soğurduğu dozların da hesaplamalara katılabilmesi açısından büyük önem taşımaktadır.
- MCNP girdi dosyasına işlenmek üzere, foton yayıcı kaynakların belirlenmesinde ve aynı zamanda bu kaynakların spekrumlarının oluşturulmasında ICRP 107 raporunun kullanılması, mevcut durumda, radyoaktif bozunum verilerinin en güncel hali için sonuçlar elde edilmesinde etkili olmaktadır.

• MCNP simülasyon çıktıları yardımıyla ICRP 103 metodolojisi doğrultusunda hesaplanan etkin doz ve ilgili EDDK değeri, doz tahminleri için hassas ve güvenilir bir nicelik olacaktır.

Tüm bunlara ek olarak, rutin çalışma esnasında veya kaza durumunda personelin radyoaktif kaynaklara maruziyetini detaylandırmak üzere bu çalışmadaki simülasyonlar, fantomların farklı yönelimleri de ele alınarak ve fantomlar hava ortam içerisinde modellenerek ışınlanma durumları daha gerçekçi biçimde ele alınmıştır. Sonuçta, 1179 farklı radyonüklite ve 8 farklı yönelime özgü hesaplanmış olan EDDK değerleri ile farklı ışınlama senaryoları analiz edilerek etkin dozun radyonüklit spektrumuna ve kaynak yönelimine göre değişimi de incelenebilmiştir.

Bu tez çalışmasında benimsenen yaklaşım sonucunda elde edilen EDDK değerleri, harici maruziyet neticesinde radyasyon doz değerlendirmeleri için pratik bir yol sunacaktır. Ayrıca bu sayede radyasyonun stokastik etki risklerinin azaltılması amacıyla doz limitlerinin ALARA felsefesine uygun bir şekilde dikkate alınması da mümkün olacaktır.

Radyasyondan korunma konusunda yardımcı olmak üzere geliştirilen EDDK kavramı, kullanılan materyal ve metot açısından yukarıda bahsedilen yenilikçi ve avantajlı özelliklere sahiptir. Ancak, bu katsayıların sadece referans erkek ve dişi anatomisi aracılığıyla ortalama yetişkin bir insan için hesaplanmış olması, bu çalışmayı sınırlayan bir parametre olarak da düşünülebilir. Referans fantomlar tüm popülasyonları büyük oranda temsil edecek şekilde düzenlenmiş olmasına rağmen sonuçta sadece ortalama bir bireyi yansıtmaktadır. Şu an için radyasyon doz değerlendirmelerinde kullanılan sabitler yerine bu katsayının tercih edilmesi organların radyolojik hassasiyet farkındalığını içermesine karşın, duruma farklı yaş grupları açısından bakıldığında ise yeterli bir nicelik olmayacaktır. Bunun yanı sıra farklı cinsiyetlerin anatomisine bağlı olarak ortak bir katsayı şeklinde ortaya çıkmıştır. Bu çalışmada ortaya konan hesaplama adımları sonraki çalışmalar için bir model olma özelliğindedir ve kişiye özel vücut modelleri kullanıldığında daha gerçekçi doz tahminleri gerçekleştirilebilmesinin yolunu açmıştır.

6. KAYNAKLAR

- Anonymous 1: https://www.iaea.org/resources/databases/evaluated-nuclear-structuredata-file. Son Erişim Tarihi: 16.02.2021
- Allison, J. et al. 2006. Geant4 developments and applications. *IEEE Transactions on Nuclear Science*, 53(1): 270–278.
- Andersson, M., Johansson, L., Minarik, D., Leide-Svegborn, S. and Mattsson, S. 2014. Effective dose to adult patients from 338 radiopharmaceuticals estimated using ICRP biokinetic data, ICRP/ICRU computational reference phantoms and ICRP 2007 tissue weighting factors. *EJNMMI Physics*, 1(1): 1–13.
- Andreo, P. 1991. Monte Carlo techniques in medical radiation physics. *Physics in Medicine and Biology*, 36(7): 861–920.
- Attix, F. H. 1986. Introduction to Radiological Physics and Radiation Dosimetry. WILEY-VCH. Weinheim.
- Battistoni, G. et al. 2015. Overview of the FLUKA code. *Annals of Nuclear Energy*, 82 10–18.
- Firestone, R. B. 1996. Table of Isotopes. WILEY-INTERSCIENCE.
- Gardner, J., Siebers, J. and Kawrakow, I. 2007. Dose calculation validation of VMC++ for photon beams. *Medical Physics*, 34(5): 1809–1818.
- Goorley, T. et al. 2012. Initial MCNP6 release overview. *Nuclear Technology*, 180(3): 298–315.
- Hadid, Desbrée, A., Schlattl, H., Franck, D., Blanchardon, E. and Zankl, M. 2010. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: Calculation of specific absorbed fractions of energy for photons and electrons. *Physics in Medicine and Biology*, 55(13): 3631–3641.
- Hadid, L., Gardumi, A. and Desbreé, A. 2013. Evaluation of absorbed and effective doses to patients from radiopharmaceuticals using the ICRP 110 reference computational phantoms and ICRP 103 formulation. *Radiation Protection Dosimetry*, 156(2): 141– 159.
- Hendricks, J. S. and Briesmeister, J. F. 1992. Recent MCNP Developments. *IEEE Transactions on Nuclear Science*, 39(4): 1035–1040.
- Hubbell, J. H. 2006. Review and history of photon cross section calculations. *Physics in Medicine and Biology*, 51(13): 245–262.
- ICRP, 1977. Recommendations of the ICRP. ICRP Publication 26. Ann. ICRP 1 (3).
- ICRP, 1980. Limits for Intakes of Radionuclides by Workers. ICRP Publication 30 (Part 2). Ann. ICRP 4 (3-4)

- ICRP, 1982. Protection against Ionizing Radiation from External Sources Used in Medicine. ICRP Publication 33. Ann. ICRP 9 (1).
- ICRP, 1983. Radionuclide Transformations Energy and Intensity of Emissions. ICRP Publication 38. Ann. ICRP 11-13.
- ICRP, 1988. Radiation Dose to Patients from Radiopharmaceuticals. ICRP Publication 53. Ann. ICRP 18 (1-4).
- ICRP, 1991. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21 (1-3).
- ICRP, 2002. Basic Anatomical and Physiological Data for Use in Radiological Protection Reference Values. ICRP Publication 89. Ann. ICRP 32 (3-4).
- ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).
- ICRP, 2008a. Radiation Dose to Patients from Radiopharmaceuticals Addendum 3 to ICRP Publication 53. ICRP Publication 106. Ann. ICRP 38 (1-2).
- ICRP, 2008b. Nuclear Decay Data for Dosimetric Calculations. ICRP Publication 107. Ann. ICRP 38 (3).
- ICRP, 2009. Adult Reference Computational Phantoms. ICRP Publication 110. Ann. ICRP 39 (2).
- ICRU Report 46, 1992. Photon, Electron, Proton and Neutron Interaction Data for Body Tissues. (24-1)
- ICRU Report 51, 1993. Quantities and Units in Radiation Protection Dosimetry. (26-2)
- ICRU Report 85, 2011. Fundamental quantities and units for ionizing radiation (11-1).
- Kawrakow, I. 2001. VMC++, electron and photon Monte Carlo calculations optimized for radiation treatment planning. *Advanced Monte Carlo for Radiation Physics*, *Particle Transport Simulation and Applications*, 229–236.
- Kocher, D. C. 1981. Radioactive Decay Data Tables: A Handbook of Decay Data for Application to Radiation Dosimetry and Radiological Assessments. In: Nuclear Science and Engineering. C. 82, Sayı 4.
- Lamart, S., Simon, S. L., Bouville, A., Moroz, B. E. and Lee, C. 2016. S values for 1311 based on the ICRP adult voxel phantoms. *Radiation Protection Dosimetry*, 168(1): 92–110.
- LANL. 2010. Recent Advances and Future Prospects for Monte Carlo.
- Lauridsen, B. 1982. Table of Exposure Rate Constants and Dose Equivalent Rate Constants.

- Lee, C., Lodwick, D. and Bolch, W. E. 2007. NURBS-based 3-D anthropomorphic computational phantoms for radiation dosimetry applications. *Radiation Protection Dosimetry*, 127(1–4): 227–232.
- Manabe, K., Sato, K. and Endo, A. 2014. Comparison of internal doses calculated using the specific absorbed fractions of the average adult Japanese male phantom with those of the reference computational phantom-adult male of ICRP publication 110. *Physics in Medicine and Biology*, 59(5): 1255–1270.
- Michael, A. 2012. Monte Carlo Calculations in Nuclear Medicine. In: Monte Carlo Calculations in Nuclear Medicine.
- Nachtigall, D. 1969. Table of Specific Gamma Ray Constants. Verlag Kark Thiemig KG.
- Ninkovic, M., Raicevic, J. J. and Adrovic, F. 2005. Air kerma rate constants for gamma emitters used most often in practice. *Radiation Protection Dosimetry*, 115(1–4): 247–250.
- Ninkovic, M. and Adrovic, F. 2012. Air Kerma Rate Constants for Nuclides Important to Gamma Ray Dosimetry and Practical Application. In: F. Adrovic (Ed.), Gamma Radiation. s. 16.
- Ören, Ü., Hiller, M. and Andersson, M. 2016. Idacstar: A mcnp application to perform realistic dose estimations from internal or external contamination of radiopharmaceuticals. *Radiation Protection Dosimetry*, 174(3): 406–411.
- Otto, T. 2016. Personel dose-equivalent conservion coefficients for 1252 radionuclides. *Radiation Protection Dosimetry*, 168(1): 1–70.
- Petoussi-Henss, N., Zankl, M. and Nosske, D. 2005. Estimation of patient dose from radiopharmaceuticals using voxel models. *Cancer Biotherapy and Radiopharmaceuticals*, 20(1): 103–109.
- Pia, M. G., Basaglia, T., Bell, Z. W. and Dressendorfer, P. V. 2009. Geant4 in scientific literature. *IEEE Nuclear Science Symposium Conference Record*, 189–194.
- Pibida, L., Minniti, R., Lucas, L. and Seltzer, S. M. 2008. The air-kerma rate constant: Application to air-kerma measurements for homeland security. *Health Physics*, 94(2): 126–133.
- Podgorsak, E. B. 2004. Radiation Oncology Physics: A Handbook for Teachers and Students. In: Journal of Agricultural and Food Chemistry. C. 52, Sayı 20.
- Romano, P. K., Horelik, N. E., Herman, B. R., Nelson, A. G., Forget, B. and Smith, K. 2015. OpenMC: A state-of-the-art Monte Carlo code for research and development. *Annals of Nuclear Energy*, 82 90–97.
- Seltzer, S. M. 2004. Air-kerma rate coefficient for selected photon-emitting radionuclide sources.

- Sempau, J., Fernández-Varea, J. M., Acosta, E. and Salvat, F. 2003. Experimental benchmarks of the Monte Carlo code PENELOPE. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 207(2): 107–123.
- Shultis, J. K. and Faw, R. E. 2011. ShultisMCNP5.
- Smith, D. S. and Stabin, M. G. 2012. Exposure rate constants and lead shielding values for over 1,100 radionuclides. *Health Physics*, 102(3): 271–291.
- Stabin, M. G. and Da Luz, L. C. Q. P. 2002. Decay data for internal and external dose assessment. *Health Physics*, 83(4): 471–475.
- Steurer, A., Leither, A. and Maringer, F. J. 2008. Different values for dose rate constants in radiation protection literature reasons and consequences in practice. *Exposure*, 1–10.
- Johnson, T. E. 2017. Introduction to Health Physics. (Fifth Edit). McGraw-Hill Education.
- Tschurlovits, M., Leither, A. and Daverda, G. 1992. Dose rate constants for new dose quantities. *Radiation Protection Dosimetry*, 42(2): 77–82.
- Turner, J. E. 2007. Atoms, Radiation, and Radiation Protection. (Third Edit).
- Unger, L. M. and Trubey, D. K. 1982. Specific Gamma-ray Dose Constans for Nuclides Important to Dosimetry and Radiological Assessment.
- Vega-carrillo, H. R., Rodríguez-juárez, R., Manzanares, E., Hernández-villasana, R., Ramírez-gonzález, J., Zacatecas, U. A. De, Académica, U., Nucleares, D. E., Peñuela, F. La and México, Z. 2008. Dose Rate Levels around Industrial Gamma Sources. *Radiation Protection and Dosimetry*, 1–6.
- Wasserman, H. and Groenewald, W. 1988. Air kerma rate constants for radionuclides. *European Journal of Nuclear Medicine*, 14(11): 569–571.
- Werner, C. J. 2017. Mcnp Users Manual.
- Xu, X. G. 2015. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: A review of the fifty-year history. *Physics in Medicine and Biology*, 59(18): 233–302.
- Yegin, G. 2003. A new approach to geometry modeling for Monte Carlo particle transport: An application to the EGS code system. *Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms*, 211(3): 331–338.
- Zankl, M. and Wittmann, A. 2001. The adult male voxel model "Golem" segmented from whole-body CT patient data. *Radiation and Environmental Biophysics*, 40(2): 153– 162.

- Zankl, M., Eckerman, K. F. and Bolch, W. E. 2007. Computational phantoms of the ICRP reference male and reference female. *Radiation Protection Dosimetry*, 127(1–4): 174–186.
- Zankl, M., Schlattl, H., Petoussi-Henss, N. and Hoeschen, C. 2012. Electron specific absorbed fractions for the adult male and female ICRP/ICRU reference computational phantoms. *Physics in Medicine and Biology*, 57(14): 4501–4526.

7. EKLER

EK 1. Voksel kürenin 7*7*7 adet küp örgüsü ile manuel şekilde MCNP'de oluşturulması

7*7	*7	skeal	kun !ten	olusturulm	1110	kuro	vaniei
~ /I	/ V(JASEI -	kup ten i ai		mua	vare	yapısı
C (1		erer a	угт аугі	, orusturui	IIIUS)	
C ()	0,-10	J,U)'a	a kolime	e kaynak			
c ki	uren	in mer	kezindek	i hucrede	aki	hesa	abi
с *	* * * *	hucre	kartlar	i *****			
с -	*- 1	. sira					
111	1	-1.0	-111	imp:p=1			
112	1	-1 0	-112	imp:p=1			
112	1	1 0	112	imp.p 1			
110	1	-1.0	-115	Turb:b-T			
114	T	-1.0	-114	ımp:p=l			
115	1	-1.0	-115	imp:p=1			
116	1	-1.0	-116	imp:p=1			
117	1	-1.0	-117	imp:p=1			
121	1	-1.0	-121	imp:p=1			
122	1	-1 0	-122	imp·p=1			
100	1	1 0	100	imp.p1			
123	1	-1.0	-123	Turb:b-1			
124	1	-1.0	-124	1mp:p=1			
125	1	-1.0	-125	imp:p=1			
126	1	-1.0	-126	imp:p=1			
127	1	-1.0	-127	imp:p=1			
131	1	-1.0	-131	imp:p=1			
132	1	-1 0	-132	imp·n=1			
133	1	_1 0	-133	imp.p 1			
104	1	-1.0	-133	1mp.p-1			
134	1	-1.0	-134	1mp:p=1			
135	T	-1.0	-135	ımp:p=l			
136	1	-1.0	-136	imp:p=1			
137	1	-1.0	-137	imp:p=1			
141	1	-1.0	-141	imp:p=1			
142	1	-1.0	-142	imp:p=1			
143	1	-1 0	-143	imp:p=1			
1 4 4	2	1 0	144	1mp.p-1			
144	2	-1.0	-144	Tub:b=1			
145	T	-1.0	-145	ımp:p=1			
146	1	-1.0	-146	imp:p=1			
147	1	-1.0	-147	imp:p=1			
151	1	-1.0	-151	imp:p=1			
152	1	-1.0	-152	imp:p=1			
153	1	-1 0	-153	imp·p=1			
15/	1	_1 0	-154	imp:p1			
1	1	-1.0	-134	1mp•p=1			
122	1	-1.0	-155	1mp:p=1			
156	1	-1.0	-156	imp:p=1			
157	1	-1.0	-157	imp:p=1			
161	1	-1.0	-161	imp:p=1			
162	1	-1.0	-162	imp:p=1			
163	1	-1.0	-163	imp:p=1			
164	1	-1 0	-164	imp:p=1			
165	1	1 0	165	imp.p 1			
100	1	-1.0	-105	Turb:b-1			
100	T	-1.0	-100	1mp:p=1			
167	1	-1.0	-167	imp:p=1			
171	1	-1.0	-171	imp:p=1			
172	1	-1.0	-172	imp:p=1			
173	1	-1.0	-173	imp:p=1			
174	1	-1.0	-174	imp:p=1			
175	1	_1 0	-175	imp:p1			
170	1	1.0	170	1 mp • p = 1			
1/6	1	-1.0	-1/6	1mp:p=1			
T / /	1	- I . U	- T , / , /	ımb:b=⊺			
с -	*- 2	. sira					
211	1	-1.0	-211	imp:p=1			
212	1	-1.0	-212	imp:p=1			
213	1	-1.0	-213	imp:p=1			
214	1	-1 0	-214	imp:p=1			
215	1	-1 0	-215	imp • p - 1			
210	⊥ 1	1 0	210	1mp . p-1			
210	1	-1.0	-210	Turb:b=T			
$Z \perp I$	T	-1.0	-21/	ımp:p=⊥			

317	1	-1 0	-347	imp · n-1
	-	1.0	547	Tub.b T
351	1	-1.0	-351	imp:p=1
352	2	-1 0	-352	imp · n=1
252	2	1.0	002	imp.p i
353	2	-1.0	-353	ımp:p=⊥
354	2	-1.0	-354	imp:p=1
	~	1 0	255	
300	Ζ	-1.0	-355	1mp:p=1
356	2	-1.0	-356	imp:p=1
257	1	1 0	257	
557	Ŧ	-1.0	-357	Tub:b-T
361	1	-1.0	-361	imp:p=1
362	2	_1 0	-362	imp n -1
502	2	1.0	502	Turb.b-T
363	2	-1.0	-363	imp:p=1
364	2	-1 0	-364	imp · n=1
504	2	1.0	504	Turb.b-T
365	2	-1.0	-365	imp:p=1
366	2	-1 0	-366	imp · n=1
	1	1.0	000	1mp.p 1
367	T	-1.0	-367	1mp:p=1
371	1	-1.0	-371	imp:p=1
270	1	1 0	270	
312	T	-1.0	-372	1mp:p=1
373	1	-1.0	-373	imp:p=1
274	1	1 0	274	
5/4	Ŧ	-1.0	-3/4	Tub:b=T
375	1	-1.0	-375	imp:p=1
376	1	-1 0	-376	imp. n-1
570	Ŧ	-1.0	-370	Tub.b-T
377	1	-1.0	-377	imp:p=1
~ _*-	- 1	eira		
<u> </u>		. SIIA		
4 I I	\perp	-1.0	-411	1mp:p=1
412	1	-1 0	-412	imp · n=1
112	-	1.0	112	imp.p i
413	T	-1.0	-413	1mp:p=l
414	2	-1.0	-414	imp:p=1
 / 1 E	1	1 0	415	
415	Ŧ	-1.0	-415	Tub:b=1
416	1	-1.0	-416	imp:p=1
117	1	-1 0	_117	imp. n-1
± 1 /	Ŧ	-1.0	-41/	Tub.b-T
421	1	-1.0	-421	imp:p=1
422	2	-1 0	-422	imp · n=1
122	2	1.0	122	Tub.b T
423	2	-1.0	-423	1mp:p=l
424	2	-1.0	-424	imp:p=1
	_	1 0	105	
425	2	-1.0	-425	1mp:p=1
426	2	-1.0	-426	imp:p=1
407	1	1 0	407	1 . 1
42/	Ŧ	-1.0	-427	Tub:b=1
431	1	-1.0	-431	imp:p=1
120	2	1 0	122	
432	2	-1.0	-432	Turb:b-T
433	2	-1.0	-433	imp:p=1
131	2	-1 0	-131	imp · n-1
131	2	1.0	101	Turb.b-T
435	2	-1.0	-435	imp:p=1
436	2	-1.0	-436	imp:p=1
100	-	1.0	100	Turb.b T
437	T	-1.0	-437	1mp:p=l
441	2	-1.0	-441	imp:p=1
440	2	1 0	110	
44Z	Ζ	-1.0	-442	Tub:b=1
443	2	-1.0	-443	imp:p=1
111	2	-1 0	-111	imp · n-1
	2	1.0		тшр•р т
445	2	-1.0	-445	1mp:p=l
446	2	-1.0	-446	imp:p=1
	2	1 0	4 4 7	1
44/	Ζ	-1.0	-44/	1mp:p=1
451	1	-1.0	-451	imp:p=1
152	2	-1 0	-152	imp. n-1
4 J Z	2	-1.0	-452	Turb • b-T
453	2	-1.0	-453	imp:p=1
454	2	-1 0	-454	imp·n=1
	2	1.0	-15-1	Tub.b T
455	2	-1.0	-455	imp:p=1
456	2	-1 0	-456	imp · n=1
100	1	1.0	100	1mp.p 1
457	T	-1.0	-457	1mp:p=1
461	1	-1.0	-461	imp:p=1
100	2	1 0	100	
±02	2	-1.0	-402	Turb:b=T
463	2	-1.0	-463	imp:p=1
464	2	-1 0	-461	imp · n-1
101	~	1.0	104	TWD . D-T
465	2	-1.0	-465	1mp:p=1
466	2	-1.0	-466	imp:p=1
167	1	1 0	100	
чю/	T	-1.0	-46/	⊥mp:p=l
471	1	-1.0	-471	imp:p=1
170	1	-1 0	-170	imp · r - 1
1/2	1	- T • O	-4/2	Tub.b-T
473	1	-1.0	-473	imp:p=1
474	2	-1.0	-474	imp:p=1
- · ·	1		- / I / T F	
C / £	T	-1.0	-4/5	rwb:b=⊺

F. ONA'	Г
---------	---

476	1	-1.0	-476	imp:p=1
477	1	-1.0	-477	imp:p=1
c -*-	- 5.	sira		
511	1	-1 0	-511	imn•n=1
510	1	1 0	510	imp.p 1
512	1	-1.0	-312	Turb:b-1
513	T	-1.0	-513	1mp:p=1
514	1	-1.0	-514	imp:p=1
515	1	-1.0	-515	imp:p=1
516	1	-1.0	-516	imp:p=1
517	1	-1.0	-517	imp:p=1
521	1	-1 0	-521	imp:p=1
521 522	2	1 0	521 522	imp.p1
522	2	-1.0	- 322	1mp.p-1
523	2	-1.0	-523	1mp:p=1
524	2	-1.0	-524	1mp:p=1
525	2	-1.0	-525	imp:p=1
526	2	-1.0	-526	imp:p=1
527	1	-1.0	-527	imp:p=1
531	1	-1.0	-531	imp:p=1
532	2	-1 0	-532	imp:p=1
532	2	1 0	532	imp.p 1
555	2	-1.0	-000	1mp.p-1
534	2	-1.0	-534	1mp:p=1
535	2	-1.0	-535	1mp:p=1
536	2	-1.0	-536	imp:p=1
537	1	-1.0	-537	imp:p=1
541	1	-1.0	-541	imp:p=1
542	2	-1.0	-542	imp:p=1
543	2	-1 0	-543	imp·p=1
510	2	-1 0	_511	imp:p1
544	2	-1.0	-544	1mp.p-1
545	2	-1.0	-545	1mp:p=1
546	2	-1.0	-546	imp:p=1
547	1	-1.0	-547	imp:p=1
551	1	-1.0	-551	imp:p=1
552	2	-1.0	-552	imp:p=1
553	2	-1.0	-553	imp:p=1
554	2	-1.0	-554	imp:p=1
555	2	-1.0	-555	imp:p=1
556	2	-1 0	-556	imp·p=1
557	1	-1 0	-557	imp:p=1
561	1	_1 0	-561	imp:p1
501	1	-1.0	-301	1mp.p-1
502	2	-1.0	-302	imp:p-1
203	2	-1.0	-263	Imp:p=1
564	2	-1.0	-564	imp:p=1
565	2	-1.0	-565	imp:p=1
566	2	-1.0	-566	imp:p=1
567	1	-1.0	-567	imp:p=1
571	1	-1.0	-571	imp:p=1
572	1	-1.0	-572	imp:p=1
573	1	-1.0	-573	imp:p=1
574	1	-1 0	-574	imp·p=1
575	1	_1 0	-575	imp:p1
575	1	-1.0	-373	1mp.p-1
5/6	1	-1.0	-5/6	1mp:p=1
577	1	-1.0	-577	1mp:p=1
c -*-	- 6.	sira		
611	1	-1.0	-611	imp:p=1
612	1	-1.0	-612	imp:p=1
613	1	-1.0	-613	imp:p=1
614	1	-1.0	-614	imp:p=1
615	1	-1 0	-615	imp:p-1
616	1	_1 0	-616	imp.p 1
C17	1	-1.0	-010	1mp.p-1
01/	1	-1.0	-617	Tub:b=1
621 	Ţ	-1.0	-621	1mp:p=l
622	1	-1.0	-622	1mp:p=1
623	2	-1.0	-623	imp:p=1
624	2	-1.0	-624	imp:p=1
625	2	-1.0	-625	imp:p=1
626	1	-1.0	-626	imp:p=1
627	1	-1.0	-627	imp:p=1
631	1	-1.0	-631	imp:p=1
632	2	-1.0	-632	imp:p=1
633	2	-1 0	-633	$\lim_{n \to \infty} \frac{1}{n}$
555	2	T.O	000	

717 1

721 1

722 1

723 1

724 1

725 1

726 1

727 1

731 1

732 1

733 1

734 1

735

736 1

737 1

741

742

743 1

744 2

745 1

746

747 1

751 1

752 1

753 1

754 1

755 1

756

757 1

761

762 1

1

1

1

1

1

1

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-716

-717

-721

-722

-723

-724

-725

-726

-727

-731

-732

-733

-734

-735

-736

-737

-741

-742

-743

-744

-745

-746

-747

-751

-752

-753

-754

-755

-756

-757

-761

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1
imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1
imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

imp:p=1

-762 imp:p=1

1

-1.0 -763 imp:p=1 -1.0 -764 764 1 imp:p=1 765 -765 1 -1.0 imp:p=1 -1.0 -766 766 1 imp:p=1 767 1 -1.0 -767 imp:p=1 771 -1.0 -771 1 imp:p=1 772 -772 1 -1.0 imp:p=1 773 1 -1.0 -773 imp:p=1 774 -1.0 -774 1 imp:p=1 775 1 -1.0 -775 imp:p=1 776 1 -1.0 -776 imp:p=1 777 1 -1.0 -777 imp:p=1 c -*- ic dunya -999 998 3 -1.2e-3 С #111 #112 #113 #114 #115 #116 #117 #121 #122 #123 #124 #125 #126 #127 #131 #132 #133 #134 #135 #136 #137 #141 #142 #143 #144 #145 #146 #147 #151 #152 #153 #154 #155 #156 #157 #161 #162 #163 #164 #165 #166 #167 #171 #172 #173 #174 #175 #176 #177 С #211 #212 #213 #214 #215 #216 #217 #221 #222 #223 #224 #225 #226 #227 #231 #232 #233 #234 #235 #236 #237 #241 #242 #243 #244 #245 #246 #247 #251 #252 #253 #254 #255 #256 #257 #261 #262 #263 #264 #265 #266 #267 #271 #272 #273 #274 #275 #276 #277 С #311 #312 #313 #314 #315 #316 #317 #321 #322 #323 #324 #325 #326 #327 #331 #332 #333 #334 #335 #336 #337 #341 #342 #343 #344 #345 #346 #347 #351 #352 #353 #354 #355 #356 #357 #361 #362 #363 #364 #365 #366 #367 #371 #372 #373 #374 #375 #376 #377 С #411 #412 #413 #414 #415 #416 #417 #421 #422 #423 #424 #425 #426 #427 #431 #432 #433 #434 #435 #436 #437 #441 #442 #443 #444 #445 #446 #447 #451 #452 #453 #454 #455 #456 #457 #461 #462 #463 #464 #465 #466 #467 #471 #472 #473 #474 #475 #476 #477 С #511 #512 #513 #514 #515 #516 #517 #521 #522 #523 #524 #525 #526 #527 #531 #532 #533 #534 #535 #536 #537 #541 #542 #543 #544 #545 #546 #547 #551 #552 #553 #554 #555 #556 #557 #561 #562 #563 #564 #565 #566 #567 #571 #572 #573 #574 #575 #576 #577 С #611 #612 #613 #614 #615 #616 #617 #621 #622 #623 #624 #625 #626 #627 #631 #632 #633 #634 #635 #636 #637 #641 #642 #643 #644 #645 #646 #647 #651 #652 #653 #654 #655 #656 #657 #661 #662 #663 #664 #665 #666 #667 #671 #672 #673 #674 #675 #676 #677 С #711 #712 #713 #714 #715 #716 #717 #721 #722 #723 #724 #725 #726 #727 #731 #732 #733 #734 #735 #736 #737 #741 #742 #743 #744 #745 #746 #747 #751 #752 #753 #754 #755 #756 #757 #761 #762 #763 #764 #765 #766 #767

#771 #772 #773 #774 #775 #776 #777

				imp	p=1	
с -*- 999	dis 0	dunya	999	imp:	:p=0	
c ***	** yı	izey kai	tlari 🖞	* * * * *		
C -*- 111 r 112 r 113 r 114 r 115 r 116 r 121 r 123 r 124 r 125 r 127 r 127 r 127 r 128 r 129 r 129 r 129 r 120 r 120 r 121 r 121 r 122 r 123 r 134 r 135 r 136 r 137 r 137 r 137 r 138 r 137 r 138 r 137 r 138 r 137 r 137 r 138 r 137 r 138 r 137 r 138 r 137 r 138 r 137 r 138 r 137 r 138 r 137 r 138 r 137 r 138 r 137 r 138 r 137 r 141 r 142 r 155 r 156 r 157 r 161 r 163 r 164 r 165 r 167 r 177 r	1. 3 ppp -2 pp -2 ppp -2 pp	sira sira sira sira sira 2:5 -2:5 2:5 -1:5 2:5 -2:5 2:5 -2:5 2:5 -2:5 2:5 -2:5 2:5 -2:5 2:5 -2:5 2:5 -2:5 2:5 -2:5 2:5 -2:5 2:5 -2:5 2:5 -2:5 2:5 -2:5 2:5 -1:5 2:5 -1:5 2:5 -1:5 2:5 -1:5 2:5 -1:5 2:5 -1:5 2:5 -1:5 2:5 -1:5 2:5 -1:5 2:5 -1:5 2:5 -1:5 2:5 -1:5 2:5 -1:5 2:5 -1:5 2:5 -1:5 2:5 -1:5 2:5 -1:5 2:5 -1:	5 -3.5 -3.5 -3.55 -3.55 -3.55 -3.55 -3.55 -2.55 -2.55 -2.55 -2.55 -2.55 -2.55 -2.55 -2.55 -2.55 -2.55 -1.55 -1.55 -1.55 -1.55 -0.55 -	$\begin{array}{c} -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -0.5\\$	- 3.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	$\begin{array}{c} -2.5\\$
211 r 212 r 213 r 214 r 215 r 216 r 217 r 221 r 222 r 223 r 224 r 225 r 226 r 227 r	pp -3 pp -2 pp -2 pp -1 pp -0 pp -0 pp -0 pp -0 pp -0 pp -0 pp -1 pp -2 pp -3 pp -2 pp	3.5 - 2.5 2.5 - 1.5 1.5 - 0.5 0.5 1.5 2.5 2.5 3.5 - 2.5 2.5 - 1.5 1.5 - 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5	$\begin{array}{c} -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\end{array}$	-1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5

$\begin{array}{c} 231\\ 232\\ 233\\ 234\\ 235\\ 237\\ 241\\ 242\\ 243\\ 244\\ 245\\ 245\\ 252\\ 253\\ 254\\ 255\\ 256\\ 257\\ 256\\ 256\\ 256\\ 257\\ 256\\ 256\\ 256\\ 256\\ 256\\ 256\\ 256\\ 256$	rpp rpp rpp rpp rpp rpp rpp rpp rpp rpp	$\begin{array}{c} -3.5\\ -2.5\\ -1.5\\ 0.5\\ 1.5\\ 2.5\\ -3.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -2.5\\ -1.5\\ -2.5\\ -2.5\\ -1.5\\ -2.5$	$\begin{array}{c} -2.5\\ -1.5\\ -0.5\\ 0.5\\ 1.5\\ 2.5\\ -2.5\\ -1.5\\ -0.5\\ 0.5\\ 1.5\\ 2.5\\ 3.5\\ -1.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ 3.5\\ -1.5\\ -0.5\\ 0.5\\ 1.5\\ 2.5\\ 3.5\\ -2.5\\ 3.5\\ -2.5\\ -0.5\\ 0.5\\ -2.5\\ 3.5\\ -0.5\\ 0.5\\ -0.5\\ 0.5\\ -0.5\\ 0.5\\ 0.5\\ -0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ $	$\begin{array}{c} -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ $	$\begin{array}{c} -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1$	$\begin{array}{ccccc} -2.5 & -1.5 \\ -2.5 $
261 262	rpp rpp	-3.5	-2.5	1.5	2.5	-2.5 -1.5
263	rpp	-1.5	-0.5	1.5	2.5	-2.5 -1.5
264	rpp	-0.5	0.5	1.5	2.5	-2.5 -1.5
266	rpp	1.5	2.5	1.5	2.5	-2.5 -1.5
267	rpp	2.5	3.5	1.5	2.5	-2.5 -1.5
271	rpp	-3.5	-2.5	2.5	3.5	-2.5 -1.5
273	rpp	-1.5	-0.5	2.5	3.5	-2.5 -1.5
274	rpp	-0.5	0.5	2.5	3.5	-2.5 -1.5
275	rpp rpp	1.5	2.5	2.5	3.5	-2.5 -1.5
277	rpp	2.5	3.5	2.5	3.5	-2.5 -1.5
c - '	*- 3.	. sira	9			
211		· · · ·	^	2 5	0 F	1 5 0 5
311 312	rpp rpp	-3.5	-2.5	-3.5 -3.5	-2.5	-1.5 -0.5
311 312 313	rpp rpp rpp	-3.5 -2.5 -1.5	-2.5 -1.5 -0.5	-3.5 -3.5 -3.5	-2.5 -2.5 -2.5	-1.5 -0.5 -1.5 -0.5 -1.5 -0.5
311 312 313 314	rpp rpp rpp rpp	-3.5 -2.5 -1.5 -0.5	-2.5 -1.5 -0.5 0.5	-3.5 -3.5 -3.5 -3.5	-2.5 -2.5 -2.5 -2.5	-1.5 -0.5 -1.5 -0.5 -1.5 -0.5 -1.5 -0.5
311 312 313 314 315 316	rpp rpp rpp rpp rpp	-3.5 -2.5 -1.5 -0.5 0.5 1.5	-2.5 -1.5 -0.5 0.5 1.5 2.5	-3.5 -3.5 -3.5 -3.5 -3.5 -3.5	-2.5 -2.5 -2.5 -2.5 -2.5 -2.5	-1.5 -0.5 -1.5 -0.5 -1.5 -0.5 -1.5 -0.5 -1.5 -0.5 -1.5 -0.5 -1.5 -0.5
311 312 313 314 315 316 317	rpp rpp rpp rpp rpp rpp	-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5	-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5	-3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5	-2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5	$\begin{array}{cccc} -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \end{array}$
311 312 313 314 315 316 317 321	rpp rpp rpp rpp rpp rpp rpp	-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 -3.5	-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -2.5	-3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5	-2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5	$\begin{array}{ccccc} -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \end{array}$
311 312 313 314 315 316 317 321 322 323	rpp rpp rpp rpp rpp rpp rpp rpp	-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 -3.5 -2.5 -1.5	-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -2.5 -1.5 -0.5	-3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -2.5 -2.5 -2.5	-2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -1.5 -1.5 -1.5	$\begin{array}{ccccc} -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \end{array}$
311 312 313 314 315 316 317 321 322 323 324	rpp rpp rpp rpp rpp rpp rpp rpp rpp	-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 -3.5 -2.5 -1.5 -0.5	-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -2.5 -1.5 -0.5 0.5	-3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -2.5 -2.5 -2.5 -2.5	-2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5	$\begin{array}{cccc} -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \end{array}$
311 312 313 314 315 316 317 321 322 323 324 325 326	rpp rpp rpp rpp rpp rpp rpp rpp rpp	-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 -3.5 -2.5 -1.5 -0.5 0.5	-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -2.5 -1.5 -0.5 1.5 2.5	-3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -2.5 -2.5 -2.5 -2.5 -2.5	-2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -1.5 -1.5 -1.5 -1.5 -1.5	$\begin{array}{ccccc} -1.5 & -0.5 \\ -1.5 $
311 312 313 314 315 316 317 321 323 324 325 326 327	rpp rpp rpp rpp rpp rpp rpp rpp rpp rpp	-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5	-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5	$\begin{array}{r} -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\end{array}$	-2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5	$\begin{array}{ccccc} -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \\ -1.5 & -0.5 \end{array}$
311 312 313 314 315 316 317 321 322 323 324 325 326 327 331	rpp rpp rpp rpp rpp rpp rpp rpp rpp rpp	-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 -3.5	-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -2.5	$\begin{array}{r} -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\end{array}$	-2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1	$\begin{array}{ccccc} -1.5 & -0.5 \\ -1.5 $
311 312 313 314 315 316 317 321 322 323 324 325 326 327 331 332 333	rpp rpp rpp rpp rpp rpp rpp rpp rpp rpp	-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 -3.5 -2.5 -3.5 -1.5	-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -1.5 -2.5 -0.5 0.5 1.5 2.5 3.5 -2.5 -1.5 -2.5 -1.5 -2.5 -1.5	-3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5	-2.5 -2.5 -2.5 -2.5 -2.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1	$\begin{array}{cccccc} -1.5 & -0.5 \\ -1.5$
311 312 313 314 315 316 317 321 322 323 324 325 326 327 331 332 333 334	rpp rpp rpp rpp rpp rpp rpp rpp rpp rpp	$\begin{array}{c} -3.5\\ -2.5\\ -1.5\\ -0.5\\ 0.5\\ 1.5\\ 2.5\\ -3.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -3.5\\ -2.5\\ -3.5\\ -2.5\\ -1.5\\ -2.5\\ -1.5\\ -0.5\end{array}$	-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -1.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -2.5 -1.5 -2.5 -1.5 0.5 0.5	-3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -1.5 -1.5 -1.5	-2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -0.5 -0.5 -0.5	$\begin{array}{ccccc} -1.5 & -0.5 \\ -1.5 $
311 312 313 314 315 316 317 321 322 323 324 325 326 327 331 332 333 334 335	rpp rpp rpp rpp rpp rpp rpp rpp rpp rpp	$\begin{array}{c} -3.5\\ -2.5\\ -1.5\\ -0.5\\ 0.5\\ 1.5\\ 2.5\\ -3.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -3.5\\ -2.5\\ -3.5\\ -3.5\\ -3.5\\ -2.5\\ -1.5\\ -0.5\\ 0.5\\ 0.5\\ \end{array}$	-2.5 -1.5 -0.5 0.5 1.5 2.5 -2.5 -1.5 -2.5 -1.5 0.5 1.5 2.5 -2.5 -1.5 -2.5 -1.5 -2.5 -1.5 -2.5 -1.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2	$\begin{array}{c} -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\end{array}$	$\begin{array}{c} -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ \end{array}$	$\begin{array}{c} -1.5 & -0.5 \\ -1.5 & -0$
311 312 313 314 315 316 321 322 323 324 325 326 327 331 332 333 334 335 336 337	rpp rpp rpp rpp rpp rpp rpp rpp rpp rpp	$\begin{array}{c} -3.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -3.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ -2.5\\ -1.5\\ -0.5\\ -2.5\\ -1.5\\ -0.5\\ -2.5\\ -1.5\\ -0.5\\ -2.5\\ -1.5\\ -0.5\\ -2.5\\ -1.5\\ -0.5\\ -2.5\\ -1.5\\ -0.5\\ -2.5\\ -0.5\\ -2.5\\ -0.5\\ -0.5\\ -2.5\\ -0.5\\ $	-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -2.5 -0.5 0.5 2.5 -0.5 2.5 -0.5 0.5 2.5 -1.5 -0.5 0.5 1.5 2.5 -2.5 -1.5 0.5 2.5 -2.5 -1.5 -0.5 -2.5 -2.5 -0.5 -2.5 -0.5 -2.5 -0.5 -2.5 -0.5 -2.5 -0.5 -2.5 -0.5 -2.5 -0.5 -2.5 -0.5 -2.5 -0.5 -2.5 -0.5 -2.5 -0.5 -2.5 -0.5 -2.5 -0.5 -2.5 -0.5 -2.5 -0.5 -2.5 -0.5 -2.5 -0.5 -2.5 -0.5 -2.5 -0.5 -2.5 -2.5 -2.5 -0.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2	$\begin{array}{r} -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\$	$\begin{array}{c} -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -0.5\\$	$\begin{array}{cccccc} -1.5 & -0.5 \\ -1.5$
311 312 313 314 315 321 322 323 324 325 326 327 331 332 333 334 335 336 337 337 341	rpp rpp rpp rpp rpp rpp rpp rpp rpp rpp	$\begin{array}{c} -3.5\\ -2.5\\ -1.5\\ -0.5\\ 0.5\\ 1.5\\ 2.5\\ -3.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -3.5\\ -2.5\\ -0.5\\ 1.5\\ 2.5\\ -3.5\\ -0.5\\ 1.5\\ 2.5\\ -3.5\end{array}$	-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -2.5 -0.5 0.5 1.5 2.5 3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -2.5 -1.5 -2.5 -1.5 -2.5 -2.5 -1.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2	$\begin{array}{c} -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -0.5\end{array}$	$\begin{array}{c} -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ 0.5\\ 0.5\end{array}$	$\begin{array}{ccccc} -1.5 & -0.5 \\ -1.5 $
311 312 313 314 315 321 322 323 324 325 326 327 331 332 333 334 335 336 337 341 342	rpp rpp rpp rpp rpp rpp rpp rpp rpp rpp	$\begin{array}{c} -3.5\\ -2.5\\ -1.5\\ -0.5\\ 0.5\\ 1.5\\ 2.5\\ -3.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -3.5\\ -2.5\\ -3.5\\ -2.5$	-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -2.5 -0.5 0.5 1.5 2.5 3.5 -0.5 0.5 1.5 2.5 3.5 -2.5 -0.5 0.5 1.5 2.5 3.5 -2.5 -0.5 0.5 1.5 2.5 3.5 -2.5 -0.5 0.5 1.5 2.5 -2.5 -0.5 0.5 1.5 2.5 -2.5 -0.5 0.5 1.5 -2.5 -0.5 -2.5 -0.5 -2.5 -0.5 -2.5 -0.5 -0.5 -2.5 -0.5 -0.5 -0.5 -2.5 -0.5 -0.5 -2.5 -0.5 -0.5 -0.5 -2.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0	$\begin{array}{c} -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -0.5\\ -0.5\\ \end{array}$	$\begin{array}{c} -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ $	$\begin{array}{c} -1.5 & -0.5 \\ -1.5 & -0$
311 312 313 314 315 317 321 322 323 324 325 326 327 331 332 333 334 335 336 337 341 342 343	rpp rpp rpp rpp rpp rpp rpp rpp rpp rpp	$\begin{array}{c} -3.5\\ -2.5\\ -1.5\\ -0.5\\ 0.5\\ 1.5\\ 2.5\\ -3.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -2.5\\ -2.5\\ -1.5\\ -2.5\\ -1.5\\ -2.5\\ -1.5\\ -2.5\\ -1.5\\ -2.5\\ -1.5\\ -0.5\\ 0.5\\ -2.5\\ -1.5\\ -0.5\\ -1.5\\ -0.5\\ -1.5\\ -0.5\\ -1.5\\ -0.5\\ -1.5\\ -0.5\\ -1.5\\ -0.5\\$	-2.5 -2.5 -0.5 0.5 1.5 2.5 3.5 -1.5 2.5 3.5 -1.5 0.5 1.5 2.5 3.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -1.5 0.5 0.5 1.5 2.5 3.5 -1.5 0.5 0.5 1.5 2.5 3.5 -1.5 0.5 0.5 1.5 0.5 0.5 1.5 2.5 0.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 0.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	$\begin{array}{c} -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -0.5\\$	$\begin{array}{c} -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ $	$\begin{array}{c} -1.5 & -0.5 \\ -1.5 & -0$
311 312 313 314 315 321 322 323 324 325 326 327 331 332 333 334 335 336 337 341 342 343 344 343	rpp rpp rpp rpp rpp rpp rpp rpp rpp rpp	$\begin{array}{c} -3.5\\ -2.5\\ -1.5\\ -0.5\\ 0.5\\ 1.5\\ 2.5\\ -3.5\\ -2.5\\ -3.5\\ -2.5\\ -1.5\\ 0.5\\ 1.5\\ 2.5\\ -3.5\\ -1.5\\ -3.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -3.5\\ -1.5\\ -2.5\\ -1.5\\ -2.5\\ -2.5\\ -1.5\\ -0.5\\ 0.5\\ \end{array}$	-2.5 -2.5 -0.5 0.5 1.5 2.5 3.5 -2.5 -1.5 2.5 3.5 -1.5 2.5 3.5 -1.5 2.5 3.5 -1.5 0.5 1.5 2.5 3.5 -1.5 0.5 1.5 2.5 3.5 -1.5 0.5 1.5 2.5 1.5 0.5 1.5 2.5 1.5 0.5 1.5 2.5 1.5 -2.5 0.5 1.5 2.5 1.5 -2.5 0.5 1.5 2.5 1.5 -2.5 0.5 1.5 2.5 1.5 -2.5 0.5 1.5 -2.5 0.5 1.5 -2.5 0.5 1.5 -2.5 0.5 1.5 -2.5 0.5 1.5 -2.5 0.5 1.5 -2.5 0.5 1.5 -2.5 -1.5 -2.5 -1.5 -2.5 -1.5 -2.5 -2.5 -1.5 -2.5 -1.5 -2.5 -2.5 -1.5 -2.5 -2.5 -1.5 -2.5 -2.5 -1.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2	$\begin{array}{c} -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\end{array}$	$\begin{array}{c} -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ $	$\begin{array}{c} -1.5 & -0.5 \\ -1.5 & -0$
311 312 313 314 315 321 322 323 324 325 326 327 331 332 333 334 335 337 331 332 333 334 335 337 341 342 343 344 345	rpp rpp rpp rpp rpp rpp rpp rpp rpp rpp	$\begin{array}{c} -3.5\\ -2.5\\ -1.5\\ -0.5\\ 0.5\\ 1.5\\ -3.5\\ -2.5\\ -3.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -3.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ -3.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ -3.5\\ -1.5\\ -0.5\\ -3.5\\ -1.5\\ -0.5\\ -0.5\\ -1.5\\ -0.5\\$	-2.5 -1.5 -0.5 1.5 2.5 3.5 -2.5 -1.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2	$\begin{array}{c} -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -0.5\\$	$\begin{array}{c} -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ $	$\begin{array}{c} -1.5 & -0.5 \\ -1.5 & -0$
3111 312313 314355 316317 321322 3233324 32253232 326327 326327 331333333333333333333333333333333333	rpp rpp rpp rpp rpp rpp rpp rpp rpp rpp	$\begin{array}{c} -3.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -3.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -3.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -3.5\\ -1.5\\ -0.5\\ 1.5\\ -3.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ -3.$	-2.5 -1.5 -0.5 1.5 2.5 3.5 -1.5 -1.5 0.5 1.55 3.5 -1.5 0.5 1.5 2.5 -1.5 0.5 1.5 2.5 -1.5 0.5 2.5 -1.5 0.5 2.5 -1.5 0.5 2.5 -1.5 0.5 2.5 -1.5 0.5 2.5 -1.5 0.5 2.5 -2.5 -2.5 3.5	$\begin{array}{c} -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -2.5\\ -0.5\\$	$\begin{array}{c} -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ $	$\begin{array}{c} -1.5 & -0.5 \\ -1.5 & -0$
311 312 313 314 315 321 322 323 324 325 326 327 331 332 333 334 335 336 337 341 342 343 344 345 346 347 342 343	rpp rpp rpp rpp rpp rpp rpp rpp rpp rpp	$\begin{array}{c} -3.5\\ -2.5\\ -1.5\\ -0.5\\ 0.5\\ 1.5\\ 2.5\\ -3.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -3.5\\ -2.5\\ -2.5\\ -2.5\end{array}$	-2.5 -2.5 -1.5 -0.5 1.5 2.5 3.5 -2.5 -0.5 1.5 2.5 -1.5 -0.5 1.5 2.5 -1.5 -0.5 1.5 2.5 -2.5 -0.5 1.5 2.5 -2.5 -0.5 1.5 2.5 -1.5 -0.5 1.5 2.5 -1.5 -0.5 1.5 2.5 -1.5 -0.5 1.5 2.5 -1.5 -0.5 1.5 2.5 -1.5 -0.5 1.5 2.5 -1.5 -0.5 1.5 2.5 -1.5 -0.5 1.5 2.5 -1.5 -0.5 1.5 2.5 -1.5 -0.5 1.5 2.5 -1.5 -0.5 1.5 2.5 -1.5 -0.5 1.5 2.5 -1.5 -0.5 -1.5 -0.5 -2.5 -1.5 -0.5 -2.5 -1.5 -1.5 -2.5 -1.5 -1.5 -2.5 -1.5 -2.5 -1.5 -1.5 -2.5 -1.5	$\begin{array}{c} -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -2.5\\ -0.5\\$	$\begin{array}{c} -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ $	$\begin{array}{c} -1.5 & -0.5 \\ -1.5 & -0$
311 312 313 314 315 321 322 323 324 325 326 327 331 332 333 334 335 336 337 341 342 343 344 345 346 347 351 352 353	rbb rbb rbb rbb rbb rbb rbb rbb rbb rbb	$\begin{array}{c} -3.5\\ -2.5\\ -1.5\\ -0.5\\ 0.5\\ 1.5\\ 2.5\\ -3.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ -2.5\\ -1.5\\ -0.5\\ 1.5\\ -2.5\\ -1.5\\ -0.5\\ -1.5\\ -0.5\\ -1.5\\ -0.5\\ -1.5\\ -0.5\\ -1.5\\ -0.5\\ -1.5\\ -0.5\\ -1.5\\ -0.5\\ -1.5\\ -0.5\\ -1.5\\ -0.5\\ -1.5\\ -0.5\\ -1.5\\ -0.5\\ -1.5\\ -0.5\\ -1.5\\ -0.5\\ -1.5\\ -0.5\\ -1.5\\ -0.5\\ -1.5\\ -0$	-2.5 -2.5 -1.5 0.5 1.55 2.55 -1.55 2.55 -2.55 -0.55 1.55 2.55 -2.55 -0.55 1.55 2.55 -2.55 -1.55 2.55 -2.55 -1.55 2.55 -2.55 -2.55 -1.55 -2.55	$\begin{array}{c} -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -2.5\\ -0.5\\$	$\begin{array}{c} -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ $	$\begin{array}{c} -1.5 & -0.5 \\ -1.5 & -0$
311 312 313 314 315 321 322 323 324 325 326 327 331 332 333 334 335 336 337 341 342 343 344 345 346 347 351 352 353 354 354	rbb rbb rbb rbb rbb rbb rbb rbb rbb rbb	$\begin{array}{c} -3.5\\ -2.5\\ -1.5\\ -0.5\\ 0.5\\ 1.5\\ 2.5\\ -3.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ 2.5\\ -1.5\\ -0.5\\ 1.5\\ -2.5\\ -1.5\\ -0.5\\ 0.5\\ 1.5\\ -2.5\\ -0.5\\ 0.5\\ -1.5\\ 0.5\\ -0.5\\ -0.5\\ $	-2.5 -2.5 -2.5 -2.5 -2.5 2.55 2.55 -2.55	$\begin{array}{c} -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -3.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ $	$\begin{array}{c} -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ -0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1$	$\begin{array}{c} -1.5 & -0.5 \\ -1.5 & -0$

F.	ONAT

357 361 362 363 364 365 366 367 371 372 373 374 375 376 377	rpp rpp rpp rpp rpp rpp rpp rpp rpp rpp	2.5 -3.5 -2.5 -1.5 -0.5 1.5 2.5 -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5	3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -2.5 -1.5 -2.5 -1.5 -2.5 -1.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2	0.5 1.5 1.5 1.5 1.5 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	1.5 2.5 2.5 2.5 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	-1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5	-0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
c -*	- 4.	. sira	1	2.0	0.0	1.0	0.0
411	rpp	-3.5	-2.5	-3.5	-2.5	-0.5	0.5
412	rpp	-2.5	-1.5	-3.5	-2.5	-0.5	0.5
413	rpp	-1.5	-0.5	-3.5	-2.5	-0.5	0.5
414	rpp	-0.5	0.5	-3.5	-2.5	-0.5	0.5
415	rpp	0.5	1.5	-3.5	-2.5	-0.5	0.5
416	rpp	1.5	2.5	-3.5	-2.5	-0.5	0.5
417	rpp	2.5	3.5	-3.5	-2.5	-0.5	0.5
421	rpp	-3.5	-2.5	-2.5	-1.5	-0.5	0.5
422	rpp	-2.5	-1.5	-2.5	-1.5	-0.5	0.5
423	rpp	-1.5	-0.5	-2.5	-1.5	-0.5	0.5
424	rpp	-0.5	0.5	-2.5	-1.5	-0.5	0.5
425	rpp	0.5	1.5	-2.5	-1.5	-0.5	0.5
426	rpp	1.5	2.5	-2.5	-1.5	-0.5	0.5
427	rpp	2.5	3.5	-2.5	-1.5	-0.5	0.5
431	rpp	-3.5	-2.5	-1.5	-0.5	-0.5	0.5
433	rpp	-1 5	-0 5	-1 5	-0.5	-0.5	0.5
434	rpp	-0.5	0.5	-1.5	-0.5	-0.5	0.5
435	rpp	0.5	1.5	-1.5	-0.5	-0.5	0.5
436	rpp	1.5	2.5	-1.5	-0.5	-0.5	0.5
437	rpp	2.5	3.5	-1.5	-0.5	-0.5	0.5
441	rpp	-3.5	-2.5	-0.5	0.5	-0.5	0.5
442	rpp	-2.5	-1.5	-0.5	0.5	-0.5	0.5
443	rpp	-1.5	-0.5	-0.5	0.5	-0.5	0.5
444	rpp	-0.5	0.5	-0.5	0.5	-0.5	0.5
445	rpp	0.5	1.5	-0.5	0.5	-0.5	0.5
446	rpp	1.5	2.5	-0.5	0.5	-0.5	0.5
447	rpp	2.5	3.5	-0.5	0.5	-0.5	0.5
451	rpp	-3.5	-2.5	0.5	1.5	-0.5	0.5
452	rpp	-2.5	-1.5	0.5	1.5	-0.5	0.5
453	rpp	-1.5	-0.5	0.5	1 5	-0.5	0.5
455	rpp	0.5	1.5	0.5	1.5	-0.5	0.5
456	rpp	1.5	2.5	0.5	1.5	-0.5	0.5
457	rpp	2.5	3.5	0.5	1.5	-0.5	0.5
461	rpp	-3.5	-2.5	1.5	2.5	-0.5	0.5
462	rpp	-2.5	-1.5	1.5	2.5	-0.5	0.5
463	rpp	-1.5	-0.5	1.5	2.5	-0.5	0.5
464	rpp	-0.5	0.5	1.5	2.5	-0.5	0.5
465	rpp	0.5	1.5	1.5	2.5	-0.5	0.5
466	rpp	1.5	2.5	1.5	2.5	-0.5	0.5
467	rpp	2.5	3.5	1.5	2.5	-0.5	0.5
4/1	rpp	-3.5	-2.5	2.5	3.5	-0.5	0.5
4/2	трр	-2.J	-T.2	∠.⊃ ? ⊑	ა. ე ე г	-0.5	0.5
4/3	тbb	-1.3	-0.5	2.0	3.0 3 E	-0.5	0.5
1/4 475	Thh	-0.5	15	2.5	3.J 3 5	-0.5	0.5
476	rpp	1 5	25	2.5	3.5	-0 5	0.5
477	rpp	2.5	3.5	2.5	3.5	-0.5	0.5
c -*	- 5.	. sira	1 - • •				
511	rpp	-3.5	-2.5	-3.5	-2.5	0.5	1.5
512	rpp	-2.5	-1.5	-3.5	-2.5	0.5	1.5
513	rpp	-1.5	-0.5	-3.5	-2.5	0.5	1.5
514	rpp	-0.5	0.5	-3.5	-2.5	0.5	1.5

515 rpp	0.5	1.5	-3.5	-2.5	0.5	1.5	
516 rpp	1.5	2.5	-3.5	-2.5	0.5	1.5	
517 rpp 521 rpp	2.5 -3.5	-2 5	-3.5	-2.5	0.5	15	
521 ipp 522 rpp	-2.5	-1.5	-2.5	-1.5	0.5	1.5	
523 rpp	-1.5	-0.5	-2.5	-1.5	0.5	1.5	
524 rpp	-0.5	0.5	-2.5	-1.5	0.5	1.5	
525 rpp	0.5	1.5	-2.5	-1.5	0.5	1.5	
526 rpp	1.5	2.5	-2.5	-1.5	0.5	1.5	
527 rpp	2.5	3.5	-2.5	-1.5	0.5	1.5	
531 rpp	-3.5	-2.5	-1.5	-0.5	0.5	1.5	
533 rpp	-2.5	-1.5	-1.5	-0.5	0.5	15	
533 rpp	-0.5	0.5	-1.5	-0.5	0.5	1.5	
535 rpp	0.5	1.5	-1.5	-0.5	0.5	1.5	
536 rpp	1.5	2.5	-1.5	-0.5	0.5	1.5	
537 rpp	2.5	3.5	-1.5	-0.5	0.5	1.5	
541 rpp	-3.5	-2.5	-0.5	0.5	0.5	1.5	
542 rpp	-2.5	-1.5	-0.5	0.5	0.5	1.5	
544 rpp	-0.5	0.5	-0.5	0.5	0.5	1.5	
545 rpp	0.5	1.5	-0.5	0.5	0.5	1.5	
546 rpp	1.5	2.5	-0.5	0.5	0.5	1.5	
547 rpp	2.5	3.5	-0.5	0.5	0.5	1.5	
551 rpp	-3.5	-2.5	0.5	1.5	0.5	1.5	
552 rpp	-2.5	-1.5	0.5	1.5	0.5	1.5	
554 rpp	-1.5	-0.5	0.5	1.5	0.5	15	
555 rpp	0.5	1.5	0.5	1.5	0.5	1.5	
556 rpp	1.5	2.5	0.5	1.5	0.5	1.5	
557 rpp	2.5	3.5	0.5	1.5	0.5	1.5	
561 rpp	-3.5	-2.5	1.5	2.5	0.5	1.5	
562 rpp	-2.5	-1.5	1.5	2.5	0.5	1.5	
564 rpp	-1.5	-0.5	1.5	2.5	0.5	1.5	
565 rpp	0.5	1.5	1.5	2.5	0.5	1.5	
566 rpp	1.5	2.5	1.5	2.5	0.5	1.5	
567 rpp	2.5	3.5	1.5	2.5	0.5	1.5	
571 rpp	-3.5	-2.5	2.5	3.5	0.5	1.5	
572 rpp	-2.5	-1.5	2.5	3.5	0.5	1.5	
573 rpp	-1.5	-0.5	2.5	3.5	0.5	1.5	
574 rpp 575 rpp	-0.5	15	2.5	3.5	0.5	1.5	
576 rpp	1.5	2.5	2.5	3.5	0.5	1.5	
577 rpp	2.5	3.5	2.5	3.5	0.5	1.5	
c -*- 6	. sira	ì					
611 rpp	-3.5	-2.5	-3.5	-2.5	1.5	2.5	
612 rpp	-2.5	-1.5	-3.5	-2.5	1.5	2.5	
614 rpp	-0.5	0.5	-3.5	-2.5	1.5	2.5	
615 rpp	0.5	1.5	-3.5	-2.5	1.5	2.5	
616 rpp	1.5	2.5	-3.5	-2.5	1.5	2.5	
617 rpp	2.5	3.5	-3.5	-2.5	1.5	2.5	
621 rpp	-3.5	-2.5	-2.5	-1.5	1.5	2.5	
623 rpp	-2.5	-1.5	-2.5	-1.5	1.5	2.5	
624 rpp	-0.5	0.5	-2.5	-1.5	1.5	2.5	
625 rpp	0.5	1.5	-2.5	-1.5	1.5	2.5	
626 rpp	1.5	2.5	-2.5	-1.5	1.5	2.5	
627 rpp	2.5	3.5	-2.5	-1.5	1.5	2.5	
631 rpp	-3.5	-2.5	-1.5	-0.5	1.5	2.5	
633 rpp	-2.3 -1 5	-1.3 -0.5	-1.5 -1.5	-0.5	1.5	∠.⊃ 2 5	
634 rpp	-0.5	0.5	-1.5	-0.5	1.5	2.5	
635 rpp	0.5	1.5	-1.5	-0.5	1.5	2.5	
636 rpp	1.5	2.5	-1.5	-0.5	1.5	2.5	
637 rpp	2.5	3.5	-1.5	-0.5	1.5	2.5	
641 rpp	-3.5	-2.5	-0.5	0.5	1.5	2.5	
643 rpp	-2.5 -1 5	-1.5 -0 5	-0.5	0.5 0 5	1.5 1.5	2.5 2.5	
~.~ <u>-</u> PP	±•0	5.5	0.0	5.5	֥9		

644	rpp	-0.5	0.5	-0.5	0.5	1.5	2.5
- A -	11	0 5	1 -	0 5	0 5	1 -	0 5
645	rpp	0.5	1.5	-0.5	0.5	1.5	2.5
646	rnn	1 5	2 5	-0 5	0 5	1 5	25
010	-PP	1.0	2.0	0.0	0.0	T • O	2.0
647	rpp	2.5	3.5	-0.5	0.5	1.5	2.5
651	 rnn	_ 3 5	_2 5	0 5	1 5	1 5	2 5
0.01	трр	-3.5	-2.5	0.5	1.0	1.0	2.5
652	rpp	-2.5	-1.5	0.5	1.5	1.5	2.5
650	- P P	2.0	±.0	0.0	1.0	1.0	2.0
653	rpp	-1.5	-0.5	0.5	1.5	1.5	2.5
651	rnn	-0 5	0 5	0 5	1 5	1 5	2 5
034	трр	0.0	0.0	0.0	1.5	1.0	2.5
655	rpp	0.5	1.5	0.5	1.5	1.5	2.5
656	 rnn	1 5	2 5	0 5	1 5	1 5	2 5
000	трр	1.0	2.5	0.0	1.0	1.0	2.5
657	rpp	2.5	3.5	0.5	1.5	1.5	2.5
CCI		2 F	0 F	1 5	0 F	1 5	0 F
001	rpp	-3.5	-2.5	1.5	2.5	1.5	2.5
662	rpp	-2.5	-1.5	1.5	2.5	1.5	2.5
c c c c c		1 5	0 5	1 -		1 -	- · -
663	rpp	-1.2	-0.5	1.5	2.5	1.5	2.5
664	rnn	-0 5	05	15	25	15	25
C C F	- P P	0.5	1 5	1.5	2.0	1 5	0.5
665	rpp	0.5	1.5	1.5	2.5	1.5	2.5
666	rnn	1 5	2 5	1 5	2 5	15	2 5
000	TPP	1.5	2.5	1.5	2.5	1.5	2.5
667	rpp	2.5	3.5	1.5	2.5	1.5	2.5
671	rnn	-35	-2 5	2 5	35	1 5	2 5
071	трр	5.5	2.5	2.5	5.5	1.5	2.5
672	rpp	-2.5	-1.5	2.5	3.5	1.5	2.5
672	rnn	_1 5	-0 5	2 5	2 5	1 5	2 5
010	тЪЪ	±.J	0.5	2.5	5.5	±.J	2.J
674	rpp	-0.5	0.5	2.5	3.5	1.5	2.5
C75		0 F	1 5	0 F	2 F	1 5	0 F
6/5	rpp	0.5	1.5	2.5	3.5	1.5	2.5
676	rpp	1.5	2.5	2.5	3.5	1.5	2.5
6.0	- P P		2.0	0.5	0.0	1 5	0.5
6///	rpp	2.5	3.5	2.5	3.5	1.5	2.5
c -*	- 7	sira	-				
	<i>'</i> .	• 5110	·				
711	rpp	-3.5	-2.5	-3.5	-2.5	2.5	3.5
712	rnn	-2 5	-1 5	-35	-2 5	2 5	35
1 1 2	трр	2.0	T.0	5.5	2.5	2.5	5.5
713	rpp	-1.5	-0.5	-3.5	-2.5	2.5	3.5
711	 rnn	_0 5	0 5	_ 3 5	_2 5	2 5	3 5
/14	трр	-0.5	0.5	-3.5	-2.5	2.5	5.5
715	rpp	0.5	1.5	-3.5	-2.5	2.5	3.5
716		1 5	2 5	2 5	2 5	2 5	2 5
110	трр	T.J	2.5	-3.5	-2.5	2.5	3.5
717	rpp	2.5	3.5	-3.5	-2.5	2.5	3.5
701		2 F	0 F	0 F	1 5	0 F	2 E
121	rpp	-3.5	-2.5	-2.5	-1.5	2.5	3.5
722	rpp	-2.5	-1.5	-2.5	-1.5	2.5	3.5
	-1-1-	1 -			1 -		2.5
123	rpp	-1.5	-0.5	-2.5	-1.5	2.5	3.5
724	rnn	-0 5	05	-2 5	-15	25	35
	TPP	0.0		2.0	1.0	2.0	
725	rpp	0.5	1.5	-2.5	-1.5	2.5	3.5
726	 rnn	1 5	2 5	-2 5	_1 5	2 5	3 5
120	трр	1.0	2.5	2.5	1.0	2.5	5.5
727	rpp	2.5	3.5	-2.5	-1.5	2.5	3.5
721		2 5	2 5	1 5	0 5	2 5	2 5
131	трр	-3.5	-2.5	-1.3	-0.5	2.5	5.5
732	rpp	-2.5	-1.5	-1.5	-0.5	2.5	3.5
722		1 5	0 5	1 5	0 5	2 5	2 5
133	rpp	-1.5	-0.5	-1.5	-0.5	2.5	3.5
734	rpp	-0.5	0.5	-1.5	-0.5	2.5	3.5
705		0 5	1 -	1 -	0 5	- · -	2.5
135	rpp	0.5	1.5	-1.5	-0.5	2.5	3.5
736	rpp	1.5	2.5	-1.5	-0.5	2.5	3.5
			2.5	1 -	0 5	- · -	2.5
131	rpp	2.5	3.5	-1.5	-0.5	2.5	3.5
741	rpp	-3.5	-2.5	-0.5	0.5	2.5	3.5
740		0 5	1 5	0 5	0 5	- · -	2.5
/42	грр	-2.3	-т.Э	-0.5	0.5	4.0	3.3
743	rpp	-1.5	-0.5	-0.5	0.5	2.5	3.5
7 4 4		0 5	0 5	0 5	0 5	- · -	2.5
/44	rpp	-0.5	0.5	-0.5	0.5	2.5	3.5
745	rpp	0.5	1.5	-0.5	0.5	2.5	3.5
740		1 -		0 5	0 5	- · -	2.5
/46	rpp	1.5	2.5	-0.5	0.5	2.5	3.5
747	rpp	2.5	3.5	-0.5	0.5	2.5	3.5
7 - 1		2.5	0.5	0.5	1 -	2.2	2.5
/51	rpp	-3.5	-2.5	0.5	1.5	2.5	3.5
752	rnn	-2 5	-1 5	0 5	1 5	2 5	35
, 52	- PP	2.5	±.J	0.5	±•.5	2.5	5.5
153	rpp	-1.5	-0.5	0.5	1.5	2.5	3.5
751	rnn	-0 5	0 5	0 5	1 5	2 5	3 5
, 34	тЪЪ	0.5	0.5	0.5	1.0	2.5	5.5
755	rpp	0.5	1.5	0.5	1.5	2.5	3.5
756	rnn	1 5	2 5	0 5	1 5	2 5	3 5
100	тЪБ	T.J	2.0	0.5	τ.Ο	2.0	5.5
757	rpp	2.5	3.5	0.5	1.5	2.5	3.5
7 (1	1-1-	2 -		1 -		0 F	
/6⊥	rpp	-3.5	-2.5	1.5	2.5	2.5	3.5
762	rpp	-2 5	-1 5	15	2 5	25	3.5
7.02	- 22	2.0	±	1 -	2.5	2.5	2.2
163	rpp	-1.5	-0.5	1.5	2.5	2.5	3.5
764	rpp	-0 5	05	15	2 5	25	3.5
, , , ,	- 22	0.0		±•J	2.5	2	2.5
765	rpp	0.5	1.5	1.5	2.5	2.5	3.5
766	rpp	1 5	2 5	1 5	2 5	2 5	35
,	TNN	т•J	2.J	±.J	2.5	2.5	5.5
.7 (7	T T				0 F	~ -	
161	rpp	2.5	3.5	1.5	2.5	2.5	3.5
767 771	rpp	2.5	3.5	1.5 2 5	∠.⊃ २.५	2.5	3.5 3 5
771	rpp rpp	2.5	3.5	2.5	2.5	2.5	3.5 3.5

```
773 rpp -1.5 -0.5
                       2.5 3.5
                                 2.5
                                        3.5
774 rpp -0.5 0.5
                      2.5 3.5 2.5 3.5
775 rpp 0.5 1.5
776 rpp 1.5 2.5
777 rpp 2.5 3.5
                      2.5 3.5 2.5 3.5
                       2.5
                            3.5
                                  2.5
                                        3.5
                       2.5 3.5 2.5 3.5
c -*- dis dunya
999 so 20.0
c ***** veri kartlari *****
c -*- kaynak karti
sdef par 2
      erg dl
                              $ Mn-57
       pos 0.0 -10.0 0.0
                             $ -y'de nokta kaynak
       vec 0 1 0
                              $ kolime kaynak
      dir d2
                              $ kolime acisi
#
       si1
                      sp1
         1
                       d
     1.44129E-02 1.01437E-01
1.22063E-01 1.39150E-01
1.36476E-01 1.92500E-02
     2.30250E-01 2.20000E-03
3.39600E-01 1.70500E-03
      3.52320E-01 2.09000E-02
      3.66730E-01 3.96000E-03
5.69930E-01 5.17000E-03
      6.92000E-01 5.50000E-02
7.06420E-01 2.36500E-03
      8.70680E-01 2.58500E-03
     9.21030E-01 9.35000E-04
9.92680E-01 1.43000E-03
      1.01908E+00 4.40000E-04
      1.26054E+00 3.24500E-03
      1.35871E+00 2.36500E-04
     1.61282E+00 7.31500E-03
1.72518E+00 1.65000E-03
si2 0.880471 1 $ cos tan^-1(3.5/6.5)
sp2 0 1
c -*- tally karti
f4:p 444 $ merkezdeki hucrede aki hesabi
c -*- tally enerji grubu karti
e0 0.25 0.5 0.75 1 1.25 1.50 1.75
c -*- materyal karti
c -*- hava, rho=0.0012 g/cc
m1 6000 -0.000124
       7000 -0.755267
      8000 -0.231781
     18000 -0.012827
c -*- su, rho=1.0 g/cc
m2 1000 -0.11118
      8000 -0.88810
c -*- hava, rho=0.0012 g/cc
m3 6000 -0.000124
       7000 -0.755267
      8000 -0.231781
     18000 -0.012827
c -*- oyku karti
nps 1e7
c -*- problem turu karti
mode p
c -*- output secim karti
print 110
```

EK 2. Voksel kürenin 7*7*7 adet küp örgüsü ile tekrar eden yapılar kullanılarak MCNP'de oluşturulması

```
7*7*7 voxel kup'ten olusturulmus kure yapisi
c (hucreler universe ile olusturulmus)
c (0,-10,0)'da kolime kaynak
c kurenin merkezindeki hucrede aki hesabi
c ***** hucre kartlari *****
c 1. adim > universe (evren) tanımla
11 1 -1.0
12 0
             -101 u=1
                             imp:p=1
                101
                       u=1
                             imp:p=1
13 2 -1.0
               -101
                       u=2
                             imp:p=1
14 0
                101
                       u=2
                             imp:p=1
c 2. adim > evreni sınırla
21 3 -1.0
               -102 u=3
                             imp:p=1
c 3. adim > lattice (orgu) oluştur
      lat=1 fill=-3:3 -3:3 -3:3
c -*- 1. sira
    1 6r
                 1 6r
                                       1 2r 2 1 2r 1 6r
                                                           1 6r
                              1 6r
                                                                          1 6r
c -*- 2. sira
                 1 1 2 2r 1 1 1 2 4r 1 1 2 4r 1 1 2 4r 1 1 2 2r 1 1 1 6r
    1 6r
c -*- 3. sira
    1 6r
                 1 2 4r 1
                              1 2 4r 1 1 2 4r 1
                                                   1 2 4r 1 1 2 4r 1
                                                                          1 6r
c -*- 4. sira
    1 2r 2 1 2r 1 2 4r 1
                              1 2 4r 1 2 6r
                                                   1 2 4r 1 1 2 4r 1
     1 2r 2 1 2r
c -*- 5. sira
                 1 2 4r 1
                             1 2 4r 1 1 2 4r 1
    1 6r
                                                   1 2 4r 1 1 2 4r 1
                                                                         1 6r
c -*- 6. sira
    1 6r
                 1 1 2 2r 1 1 1 2 4r 1 1 2 4r 1 1 2 4r 1 1 2 2r 1 1 1 6r
c -*- 7. sira
    1 6r
                1 6r
                              1 6r
                                       1 2r 2 1 2r 1 6r
                                                           1 6r
                                                                          1 6r
c 4. adim > hucreyi orgu ile doldur
22 3 -1.0
                -201
                             imp:p=1
    fill=3
c -*- ic dunya
98 3 -1.2e-3
                -999 #22
                             imp:p=1
c -*- dis dunya
99 0
                 999
                             imp:p=0
c ***** yuzey kartlari *****
101 rpp -0.5 0.5 -0.5 0.5 -0.5 0.5
102 rpp -0.5 0.5 -0.5 0.5 -0.5 0.5
201 rpp -3.5 3.5 -3.5 3.5 -3.5 3.5
c -*-dis dunya
999 so 20.0
c ***** veri kartlari *****
c -*- kaynak karti
sdef par 2
                         $ Mn-57
$ -y'de nokta kaynak
      erg dl
      pos 0.0 -10.0 0.0
      vec 0 1 0
                          $ kolime kaynak
      dir d2
                           $ kolime acisi
#
       si1
                    sp1
         1
                    d
     1.44129E-02 1.01437E-01
1.22063E-01 1.39150E-01
     1.36476E-01 1.92500E-02
2.30250E-01 2.20000E-03
     3.39600E-01 1.70500E-03
     3.52320E-01
                  2.09000E-02
     3.66730E-01 3.96000E-03
     5.69930E-01 5.17000E-03
     6.92000E-01
                  5.50000E-02
     7.06420E-01 2.36500E-03
     8.70680E-01
                 2.58500E-03
     9.21030E-01 9.35000E-04
     9.92680E-01 1.43000E-03
```

```
1.01908E+00 4.40000E-04
      1.26054E+00 3.24500E-03
1.35871E+00 2.36500E-04
1.61282E+00 7.31500E-03
      1.72518E+00 1.65000E-03
      0.880471 1
0 1
si2
                            $ cos tan^-1(3.5/6.5)
sp2 0
c -*- materyal karti
c -*- tally karti
f14:p (13 < 21 [0 0 0]) $merkezdeki hucre aki hesabi
c -*- tally enerji grubu karti
e0 0.25 0.5 0.75 1 1.25 1.50 1.75
c -*- hava, rho=0.0012 g/cc
ml 6000 -0.000124
7000 -0.755267
       8000 -0.231781
      18000 -0.012827
c -*- su, rho=1.0 g/cc
m2
       1000 -0.11118
       8000 -0.88810
c -*- hava, rho=0.0012 g/cc
m3 6000 -0.000124
       7000 -0.755267
       8000 -0.231781
      18000 -0.012827
c -*- oyku karti
nps 1e7
c -*- problem turu karti
mode p
c -*- output secim karti
print
```

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
1	Ac-223	0.1873	0.5409	0.3716	0.2075	0.2061	0.3407	0.2163	0.2458	0.398
2	Ac-224	2.1087	6.646	4.525	2.417	2.491	4.281	2.623	2.917	4.89
3	Ac-225	0.3052	0.496	0.3286	0.1643	0.1565	0.266	0.1647	0.197	0.3532
4	Ac-226	0.9315	3.772	2.605	1.441	1.475	2.473	1.542	1.718	2.806
5	Ac-227	0.0366	0.02726	0.01666	0.005887	0.002463	0.003535	0.002517	0.006831	0.0172
6	Ac-228	1.5322	22.32	16.66	11.61	11.49	16.86	11.89	13.06	17.54
7	Ac-230	0.6881	13.05	9.857	7.23	7.148	10.16	7.358	8.076	10.37
8	Ac-231	2.0713	11.87	8.341	4.825	4.92	8.122	5.14	5.719	8.966
9	Ac-232	1.1140	26.89	20.48	15.33	15.05	21.24	15.53	16.98	21.53
10	Ac-233	0.9596	13.8	10.1	6.568	6.546	10.12	6.846	7.545	10.77
11	Ag-100m	3.7607	72.37	54.2	37.68	37.33	55.24	38.78	42.41	57.17
12	Ag-101	3.0517	41.59	30.93	20.57	20.47	31.17	21.31	23.53	32.73
13	Ag-102m	1.9304	45.7	34.75	25.67	25.47	36.1	26.34	28.5	36.58
14	Ag-102	4.3569	85.42	64.33	45.26	44.78	65.84	46.42	50.61	68.02
15	Ag-103	2.4056	22.64	16.67	10.96	10.86	16.45	11.3	12.46	17.51
16	Ag-104	3.9840	70.41	52.71	36.72	36.06	53.4	37.47	41.27	55.67
17	Ag-104m	2.7648	45.7	34.18	23.63	23.45	34.61	24.29	26.57	36.01
18	Ag-105	2.1239	14.78	10.68	6.493	6.393	10.05	6.652	7.53	11.26
19	Ag-105m	0.0046	0.02506	0.01779	0.01038	0.01009	0.01619	0.0105	0.01215	0.01882
20	Ag-106	1.6367	19.56	14.28	9.15	9.121	14.16	9.497	10.57	15.2
21	Ag-106m	4.4602	73.27	54.95	37.78	37.26	55.38	38.71	42.72	57.96
22	Ag-108	0.0493	0.518	0.3799	0.2451	0.241	0.3671	0.251	0.2808	0.4016
23	Ag-108m	3.4362	44.78	32.88	21.67	21.43	32.66	22.23	24.76	34.88
24	Ag-109m	0.3763	0.5657	0.3459	0.1249	0.07009	0.1299	0.07476	0.1588	0.3779
25	Ag-110	0.0477	0.8184	0.6059	0.4085	0.4046	0.6109	0.4221	0.4622	0.6427
26	Ag-110m	3.2238	71.27	53.39	37.69	37.06	54.61	38.6	42.09	56.35
27	Ag-111	0.0831	0.7435	0.5309	0.3195	0.3238	0.5231	0.3389	0.3735	0.57
28	Ag-111m	0.1997	0.3536	0.223	0.09246	0.06202	0.1071	0.06608	0.1138	0.242
29	Ag-112	0.7433	17.04	12.75	9.215	9.106	13.22	9.458	10.32	13.55
30	Ag-113m	0.6210	5.962	4.328	2.687	2.687	4.244	2.796	3.111	4.59
31	Ag-113	0.1843	1.962	1.433	0.9048	0.9064	1.423	0.9504	1.046	1.514
32	Ag-114	0.3109	6.429	4.829	3.426	3.383	4.983	3.518	3.833	5.126
33	Ag-115	0.6680	11.58	8.711	6.269	6.241	8.97	6.44	6.986	9.166
34	Ag-116	1.8391	49.12	37.19	27.82	27.48	38.83	28.44	30.72	39.32
35	Ag-117	1.3489	29.26	22.21	16.72	16.45	23.2	17.09	18.42	23.25
36	Ag-99	3.6312	59.05	44.15	30.34	30.05	44.92	31.23	34.21	46.61
37	Al-26	2.6599	63.92	48.26	35.28	34.84	50.02	36.02	39.36	51.05
38	Al-28	1.0000	39.74	30.61	23.59	23.03	32.14	23.96	26	32.1
39	A1-29	1.0116	32.82	24.99	18.63	18.25	26.04	19.03	20.62	26.24
40	Am-237	2.2869	10.59	7.459	4.328	4.363	7.072	4.536	5.072	7.938

EK 3. Ele alınan radyonüklitlerin toplam intensitesi ve incelenen her yönelim için EDDK değerleri $(10^{-18} \frac{\text{Sv m}^2}{\text{Bq s}})$

EK 3.'ün devamı

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
41	Am-238	2.2688	23.51	17.45	12.02	11.85	17.5	12.33	13.47	18.32
42	Am-239	2.6413	7.184	4.838	2.521	2.536	4.322	2.662	3.043	5.242
43	Am-240	2.4617	27.12	20.11	13.95	13.71	20.25	14.25	15.72	21.18
44	Am-241	0.7615	1.119	0.7074	0.3004	0.2638	0.482	0.2799	0.378	0.767
45	Am-242	0.4168	0.6462	0.4168	0.185	0.1573	0.2712	0.1659	0.2257	0.4444
46	Am-242m	0.2602	0.2551	0.1546	0.05347	0.02074	0.03177	0.02152	0.06358	0.1605
47	Am-243	0.9498	1.909	1.235	0.5833	0.6008	1.091	0.6344	0.7339	1.359
48	Am-244	2.2329	21.77	16.19	10.88	10.63	15.82	11.09	12.26	16.97
49	Am-244m	0.1563	0.5016	0.3585	0.2219	0.2041	0.2979	0.2132	0.251	0.3764
50	Am-245	0.2849	0.9514	0.6486	0.3459	0.349	0.5898	0.3654	0.4173	0.6965
51	Am-246	3.0468	20.89	15.18	9.711	9.544	14.59	9.94	11.11	16.07
52	Am-246m	1.3294	25.04	18.81	13.36	13.04	19.12	13.63	14.96	19.82
53	Am-247	1.0369	3.913	2.686	1.469	1.49	2.503	1.56	1.764	2.896
54	Ar-41	0.9921	31.05	23.62	17.47	17.11	24.56	17.9	19.45	24.84
55	Ar-43	1.2076	35.78	27.32	20.36	20.13	28.34	20.82	22.7	28.82
56	Ar-44	1.8033	44.41	33.88	25.51	25	35.33	25.82	28.27	35.64
57	As-68	4.3297	92.76	69.79	49.49	48.96	71.76	50.6	55.53	73.56
58	As-69	2.2070	30.97	22.77	14.91	14.93	23	15.57	17.13	24.22
59	As-70	4.8546	107.2	80.57	57.03	56.31	82.85	58.55	63.98	84.49
60	As-71	1.6246	15.59	11.36	7.16	7.232	11.32	7.539	8.288	11.99
61	As-72	2.7390	47.16	35.11	23.76	23.62	35.54	24.63	26.97	37.17
62	As-73	0.2225	0.2483	0.1575	0.06835	0.06633	0.1238	0.07031	0.08762	0.1729
63	As-74	1.3581	20.77	15.3	10.04	10.02	15.32	10.44	11.49	16.26
64	As-76	0.6159	10.92	8.173	5.571	5.513	8.302	5.748	6.309	8.652
65	As-77	0.0303	0.2309	0.1653	0.09906	0.1004	0.1624	0.105	0.1162	0.176
66	As-78	1.3881	32.44	24.44	17.57	17.25	25.14	17.92	19.63	25.67
67	As-79	0.0614	0.9122	0.6735	0.446	0.4445	0.679	0.4626	0.5094	0.7148
68	At-204	4.8852	63.61	46.83	30.68	30.64	46.83	31.86	35.27	49.63
69	At-205	2.6020	29.8	22.28	15.17	15.02	22.45	15.63	17.07	23.4
70	At-206	4.9014	65.75	48.93	32.83	32.56	49.36	34.03	37.35	51.75
71	At-207	3.5830	50.68	38.08	26.81	26.5	38.8	27.48	29.91	39.97
72	At-208	5.4115	78.2	58.68	40.6	40.15	59.55	41.82	45.51	61.52
73	At-209	4.9686	60.76	45.08	30.56	30.3	45.37	31.55	34.5	47.54
74	At-210	4.2105	72.31	54.61	39.85	39.24	56.21	40.4	44.1	57.35
75	At-211	0.5809	1.111	0.7271	0.3615	0.3753	0.6644	0.3978	0.4448	0.7901
76	At-215	0.0004	0.004646	0.003367	0.002094	0.002109	0.003344	0.002204	0.002425	0.003593
77	At-216	0.0289	0.07239	0.04852	0.02538	0.02653	0.04615	0.02792	0.031	0.053
78	At-217	0.0008	0.006419	0.004573	0.002758	0.002786	0.004527	0.002935	0.003241	0.004898
79	At-220	1.5387	12.53	9.039	5.46	5.526	8.855	5.749	6.38	9.595
80	Au-186	3.4522	39.44	29.37	19.41	19.44	29.51	20.2	22.17	30.95

EK 3.'ün devamı

	÷ .	*				D D				T .
Sira	Izotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
81	Au-187	2.1695	26.41	19.76	13.98	13.81	20.24	14.35	15.59	20.63
82	Au-190	3.2370	45.14	41.08	30.24	29.85	42.53	30.93	33.43	43.06
83	Au-191	2.5016	16.61	11.98	7.41	7.465	11.8	7.792	8.574	12.67
84	Au-192	2.8655	45.63	34.24	24.98	24.75	35.42	25.58	27.83	36.07
85	Au-193	1.6076	4.95	3.351	1.8	1.875	3.235	1.983	2.186	3.651
86	Au-193m	1.1080	5.589	3.918	2.235	2.279	3.82	2.387	2.661	4.195
87	Au-194	2.2548	25.94	19.27	13.38	13.25	19.68	13.84	15.03	20.25
88	Au-195	1.3439	2.574	1.676	0.8028	0.8497	1.534	0.8994	1.016	1.847
89	Au-195m	1.1294	5.693	3.999	2.283	2.332	3.888	2.44	2.71	4.273
90	Au-196	2.0597	13.48	9.64	5.701	5.796	9.398	6.049	6.691	10.26
91	Au-196m	2.3462	7.027	4.776	2.535	2.642	4.574	2.785	3.083	5.181
92	Au-198	0.9994	11.28	8.183	5.119	5.137	8.12	5.378	5.899	8.724
93	Au-198m	3.6828	15.1	10.38	5.736	5.953	10.1	6.22	6.909	11.22
94	Au-199	0.7454	2.705	1.84	0.9971	1.037	1.785	1.096	1.206	1.994
95	Au-200	0.3673	6.923	5.201	3.651	3.608	5.312	3.738	4.097	5.457
96	Au-200m	4.7932	54.34	39.83	25.52	25.58	39.61	26.62	29.5	42.18
97	Au-201	0.1031	0.9524	0.6962	0.4444	0.4458	0.6904	0.4635	0.5124	0.741
98	Au-202	0.2352	4.429	3.325	2.306	2.284	3.397	2.38	2.608	3.508
99	Ba-124	1.8869	15.9	11.7	7.468	7.359	11.31	7.678	8.571	12.28
100	Ba-126	1.8175	15.94	11.7	7.638	7.458	11.41	7.822	8.668	12.29
101	Ba-127	1.9244	20	14.69	9.478	9.43	14.5	9.818	10.89	15.48
102	Ba-128	0.9102	2.53	1.642	0.7779	0.6908	1.231	0.7331	0.9693	1.81
103	Ba-129	1.3125	9.402	6.827	4.287	4.195	6.542	4.396	4.947	7.235
104	Ba-129m	3.3381	41.35	30.83	21.07	20.76	30.86	21.55	23.72	32.48
105	Ba-131	2.2665	14.02	9.99	5.937	5.887	9.432	6.126	6.941	10.63
106	Ba-131m	1.0381	2.559	1.665	0.7831	0.7748	1.403	0.8173	0.9867	1.843
107	Ba-133	2.5763	12.41	8.654	4.846	4.788	7.881	5.005	5.763	9.311
108	Ba-133m	0.7373	2.377	1.581	0.79	0.7385	1.286	0.7785	0.9731	1.725
109	Ba-135m	0.6975	2.157	1.425	0.7	0.6473	1.137	0.6845	0.8671	1.56
110	Ba-137m	0.9726	16.23	12	8.067	7.981	12.07	8.361	9.159	12.74
111	Ba-139	0.2893	1.276	0.8829	0.4891	0.5022	0.8488	0.5291	0.588	0.9453
112	Ba-140	0.5755	5.167	3.758	2.339	2.327	3.637	2.421	2.717	3.979
113	Ba-141	1.9365	24.08	17.83	12	11.92	17.99	12.41	13.58	18.8
114	Ba-142	1.7575	27.13	20.28	14.04	13.89	20.56	14.48	15.83	21.43
115	Be-7	0.1044	1.388	1.012	0.647	0.6463	1.015	0.6749	0.7463	1.079
116	Bi-197	2.9979	43.35	32.64	22.91	22.6	33.21	23.36	25.64	34.19
117	Bi-200	5.4048	65.19	48.28	31.97	31.95	48.64	33.24	36.47	50.95
118	Bi-201	2.7382	42.8	32.34	23.25	22.96	33.06	23.69	25.87	33.82
119	Bi-202	4.8961	71.55	53.6	36.84	36.55	54.42	37.99	41.61	56.23
120	Bi-203	3.2986	57.84	43.7	31.92	31.48	45.28	32.49	35.57	45.84

EK 3.'ün devamı

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
121	Bi-204	4.7722	74.83	55.93	39.15	38.73	57.13	40.18	44.01	58.98
122	Bi-205	2.5325	41.06	31.04	22.52	22.26	31.96	22.97	25.09	32.48
123	Bi-206	5.5659	84.36	63.06	43.97	43.57	64.32	45.2	49.52	66.38
124	Bi-207	2.8660	39.82	29.89	20.66	20.42	30.34	21.3	23.29	31.32
125	Bi-208	1.6966	52.89	40.9	32.99	32.16	43.71	33.36	35.68	42.64
126	Bi-210m	1.0269	7.328	5.214	3.083	3.151	5.136	3.28	3.628	5.573
127	Bi-211	0.1637	1.336	0.9575	0.5761	0.5851	0.9413	0.6096	0.6727	1.024
128	Bi-212	0.2013	2.645	1.989	1.405	1.381	2.013	1.43	1.566	2.086
129	Bi-213	0.3323	3.551	2.595	1.635	1.636	2.586	1.711	1.886	2.751
130	Bi-214	1.3472	35.39	26.84	19.72	19.47	27.86	20.13	21.96	28.2
131	Bi-215	0.7748	6.807	4.99	3.21	3.214	4.972	3.344	3.695	5.262
132	Bi-216	1.5109	20.44	14.98	9.702	9.686	14.98	10.06	11.13	15.95
133	Bk-245	2.2628	6.926	4.675	2.471	2.505	4.255	2.619	2.984	5.054
134	Bk-246	2.3680	22.77	16.85	11.46	11.25	16.73	11.74	12.89	17.75
135	Bk-247	1.1600	4.258	2.918	1.587	1.632	2.771	1.708	1.91	3.143
136	Bk-248m	0.5128	1.661	1.146	0.6451	0.6275	1.021	0.6591	0.761	1.226
137	Bk-250	1.1200	23.04	17.35	12.33	12.08	17.64	12.61	13.85	18.25
138	Bk-251	1.1491	2.77	1.835	0.9137	0.9025	1.564	0.9479	1.114	1.984
139	Br-72	3.9366	75.89	56.84	39.71	39.12	57.94	40.68	44.51	60.1
140	Br-73	3.1072	39.33	28.92	18.72	18.78	29	19.53	21.61	30.64
141	Br-74	4.0188	100	76.23	57.34	57.26	80.19	58.94	63.51	80.35
142	Br-74m	4.5169	98.12	74.22	53.76	53.34	77.01	54.98	59.81	78.34
143	Br-75	2.8957	33.07	24.21	15.37	15.4	24.09	16.04	17.69	25.62
144	Br-76	3.2048	66.42	50.27	36.28	36.03	51.95	37.19	40.49	52.98
145	Br-76m	1.3251	1.64	1.045	0.4627	0.4223	0.7652	0.4455	0.5826	1.135
146	Br-77	1.2977	8.811	6.444	4.049	4.068	6.34	4.221	4.666	6.778
147	Br-77m	0.5475	0.5788	0.3801	0.1809	0.1757	0.2986	0.1841	0.2184	0.4067
148	Br-78	2.0271	28.57	20.94	13.55	13.53	20.99	14.14	15.6	22.27
149	Br-80	0.1593	2.079	1.532	1.01	1.007	1.536	1.047	1.159	1.627
150	Br-80m	1.1647	1.063	0.6509	0.2431	0.1795	0.3416	0.1896	0.3151	0.7116
151	Br-82m	0.4298	0.2444	0.1617	0.07505	0.05753	0.08264	0.05917	0.08592	0.1655
152	Br-82	3.2936	68.57	51.34	35.9	35.3	52.18	36.84	40.25	54.23
153	Br-83	0.0129	0.1892	0.1388	0.09024	0.08978	0.1391	0.09389	0.1037	0.1478
154	Br-84m	3.0113	69.12	51.93	37.27	36.77	53.48	38.21	41.94	54.79
155	Br-84	1.1087	38.06	29.07	22.42	22.13	30.97	23.02	24.81	30.7
156	Br-85	0.0719	1.682	1.263	0.9003	0.8833	1.295	0.9222	1.008	1.331
157	C-10	2.9993	47.7	35.09	23.22	23.19	35.36	24.1	26.58	37.32
158	C-11	1.9953	28.27	20.68	13.35	13.34	20.75	13.93	15.39	22.03
159	Ca-47	0.8767	25.68	19.49	14.31	14.04	20.24	14.68	15.97	20.48
160	Ca-49	1.0111	58.7	45.77	37.95	36.87	49.8	38.37	41.14	47.98

EK 3.'ün devamı

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
161	Cd-101	3.7537	61.98	46.61	32.8	32.58	47.51	33.71	36.79	49.04
162	Cd-102	2.2191	22.98	16.94	11.05	10.92	16.57	11.36	12.62	17.75
163	Cd-103	2.6071	49.87	37.51	27.51	27.19	38.55	27.94	30.65	39.5
164	Cd-104	1.7585	7.65	5.409	3.206	3.061	4.773	3.209	3.74	5.739
165	Cd-105	1.9133	31.86	24.06	17.2	17.01	24.44	17.53	19.23	25.31
166	Cd-107	1.1293	1.737	1.064	0.3946	0.2163	0.3869	0.2309	0.4943	1.153
167	Cd-109	1.0490	1.504	0.9072	0.3094	0.142	0.2682	0.1527	0.3964	0.9891
168	Cd-111m	1.6298	8.262	5.754	3.204	3.234	5.407	3.373	3.812	6.174
169	Cd-113m	0.0007	0.002308	0.001572	0.0008245	0.0007683	0.001278	0.0008034	0.0009841	0.001681
170	Cd-115	0.4211	5.357	3.919	2.519	2.516	3.902	2.617	2.906	4.173
171	Cd-115m	0.0330	0.8306	0.6231	0.4485	0.4398	0.6446	0.4594	0.5031	0.6575
172	Cd-117	1.3844	26.84	20.19	14.4	14.23	20.71	14.74	16.13	21.26
173	Cd-117m	1.6137	47.76	36.43	27.01	26.65	37.9	27.71	30.21	38.26
174	Cd-119	1.6549	38.36	29.08	21.46	21.34	30.18	21.99	23.89	30.75
175	Cd-119m	1.9043	54.25	41.13	30.67	30.2	42.88	31.31	34.14	43.43
176	Ce-130	2.2688	14.19	10.17	6.291	6.215	9.8	6.523	7.315	10.8
177	Ce-131	3.3428	42.85	31.85	21.42	21.22	31.92	22.08	24.34	33.54
178	Ce-132	1.9908	8.291	5.68	3.051	3.066	5.208	3.208	3.702	6.134
179	Ce-133	2.6710	16.12	11.46	6.913	6.832	10.9	7.125	8.066	12.2
180	Ce-133m	3.5807	44.68	33.47	23.02	22.64	33.65	23.59	25.87	35.25
181	Ce-134	0.7616	1.423	0.8692	0.32	0.2414	0.5075	0.2613	0.4355	0.9712
182	Ce-135	2.5347	23.08	16.83	10.69	10.59	16.4	11.03	12.29	17.79
183	Ce-137	0.7998	1.709	1.078	0.4507	0.3715	0.7138	0.3963	0.5877	1.193
184	Ce-137m	0.6845	2.012	1.33	0.6501	0.6051	1.069	0.64	0.8117	1.446
185	Ce-139	1.6107	5.119	3.416	1.704	1.687	2.979	1.771	2.112	3.725
186	Ce-141	0.6563	2.269	1.526	0.7928	0.8184	1.422	0.857	0.9707	1.659
187	Ce-143	1.3865	8.277	5.871	3.48	3.45	5.544	3.597	4.077	6.273
188	Ce-144	0.2146	0.6112	0.4043	0.1978	0.2019	0.3607	0.2127	0.2484	0.4438
189	Ce-145	2.2018	22.4	16.51	10.93	10.79	16.3	11.2	12.41	17.43
190	Cf-244	0.1001	0.1001	0.06067	0.02068	0.007537	0.01161	0.00784	0.02476	0.06303
191	Cf-246	0.0688	0.06927	0.04195	0.01433	0.005321	0.008247	0.005545	0.01718	0.04361
192	Cf-247	1.6093	3.309	2.182	1.054	0.9931	1.706	1.042	1.283	2.35
193	Cf-248	0.0822	0.08309	0.05032	0.01721	0.006431	0.009994	0.006707	0.02064	0.05234
194	Cf-249	1.1510	9.315	6.695	4.064	4.065	6.514	4.246	4.725	7.134
195	Cf-250	0.0718	0.2631	0.1892	0.1226	0.1137	0.1648	0.1183	0.1387	0.2002
196	Cf-251	1.3241	3.711	2.494	1.287	1.288	2.195	1.348	1.554	2.684
197	Cf-252	0.5560	10.63	8.044	5.898	5.86	8.34	6.036	6.568	8.465
198	Cf-253	0.2092	0.2363	0.1426	0.04859	0.01983	0.03384	0.02089	0.05969	0.1504
199	Cf-254	18.1496	389.4	295.7	217.4	216	306.9	222.3	241.8	311.3
200	C1-34	1.9984	28.32	20.71	13.38	13.36	20.78	13.95	15.42	22.06

EK 3.'ün devamı

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
201	Cl-34m	2.1864	47.9	36.19	26.84	26.81	37.83	27.64	29.89	38.27
202	C1-36	0.0003	0.003939	0.00288	0.00186	0.001858	0.002891	0.001941	0.002144	0.003069
203	C1-38	0.7430	31.38	24.17	18.85	18.35	25.53	19.15	20.72	25.25
204	C1-39	1.4465	35.18	26.63	19.46	19.14	27.57	19.9	21.73	27.93
205	C1-40	1.9591	83.22	64.04	51.02	50.14	68.72	51.84	55.82	67.38
206	Cm-238	1.0907	2.484	1.641	0.8114	0.8231	1.425	0.8612	0.995	1.78
207	Cm-239	2.2488	7.442	5.062	2.687	2.738	4.707	2.893	3.245	5.468
208	Cm-240	0.1129	0.1037	0.06287	0.02168	0.008024	0.01181	0.008305	0.02551	0.06505
209	Cm-241	2.6186	14.36	10.24	6.179	6.154	9.793	6.426	7.182	10.85
210	Cm-242	0.1014	0.09305	0.05642	0.01946	0.007193	0.01058	0.007445	0.02289	0.05837
211	Cm-243	1.2795	3.97	2.704	1.44	1.451	2.437	1.517	1.73	2.914
212	Cm-244	0.0870	0.07973	0.04834	0.01667	0.006155	0.009039	0.006361	0.01962	0.05003
213	Cm-245	1.4056	3.232	2.142	1.073	1.077	1.863	1.134	1.306	2.325
214	Cm-246	0.0709	0.09783	0.06459	0.03196	0.02347	0.03422	0.02452	0.03667	0.06759
215	Cm-247	0.8432	8.802	6.365	3.942	3.964	6.325	4.156	4.568	6.798
216	Cm-248	1.4797	30.39	23.05	16.93	16.85	23.94	17.34	18.87	24.22
217	Cm-249	0.0405	0.5206	0.383	0.2508	0.2487	0.3813	0.2593	0.2874	0.4069
218	Cm-250	14.3279	308	233.5	171.8	170.7	242.5	175.7	191.1	246
219	Cm-251	0.3221	3.087	2.258	1.435	1.435	2.226	1.493	1.655	2.381
220	Co-54m	4.9412	100.3	75.06	52.56	52.18	76.75	54.29	59.46	79.01
221	Co-55	2.8101	52.31	38.92	26.78	26.61	39.62	27.65	30.29	41.19
222	Co-56	2.9069	84.53	64.11	47.85	47.26	67.06	49.07	53.18	67.62
223	Co-57	1.0560	3.415	2.295	1.214	1.281	2.225	1.354	1.482	2.498
224	Co-58	1.3046	25.87	19.28	13.25	13.12	19.46	13.67	14.98	20.43
225	Co-58m	0.0004	0.0006098	0.0003657	0.00012	0.00005416	0.0001132	0.00005874	0.0001593	0.0004018
226	Co-60	1.9983	61.09	46.42	34.14	33.45	48.1	34.93	37.95	48.65
227	Co-60m	0.0230	0.1192	0.08632	0.05605	0.05592	0.08497	0.05861	0.06426	0.09124
228	Co-61	0.8908	2.881	1.992	1.117	1.159	1.933	1.214	1.35	2.132
229	Co-62	1.1581	37.47	28.57	21.42	21.07	29.9	21.95	23.72	30.04
230	Co-62m	2.0550	64.27	48.9	36.23	35.68	51.05	37.28	40.29	51.42
231	Cr-48	2.0154	12.26	8.646	5.026	5.133	8.496	5.382	5.912	9.258
232	Cr-49	2.8537	29.35	21.34	13.52	13.57	21.28	14.15	15.64	22.69
233	Cr-51	0.0992	0.8934	0.6404	0.3838	0.3902	0.6312	0.4064	0.4489	0.6836
234	Cr-55	0.0004	0.01315	0.01006	0.007596	0.007457	0.01053	0.007758	0.008438	0.01054
235	Cr-56	1.3990	3.076	1.99	0.9177	0.912	1.657	0.9644	1.157	2.183
236	Cs-121	2.5853	32.39	23.71	15.26	15.29	23.63	15.92	17.6	25.11
237	Cs-121m	2.9223	32.68	23.92	15.24	15.23	23.71	15.88	17.6	25.26
238	Cs-123	2.6662	30.11	22.11	14.2	14.13	21.88	14.73	16.32	23.32
239	Cs-124	2.2588	31.57	23.21	15.1	15.1	23.29	15.77	17.36	24.65
240	Cs-125	1.8862	20.83	15.29	9.879	9,792	15.07	10.21	11.35	16.15

EK 3.'ün devamı

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
241	Cs-126	2.3593	31.59	23.2	15	15.04	23.26	15.66	17.28	24.66
242	Cs-127	1.7891	12.59	9.045	5.475	5.364	8.565	5.617	6.377	9.569
243	Cs-128	1.9457	24.64	18.06	11.62	11.59	17.96	12.07	13.38	19.21
244	Cs-129	1.7115	8.754	6.124	3.52	3.392	5.509	3.535	4.12	6.586
245	Cs-130m	1.3703	2.897	1.838	0.7929	0.7041	1.342	0.7545	1.02	2.04
246	Cs-130	1.3469	14.17	10.36	6.569	6.512	10.11	6.78	7.596	10.98
247	Cs-131	0.7426	1.291	0.7803	0.2704	0.1707	0.3683	0.1848	0.3701	0.8751
248	Cs-132	1.7797	19.98	14.69	9.646	9.459	14.34	9.879	10.98	15.54
249	Cs-134	2.2373	41.69	31.02	21.1	20.91	31.24	21.83	23.89	32.75
250	Cs-134m	0.4486	1.001	0.6378	0.2793	0.25	0.4675	0.2653	0.3579	0.7045
251	Cs-135m	1.9886	42.17	31.56	21.91	21.61	31.91	22.57	24.66	33.38
252	Cs-136	2.9572	55.26	41.35	28.85	28.36	41.96	29.59	32.45	43.49
253	Cs-138m	1.0097	10.73	7.949	5.463	5.326	7.9	5.536	6.136	8.338
254	Cs-138	1.9714	55.56	42.21	31.28	30.87	43.81	31.94	34.86	44.4
255	Cs-139	0.2020	6.782	5.221	3.951	3.872	5.457	4.046	4.361	5.479
256	Cs-140	1.3567	39.92	30.5	22.92	22.56	31.91	23.44	25.34	32.02
257	Cu-57	2.0990	31.19	22.92	14.98	14.98	23.11	15.63	17.19	24.35
258	Cu-59	2.4588	38.7	28.65	19.14	19.04	28.99	19.82	21.84	30.39
259	Cu-60	3.8411	94.03	70.81	51.7	51.28	73.54	52.9	57.81	74.65
260	Cu-61	1.6005	22.58	16.59	10.78	10.77	16.68	11.25	12.37	17.6
261	Cu-62	1.9618	27.89	20.4	13.19	13.17	20.47	13.75	15.19	21.72
262	Cu-64	0.3529	5.083	3.731	2.416	2.409	3.745	2.521	2.78	3.96
263	Cu-66	0.0945	2.48	1.873	1.341	1.318	1.928	1.381	1.506	1.969
264	Cu-67	0.7293	3.22	2.212	1.215	1.274	2.168	1.329	1.465	2.391
265	Cu-69	0.5766	13.51	10.16	7.214	7.099	10.4	7.403	8.092	10.73
266	Dy-148	1.8498	19.96	14.67	9.532	9.456	14.48	9.881	10.95	15.52
267	Dy-149	2.9076	40.86	30.76	21.73	21.31	31.15	22.1	24.23	32.13
268	Dy-150	1.1450	8.125	5.843	3.49	3.485	5.62	3.635	4.066	6.219
269	Dy-151	2.5754	35.4	26.48	18.39	18.08	26.83	18.79	20.57	27.87
270	Dy-152	1.7425	8.547	5.937	3.292	3.326	5.635	3.49	3.956	6.389
271	Dy-153	3.2349	23.71	17.27	11.26	11.14	17.1	11.66	12.9	18.28
272	Dy-155	2.2053	17.98	13.06	8.584	8.498	13.02	8.899	9.811	13.83
273	Dy-157	1.7973	10.3	7.263	4.171	4.179	6.882	4.369	4.939	7.786
274	Dy-159	0.9627	1.899	1.185	0.4942	0.4686	0.9276	0.5008	0.6586	1.329
275	Dy-165m	0.1482	0.5625	0.3862	0.2142	0.2149	0.3616	0.2257	0.2578	0.4176
276	Dy-165	0.1644	0.7801	0.5471	0.3221	0.325	0.5242	0.3397	0.3825	0.5867
277	Dy-166	0.6831	1.534	0.9846	0.4549	0.4594	0.8512	0.4855	0.5834	1.093
278	Dy-167	1.5255	14.79	10.79	6.771	6.79	10.63	7.075	7.851	11.45
279	Dy-168	1.4125	11.17	8.064	4.952	4.974	7.887	5.177	5.748	8.547
280	Er-154	1.1332	2.804	1.828	0.8754	0.8223	1.473	0.8704	1.101	2.003
EK 3.'ün devamı

Sıra	İzotop	$I_{v,t}$	AP	RA	RL	RP	PA	LP	LL	LA
281	Er-156	1.1678	2.553	1.627	0.7171	0.6829	1.282	0.7217	0.9329	1.807
282	Er-159	2.1793	25.31	18.81	12.76	12.57	18.91	13.1	14.43	19.78
283	Er-161	2.1665	26.2	19.46	13.39	13.17	19.62	13.72	15.12	20.49
284	Er-163	0.7799	1.773	0.9969	0.4279	0.4238	0.8084	0.4486	0.5656	1.111
285	Er-165	0.7495	1.499	0.9412	0.4012	0.3947	0.7635	0.4208	0.5337	1.053
286	Er-167m	0.6024	2.788	1.915	1.052	1.084	1.843	1.141	1.272	2.075
287	Er-171	1.7618	10.69	7.569	4.392	4.439	7.332	4.659	5.177	8.084
288	Er-172	1.6652	14.6	10.65	6.662	6.668	10.4	6.969	7.704	11.27
289	Er-173	2.6534	22.39	16.35	10.6	10.64	16.37	11.14	12.16	17.28
290	Es-249	2.0118	11.56	8.316	5.048	5.023	7.973	5.257	5.859	8.757
291	Es-250	5.7421	34.11	24.65	15.54	15.29	23.48	16	17.91	26.03
292	Es-250m	1.7630	14.51	10.69	7.257	7.129	10.63	7.456	8.173	11.22
293	Es-251	1.4585	3.146	2.068	1.007	0.9685	1.681	1.021	1.226	2.232
294	Es-253	0.0251	0.031	0.01927	0.00769	0.004527	0.007276	0.004744	0.009222	0.02034
295	Es-254	0.8271	0.8912	0.5453	0.1978	0.09486	0.1552	0.09937	0.2373	0.5744
296	Es-254m	1.0546	13.01	9.616	6.398	6.299	9.485	6.509	7.244	10.14
297	Es-256	0.1397	0.1651	0.09925	0.03341	0.01292	0.02265	0.01374	0.04148	0.1059
298	Eu-142	2.1184	32.07	23.81	15.76	15.71	23.98	16.35	17.98	25.13
299	Eu-142m	5.0347	90.98	67.85	46.38	45.87	68.82	47.72	52.46	71.75
300	Eu-143	1.9741	29.45	21.88	14.77	14.67	22.2	15.29	16.8	23.23
301	Eu-144	1.9667	29.29	21.64	14.33	14.3	21.89	14.87	16.37	22.94
302	Eu-145	2.0086	32.28	24.16	17.24	16.95	24.59	17.6	19.27	25.47
303	Eu-146	3.5817	61.6	46.28	32.44	31.71	46.9	33.02	36.29	48.98
304	Eu-147	1.9349	13.17	9.528	6.067	6.001	9.3	6.305	7.02	10.11
305	Eu-148	4.0490	59.52	44.26	29.88	29.46	44.43	30.78	33.92	46.71
306	Eu-149	0.8959	2.424	1.585	0.7615	0.7243	1.306	0.766	0.9601	1.75
307	Eu-150	3.7264	42.61	31.36	20.28	20.25	31.1	21.02	23.28	33.12
308	Eu-150m	0.1768	1.386	1.01	0.6302	0.625	0.9737	0.6532	0.7281	1.06
309	Eu-152	2.3492	30.35	22.73	15.78	15.48	22.85	16.13	17.65	23.81
310	Eu-152m	0.6474	7.854	5.856	4.013	3.932	5.856	4.097	4.516	6.141
311	Eu-152n	0.9503	2.311	1.513	0.734	0.7718	1.399	0.8156	0.9217	1.662
312	Eu-154	1.9154	31.94	23.94	16.81	16.59	24.33	17.22	18.82	25.1
313	Eu-154m	1.0701	2.385	1.536	0.7021	0.7103	1.309	0.7539	0.8981	1.708
314	Eu-155	0.7794	1.931	1.263	0.6101	0.6395	1.158	0.6776	0.7673	1.386
315	Eu-156	1.1911	29.44	22.29	16.46	16.27	23.14	16.85	18.37	23.45
316	Eu-157	1.4554	8.63	6.162	3.681	3.664	5.87	3.832	4.293	6.53
317	Eu-158	1.5469	32.51	24.52	17.61	17.25	25.19	17.91	19.68	25.78
318	Eu-159	1.6972	8.786	6.262	3.858	3.817	6.003	4.027	4.494	6.658
319	F-17	1.9974	28.31	20.7	13.37	13.35	20.77	13.95	15.41	22.05
320	F-18	1.9346	27.41	20.05	12.95	12.93	20.12	13.51	14.93	21.36

EK 3.'ün devamı

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
321	Fe-52	2.1049	20.44	14.85	9.305	9.333	14.76	9.743	10.78	15.77
322	Fe-53	2.3751	32.49	23.79	15.32	15.28	23.84	16.01	17.67	25.31
323	Fe-53m	2.8736	75.59	57.14	41.38	40.76	58.94	42.35	46.33	60.23
324	Fe-59	1.0415	29.32	22.21	16.16	15.9	23	16.62	18.07	23.38
325	Fe-61	1.3860	34.05	25.83	18.74	18.47	26.73	19.21	20.94	27.16
326	Fe-62	1.0000	14.04	10.26	6.624	6.612	10.32	6.905	7.626	10.95
327	Fm-251	1.3116	4.545	3.147	1.763	1.763	2.876	1.841	2.088	3.35
328	Fm-252	0.0725	0.07996	0.04815	0.01634	0.006309	0.01043	0.006636	0.01997	0.05068
329	Fm-253	1.1789	2.346	1.529	0.7243	0.6544	1.121	0.6881	0.8725	1.644
330	Fm-254	0.0795	0.2159	0.1518	0.09021	0.07991	0.117	0.0839	0.1034	0.1597
331	Fm-255	0.7331	0.7839	0.4757	0.1662	0.07221	0.1181	0.07585	0.2007	0.4979
332	Fm-256	13.5036	288.4	218.4	160.5	159.8	226.9	164.5	178.8	230.1
333	Fm-257	1.4812	4.432	2.988	1.626	1.588	2.639	1.678	1.934	3.224
334	Fr-212	2.5083	29.02	21.55	15.11	14.95	21.99	15.52	16.87	22.67
335	Fr-219	0.0115	0.09931	0.07163	0.04386	0.0441	0.0705	0.04612	0.05105	0.07619
336	Fr-220	0.1831	0.3082	0.2024	0.09974	0.1003	0.174	0.1053	0.1219	0.219
337	Fr-221	0.1714	0.8267	0.5747	0.3226	0.3334	0.562	0.3489	0.3865	0.6176
338	Fr-222	1.0919	4.98	3.49	2.053	2.085	3.394	2.186	2.415	3.719
339	Fr-223	0.8904	1.884	1.246	0.6234	0.6085	1.067	0.6406	0.7636	1.356
340	Fr-224	1.2031	13.95	10.37	7.204	7.107	10.55	7.393	8.052	10.89
341	Fr-227	1.9542	12.46	8.969	5.595	5.641	8.836	5.932	6.485	9.496
342	Ga-64	3.4107	79.12	59.82	43.61	43.44	62.19	44.67	48.62	62.95
343	Ga-65	2.7801	31.9	23.37	14.98	15.05	23.33	15.66	17.31	24.76
344	Ga-66	2.0642	54.87	41.67	31.38	31.16	43.68	32.15	34.74	43.82
345	Ga-67	0.8772	4.373	3.048	1.727	1.783	2.994	1.868	2.055	3.273
346	Ga-68	1.8140	26.17	19.2	12.44	12.47	19.26	12.96	14.3	20.39
347	Ga-70	0.0094	0.1858	0.1396	0.09854	0.09685	0.1426	0.1012	0.1111	0.1465
348	Ga-72	2.2355	63.37	48.15	35.74	35.16	49.94	36.63	39.74	50.94
349	Ga-73	1.1737	9.711	6.992	4.244	4.282	6.907	4.48	4.957	7.439
350	Ga-74	2.4891	71.65	54.62	40.98	40.37	57.13	41.9	45.35	57.72
351	Gd-142	2.1346	27.69	20.57	13.7	13.66	20.71	14.21	15.65	21.72
352	Gd-143m	4.2308	55.72	41.44	27.9	27.78	41.71	28.82	31.63	43.71
353	Gd-144	1.6716	23.07	17.15	11.8	11.78	17.34	12.13	13.34	18.14
354	Gd-145m	1.1534	18.48	13.65	9.231	9.107	13.7	9.473	10.45	14.52
355	Gd-145	2.3736	55.32	42.21	31.64	31.18	43.84	32.14	34.86	44.29
356	Gd-146	3.1746	8.358	5.458	2.622	2.649	4.806	2.815	3.294	6.013
357	Gd-147	3.3726	37.66	27.83	18.52	18.32	27.79	19.06	21.02	29.36
358	Gd-149	2.4527	15.27	10.89	6.557	6.577	10.47	6.85	7.689	11.58
359	Gd-151	1.0173	2.565	1.654	0.7736	0.7468	1.361	0.789	0.9776	1.831
360	Gd-153	1.7505	3.852	2.47	1.101	1.09	2.053	1.156	1.423	2.744

EK 3.'ün devamı

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
361	Gd-159	0.3305	1.639	1.148	0.654	0.6533	1.079	0.6827	0.7755	1.237
362	Gd-162	1.0450	11.68	8.497	5.309	5.313	8.43	5.57	6.136	9.057
363	Ge-66	2.0193	18.77	13.69	8.576	8.633	13.53	8.936	9.903	14.43
364	Ge-67	2.9959	38.08	28.1	18.39	18.43	28.21	19.18	21.13	29.66
365	Ge-68	0.0484	0.0103	0.006777	0.002611	0.001946	0.002818	0.001953	0.002935	0.007024
366	Ge-69	1.2375	24.48	18.37	12.83	12.68	18.76	13.15	14.42	19.36
367	Ge-71	0.0491	0.01045	0.006876	0.002649	0.001975	0.002859	0.001981	0.002978	0.007127
368	Ge-75	0.1330	0.9866	0.6993	0.4104	0.4211	0.6916	0.4395	0.4834	0.7502
369	Ge-77	2.3266	28.36	20.94	13.85	13.88	21.14	14.42	15.81	22.12
370	Ge-78	1.0021	7.82	5.541	3.265	3.34	5.464	3.486	3.841	5.953
371	Hf-167	1.9479	17.41	12.63	7.81	7.815	12.45	8.161	9.066	13.41
372	Hf-169	2.0784	18.2	13.21	8.234	8.221	12.99	8.609	9.529	13.99
373	Hf-170	2.2704	12.61	8.97	5.377	5.413	8.722	5.712	6.314	9.568
374	Hf-172	1.7288	3.64	2.33	1.063	1.069	1.986	1.123	1.368	2.576
375	Hf-173	2.7427	11.47	7.942	4.429	4.553	7.658	4.781	5.317	8.535
376	Hf-175	1.8277	10.38	7.309	4.218	4.277	7.039	4.47	5.001	7.843
377	Hf-177m	9.8383	64.79	45.85	26.97	27.48	44.91	28.75	31.84	49.24
378	Hf-178m	7.2269	62.54	45.25	27.81	27.91	44.7	29.27	32.32	48.07
379	Hf-179m	4.0265	26.2	18.71	11.02	11.11	18.15	11.68	12.94	19.9
380	Hf-180m	3.7314	27.91	20.1	12.07	12.11	19.64	12.69	14.09	21.37
381	Hf-181	1.7943	14.93	10.8	6.633	6.684	10.64	6.968	7.705	11.44
382	Hf-182	1.0474	6.786	4.776	2.763	2.835	4.697	2.954	3.266	5.139
383	Hf-182m	3.1259	25.24	18.34	11.51	11.64	18.21	12.04	13.33	19.43
384	Hf-183	1.7267	20.92	15.47	10.36	10.28	15.5	10.73	11.71	16.3
385	Hf-184	1.4331	6.767	4.696	2.635	2.706	4.536	2.836	3.168	5.077
386	Hg-190	2.0799	5.815	3.914	2.036	2.142	3.731	2.258	2.497	4.269
387	Hg-191m	3.7396	38.84	28.85	19.33	19.2	29.13	19.98	21.87	30.3
388	Hg-192	2.1214	7.942	5.47	3.015	3.121	5.281	3.253	3.634	5.931
389	Hg-193	2.2258	21.43	15.87	10.87	10.79	16.17	11.28	12.22	16.65
390	Hg-193m	2.2253	26.4	19.8	13.5	13.39	19.96	13.92	15.2	20.75
391	Hg-194	0.1078	0.04206	0.02615	0.009614	0.005395	0.00735	0.005415	0.01088	0.02669
392	Hg-195	1.3245	5.555	3.968	2.426	2.454	3.888	2.567	2.837	4.208
393	Hg-195m	1.3135	5.693	4.019	2.38	2.403	3.927	2.511	2.789	4.285
394	Hg-197	1.1868	2.253	1.476	0.7073	0.7479	1.355	0.7916	0.8926	1.624
395	Hg-197m	1.0265	2.771	1.862	0.9792	1.025	1.781	1.074	1.192	2.031
396	Hg-199m	1.4727	5.232	3.578	1.973	2.05	3.473	2.14	2.368	3.898
397	Hg-203	1.0010	6.727	4.754	2.777	2.835	4.666	2.962	3.265	5.104
398	Hg-205	0.0314	0.1429	0.09866	0.05491	0.05698	0.09574	0.05975	0.06594	0.1065
399	Hg-206	0.4785	3.43	2.445	1.46	1.483	2.408	1.549	1.717	2.611
400	Hg-207	2.7939	63.54	48.1	35.24	34.97	49.76	35.97	39.29	50.8

EK 3.'ün devamı

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	$\mathbf{L}\mathbf{L}$	LA
401	Ho-150	3.1481	51.12	37.77	25.22	25.15	38.12	26.14	28.77	40
402	Ho-153	2.6358	28.17	20.72	13.32	13.31	20.58	13.83	15.34	21.84
403	Ho-153m	3.0480	29.48	21.63	13.63	13.69	21.38	14.18	15.74	22.79
404	Ho-154m	5.3284	66.65	49.03	31.85	31.73	49.05	33.09	36.49	51.72
405	Ho-154	3.5918	49.99	37.08	24.75	24.56	37.44	25.63	28.19	39.19
406	Ho-155	2.1113	16.7	12.17	7.812	7.783	12.07	8.133	8.965	12.87
407	Ho-156	4.0338	53.41	40.02	27.56	27.34	40.49	28.26	30.93	41.99
408	Ho-157	2.7767	16.72	11.9	7.266	7.282	11.62	7.632	8.484	12.68
409	Ho-159	2.9071	11.54	7.962	4.441	4.503	7.566	4.731	5.342	8.557
410	Ho-160	3.2986	45.2	33.6	22.94	22.63	33.88	23.63	25.9	35.53
411	Ho-161	1.2155	2.369	1.48	0.6183	0.5623	1.092	0.5991	0.8132	1.649
412	Ho-162	1.1085	4.821	3.403	2.048	2.021	3.217	2.133	2.409	3.624
413	Ho-162m	1.8405	14.98	10.92	7.29	7.203	10.93	7.56	8.271	11.56
414	Ho-164	0.5732	1.159	0.7295	0.3144	0.3056	0.591	0.3261	0.4129	0.8143
415	Ho-164m	0.9062	1.808	1.135	0.4797	0.4645	0.9028	0.4961	0.6382	1.265
416	Ho-166	0.1839	0.8006	0.5747	0.3603	0.3617	0.5603	0.3796	0.4168	0.6151
417	Ho-166m	3.4992	43.67	32.42	21.38	21.33	32.38	22.19	24.44	34.19
418	Ho-167	1.3192	10.41	7.45	4.437	4.491	7.298	4.712	5.208	7.961
419	Ho-168	1.3552	23.1	17.19	11.89	11.71	17.4	12.2	13.39	18.18
420	Ho-168m	0.1247	0.2495	0.1566	0.06679	0.06571	0.1272	0.07005	0.08883	0.1752
421	Ho-170	3.0902	44.63	33.22	22.85	22.62	33.69	23.62	25.82	35.05
422	I-118m	5.8329	99.92	74.32	50.46	49.86	75.21	51.88	57	78.44
423	I-118	3.2906	53.59	39.88	26.84	26.69	40.26	27.75	30.51	42.17
424	I-119	2.5620	33.57	18.53	11.6	11.57	18.15	12.06	13.43	19.58
425	I-120	3.2337	63.99	48.36	34.61	34.36	49.72	35.46	38.76	50.96
426	I-120m	5.1305	90.92	68.13	47.04	46.37	69.44	48.14	52.93	71.96
427	I-121	1.9398	11.52	8.183	4.825	4.78	7.703	4.969	5.658	8.689
428	I-122	1.9592	26.5	19.43	12.57	12.59	19.46	13.14	14.49	20.68
429	I-123	1.7329	5.527	3.701	1.87	1.813	3.137	1.916	2.29	4.005
430	I-124	2.0278	28.98	21.57	14.79	14.65	21.68	15.19	16.84	22.79
431	I-125	1.4773	2.469	1.486	0.5036	0.2852	0.6161	0.3104	0.6846	1.652
432	I-126	1.1791	12.24	8.977	5.751	5.682	8.721	5.903	6.582	9.481
433	I-128	0.1951	1.917	1.4	0.8715	0.8631	1.365	0.9023	1.007	1.478
434	I-129	0.7876	1.379	0.8358	0.2944	0.1937	0.4142	0.2094	0.4015	0.9387
435	I-130m	0.3489	3.073	2.258	1.436	1.404	2.159	1.47	1.647	2.366
436	I-130	3.3508	57.71	42.73	28.75	28.44	43.14	29.87	32.55	45.28
437	I-131	1.0561	10.72	7.772	4.788	4.804	7.662	5.032	5.558	8.282
438	I-132	2.9705	59.23	44.36	30.75	30.26	45.02	31.66	34.65	46.78
439	I-132m	0.9228	9.443	6.955	4.535	4.469	6.8	4.644	5.194	7.331
440	I-133	1.0524	16.57	12.28	8.128	8.062	12.33	8.452	9.261	12.99

EK 3.'ün devamı

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
441	I-134m	1.7520	8.791	6.147	3.455	3.395	5.586	3.547	4.104	6.577
442	I-134	3.0414	66.86	50.11	35.3	34.73	51.09	36.3	39.78	52.98
443	I-135	1.3399	38.07	28.94	21.25	21.02	30	21.86	23.79	30.53
444	In-103	3.9393	68.33	51.23	36.13	35.89	52.56	37.03	40.5	54.31
445	In-105	3.4695	49.7	37.12	25.31	25.17	37.49	26.1	28.58	39.17
446	In-106	5.2215	94.37	70.23	47.9	47.44	71.24	49.43	54.31	74.23
447	In-106m	3.4849	69.18	52.18	36.95	36.66	53.3	37.94	41.39	55.07
448	In-107	2.6251	37.98	28.52	19.96	19.72	28.9	20.43	22.38	29.97
449	In-108	5.3802	100.7	75.46	52.82	52.03	76.84	54.09	59.51	79.67
450	In-108m	2.9737	63.63	47.91	35.32	35.11	49.83	36.16	39.3	50.41
451	In-109	2.1245	17.37	12.69	8.277	8.136	12.4	8.509	9.457	13.42
452	In-109m	0.9810	16.57	12.24	8.232	8.133	12.31	8.5	9.316	13.01
453	In-110	4.5965	81.91	61.04	42.34	41.62	61.81	43.39	47.72	64.79
454	In-110m	2.6441	41.48	30.85	20.92	20.74	31.14	21.59	23.6	32.5
455	In-111	2.6787	11.99	8.272	4.525	4.527	7.585	4.709	5.41	8.877
456	In-111m	0.9633	13.08	9.562	6.216	6.174	9.566	6.473	7.147	10.2
457	In-112	0.7437	7.552	5.53	3.52	3.463	5.361	3.616	4.045	5.846
458	In-112m	0.6974	1.421	0.9012	0.3818	0.2968	0.5366	0.3162	0.4808	0.9822
459	In-113m	0.8982	7.516	5.415	3.282	3.256	5.2	3.398	3.812	5.761
460	In-114	0.0056	0.05922	0.04404	0.03079	0.02962	0.04306	0.03087	0.03431	0.04609
461	In-114m	0.5832	2.496	1.731	0.9872	0.9408	1.507	0.9838	1.16	1.854
462	In-115m	0.7977	4.847	3.445	1.987	1.949	3.165	2.037	2.341	3.672
463	In-116m	2.1633	59.73	45.38	33.24	32.78	47.12	34.11	37.18	47.67
464	In-117	1.9755	19.2	13.97	8.807	8.802	13.85	9.224	10.21	14.83
465	In-117m	0.5568	2.713	1.887	1.055	1.041	1.726	1.087	1.253	2.024
466	In-118m	2.7098	69.5	52.53	37.81	37.29	54.11	38.88	42.39	55.32
467	In-118	0.0670	1.909	1.449	1.058	1.04	1.5	1.085	1.185	1.522
468	In-119	1.1628	20.59	15.37	10.53	10.37	15.46	10.81	11.91	16.26
469	In-119m	0.1519	1.734	1.284	0.8945	0.8653	1.272	0.9032	0.9976	1.35
470	In-121	1.0886	24.11	18.03	12.68	12.48	18.42	13.05	14.3	19.06
471	In-121m	0.6141	1.995	1.382	0.7926	0.736	1.149	0.7751	0.9328	1.489
472	Ir-180	3.8018	43.29	32.02	20.8	20.76	31.98	21.58	23.86	33.76
473	Ir-182	3.5609	37.8	27.97	18.28	18.33	28.03	19.1	20.91	29.45
474	Ir-183	2.8194	29.84	22.19	15.39	15.27	22.63	15.9	17.31	23.28
475	Ir-184	4.2080	50.32	37.63	25.76	25.51	38.02	26.45	28.92	39.35
476	Ir-185	2.4286	21.09	15.75	10.96	10.88	16.03	11.31	12.32	16.48
477	Ir-186	3.8418	42.58	31.63	21.56	21.42	32.04	22.32	24.27	33.23
478	Ir-186m	2.3083	31.31	23.58	16.6	16.33	24.01	16.99	18.46	24.77
479	Ir-187	1.6435	9.202	6.624	4.174	4.202	6.586	4.402	4.828	7.041
480	Ir-188	2.7495	48.54	36.71	27.26	26.98	38.21	27.81	30.29	38.41

EK 3	'ün devamı	

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
481	Ir-189	1.1166	2.436	1.604	0.8036	0.836	1.49	0.8838	0.9988	1.772
482	Ir-190	4.1525	40.8	29.96	18.92	18.94	29.55	19.76	21.82	31.54
483	Ir-190m	0.0428	0.01242	0.007918	0.002972	0.001936	0.002719	0.001946	0.003351	0.008157
484	Ir-190n	0.9293	1.843	1.198	0.571	0.5958	1.084	0.6323	0.7218	1.325
485	Ir-191m	1.0562	2.255	1.479	0.7363	0.7777	1.383	0.8236	0.9171	1.633
486	Ir-192	2.3306	22.79	16.51	10.21	10.22	16.3	10.72	11.78	17.54
487	Ir-192m	0.1419	0.04299	0.02736	0.0103	0.006658	0.009417	0.006715	0.01164	0.02816
488	Ir-192n	0.3112	0.1092	0.06982	0.0277	0.02016	0.03046	0.02058	0.03174	0.07257
489	Ir-193m	0.0546	0.02435	0.01556	0.006455	0.005386	0.008907	0.005584	0.00771	0.01654
490	Ir-194	0.2108	2.415	1.771	1.144	1.151	1.779	1.194	1.314	1.874
491	Ir-194m	5.0855	64.43	47.13	30.34	30.38	47.05	31.6	34.93	50.16
492	Ir-195	0.8765	1.806	1.181	0.5754	0.6106	1.088	0.6437	0.7228	1.3
493	Ir-195m	1.5110	10.57	7.609	4.657	4.696	7.459	4.868	5.401	8.063
494	Ir-196	0.4405	6.198	4.579	3.052	3.038	4.615	3.167	3.474	4.83
495	Ir-196m	5.4929	68.02	49.94	31.98	32.08	49.71	33.42	36.8	52.88
496	K-38	2.9894	73.62	55.87	41.23	40.79	58.17	42.13	45.74	58.86
497	K-40	0.1084	3.684	2.816	2.115	2.074	2.935	2.152	2.344	2.954
498	K-42	0.1855	6.494	4.968	3.751	3.674	5.187	3.817	4.148	5.196
499	K-43	1.9676	26.51	19.48	12.56	12.53	19.44	13.17	14.44	20.7
500	K-44	1.5129	52.75	40.43	30.91	30.44	42.6	31.62	34.09	42.53
501	K-45	1.7594	41.43	31.65	23.88	23.49	33.05	24.39	26.46	33.24
502	K-46	1.5180	60.24	46.47	36.31	35.7	49.29	37.21	40.02	48.69
503	Kr-74	3.1133	29.39	21.44	13.47	13.48	21.23	14.06	15.6	22.66
504	Kr-75	3.2726	35.04	25.65	16.43	16.48	25.6	17.18	18.91	27.05
505	Kr-76	2.0823	12.08	8.671	5.205	5.231	8.432	5.467	6.087	9.221
506	Kr-77	3.0566	28.69	20.91	13.14	13.19	20.74	13.73	15.2	22.16
507	Kr-79	1.0798	7.014	5,143	3.233	3.224	5.026	3.372	3.718	5.388
508	Kr-81	0.5193	0.2359	0.1484	0.05828	0.0363	0.05179	0.03686	0.06604	0.1524
509	Kr-81m	0.8470	3.66	2.529	1.402	1.449	2.444	1.522	1.683	2.728
510	Kr-83m	0.1520	0.07622	0.0467	0.01705	0.00838	0.01124	0.008434	0.01929	0.04793
511	Kr-85	0.0043	0.06182	0.04524	0.02924	0.02918	0.04539	0.03049	0.03373	0.04818
512	Kr-85m	0.9533	4.388	3.026	1.693	1.752	2.956	1.848	2.034	3.272
513	Kr-87	0.8259	18.16	13.77	10.07	10.04	14.31	10.42	11.21	14.51
514	Kr-88	1.4498	42.52	32.71	25.17	24.7	34.34	25.62	27.74	34.38
515	Kr-89	1.7306	43.85	33.32	24.89	24.71	34.89	25.41	27.64	35.18
516	La-128	4.8263	74.49	55.5	37.42	37.08	56.06	38.65	42.56	58.61
517	La-129	2.5236	25.71	18.8	11.88	11.84	18.45	12.33	13.7	19.85
518	La-130	3.7952	58.41	43.5	29.38	29.22	43.98	30.38	33.34	45.97
519	La-131	2.3784	18.9	13.63	8.444	8.386	13.22	8.739	9.751	14.47
520	La-132	3.0875	50.2	37.58	26.17	26	38.36	26.9	29.51	39.76

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
521	La-132m	2.0401	18.59	13.59	8.673	8.647	13.38	8.997	9.992	14.29
522	La-133	0.9947	4.921	3.462	2.015	1.939	3.114	2.031	2.379	3.691
523	La-134	1.6188	19.93	14.57	9.385	9.369	14.5	9.755	10.82	15.49
524	La-135	0.7853	1.654	1.038	0.4313	0.3429	0.6595	0.3677	0.5605	1.155
525	La-136	1.2353	11.6	8.458	5.326	5.271	8.183	5.478	6.148	8.951
526	La-137	0.7392	1.334	0.812	0.289	0.2041	0.4355	0.2198	0.3963	0.9095
527	La-138	1.3872	30.19	22.87	16.69	16.39	23.33	16.92	18.64	24.05
528	La-140	2.1612	55.38	42.03	30.85	30.2	43.33	31.44	34.44	44.27
529	La-141	0.0185	0.6149	0.4685	0.3506	0.3429	0.488	0.3576	0.3889	0.4909
530	La-142	1.5464	51.88	39.67	30.46	29.98	41.93	31.08	33.6	41.75
531	La-143	0.2194	6.184	4.706	3.484	3.444	4.891	3.554	3.867	4.956
532	Lu-165	3.0670	29.06	21.48	14.34	14.2	21.61	14.85	16.3	22.63
533	Lu-167	2.9787	41.47	30.94	22.3	22	31.82	22.72	24.83	32.52
534	Lu-169m	0.0123	0.002542	0.001679	0.0006497	0.0004881	0.0007082	0.0004895	0.0007284	0.001739
535	Lu-169	2.6020	33.19	24.77	17.55	17.3	25.36	17.97	19.6	26.01
536	Lu-170	2.5827	57.68	44.07	33.25	32.94	45.82	34.09	36.82	46.09
537	Lu-171m	0.0193	0.01358	0.008749	0.003901	0.003845	0.006948	0.004073	0.004886	0.00955
538	Lu-171	2.2918	18.11	13.16	8.585	8.525	12.99	8.889	9.804	13.96
539	Lu-172	3.4846	50.55	37.77	26.38	26.03	38.32	27.05	29.58	39.66
540	Lu-172m	0.0039	0.0009	0.0005874	0.0002245	0.0001624	0.0002335	0.0001631	0.0002526	0.0006089
541	Lu-173	2.0067	5.892	3.931	2.019	2.061	3.627	2.168	2.484	4.302
542	Lu-174	0.9415	3.389	2.382	1.397	1.41	2.259	1.482	1.662	2.536
543	Lu-174m	0.9493	2.081	1.344	0.6365	0.6469	1.19	0.6819	0.8049	1.482
544	Lu-176	2.2095	13.58	9.551	5.53	5.637	9.347	5.91	6.53	10.27
545	Lu-176m	0.1959	0.4389	0.286	0.1372	0.146	0.2666	0.1535	0.1735	0.3159
546	Lu-177	0.2387	1.002	0.6847	0.3739	0.3898	0.6641	0.4091	0.4513	0.7432
547	Lu-177m	5.0915	28.58	20.07	11.56	11.77	19.63	12.37	13.72	21.59
548	Lu-178	0.2228	3.069	2.303	1.666	1.646	2.374	1.712	1.852	2.423
549	Lu-178m	4.3137	29.66	21.21	12.57	12.69	20.77	13.31	14.75	22.58
550	Lu-179	0.1392	0.8174	0.5757	0.3298	0.3395	0.5639	0.3544	0.3911	0.6169
551	Lu-180	2.1857	38.15	28.69	20.24	20	29.28	20.73	22.71	30.09
552	Lu-181	1.6220	15.73	11.55	7.425	7.445	11.48	7.738	8.524	12.22
553	Mg-27	1.0060	23.18	17.41	12.24	12.05	17.76	12.6	13.79	18.37
554	Mg-28	2.0273	34.7	26.04	18.59	18.15	26.43	18.87	20.81	27.32
555	Mn-50m	5.3343	117.6	88.4	62.66	61.76	90.56	64.15	70.11	92.92
556	Mn-51	1.9467	27.64	20.22	13.06	13.05	20.29	13.62	15.05	21.54
557	Mn-52	3.5933	87.02	65.55	47.04	46.17	67.24	48	52.76	69.03
558	Mn-52m	2.9343	60.76	45.49	32.15	31.8	46.69	33.01	36.21	48.06
559	Mn-54	0.9998	21.95	16.44	11.45	11.28	16.66	11.79	12.9	17.36
560	Mn-56	1.4267	40.44	30.71	22.65	22.28	31.9	23.08	25.27	32.28

EK 3.'ün devamı

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
561	Mn-57	0.3690	2.614	1.905	1.237	1.232	1.885	1.291	1.419	2.006
562	Mn-58m	2.2631	58.71	44.53	32.13	31.72	45.84	32.98	35.94	46.73
563	Mo-101	1.7317	36.27	27.4	19.64	19.4	28.26	20.1	22.03	28.83
564	Mo-102	0.1018	0.5191	0.3595	0.2027	0.2087	0.3507	0.2193	0.2425	0.3883
565	Mo-89	2.1658	32.88	24.32	16.02	16	24.51	16.67	18.31	25.74
566	Mo-90	3.2513	23.02	16.66	10.36	10.34	16.27	10.85	11.99	17.49
567	Mo-91	1.9243	36.8	27.51	19.2	18.98	28.19	19.74	21.61	29.09
568	Mo-91m	1.8626	26.11	19.12	12.38	12.38	19.15	12.89	14.24	20.35
569	Mo-93	0.6260	0.5815	0.354	0.1224	0.04254	0.05814	0.04355	0.1421	0.3621
570	Mo-93m	2.8049	57.51	43.32	31	30.6	44.46	31.71	34.79	45.52
571	Mo-99	0.3318	3.995	2.959	1.969	1.947	2.944	2.026	2.233	3.127
572	N-13	1.9961	28.28	20.68	13.36	13.34	20.76	13.94	15.4	22.04
573	N-16	0.7312	64.92	51.44	45.82	44.71	58.72	46.65	48.86	53.72
574	Na-22	2.7974	56.39	42.14	29.39	29.24	43.2	30.25	33.12	44.42
575	Na-24	2.0000	86.31	66.78	52.39	51.54	70.81	53.21	57.4	69.71
576	Nb-87	3.5962	33.96	24.72	15.51	15.48	24.37	16.15	17.92	26.23
577	Nb-88m	5.5088	106	79.35	55.11	54.55	80.98	56.63	62.09	83.67
578	Nb-88	6.5080	111	82.63	56.67	56.02	83.75	58.54	64.07	87.33
579	Nb-89	1.9917	33.9	25.47	17.75	17.69	25.99	18.35	20.02	26.84
580	Nb-89m	2.6280	36.07	26.47	17.13	17.16	26.52	17.86	19.73	28.15
581	Nb-90	4.3633	96.51	73.4	54.68	54.17	76.25	56.04	60.74	77.02
582	Nb-91	0.6320	0.5769	0.355	0.1346	0.06182	0.08726	0.06353	0.1536	0.3639
583	Nb-91m	0.5545	1.102	0.7594	0.4409	0.3718	0.5321	0.3867	0.4982	0.7974
584	Nb-92	2.6078	40.08	29.83	20.47	20.18	30.04	20.97	23.1	31.59
585	Nb-92m	1.6508	25.29	18.91	13.31	13.02	19.06	13.57	14.94	19.84
586	Nb-93m	0.1117	0.1037	0.06316	0.02184	0.007591	0.01037	0.00777	0.02535	0.06459
587	Nb-94m	0.4289	0.5055	0.3251	0.1427	0.08859	0.1272	0.0922	0.164	0.3342
588	Nb-94	1.9798	41.25	30.75	21.34	21.05	31.26	21.88	24.02	32.61
589	Nb-95	0.9993	20.34	15.19	10.47	10.32	15.38	10.79	11.8	16.08
590	Nb-95m	0.6866	2.144	1.468	0.79	0.7572	1.245	0.7883	0.9318	1.562
591	Nb-96	3.1778	64.47	48.14	33.53	32.91	48.94	34.38	37.59	50.87
592	Nb-97	1.0020	18	13.34	9.018	8.922	13.48	9.291	10.18	14.13
593	Nb-98m	3.1256	71.33	53.72	38.19	37.52	54.95	39.16	42.79	56.58
594	Nb-99	1.7484	5.079	3.405	1.752	1.811	3.123	1.896	2.144	3.693
595	Nb-99m	0.7085	16.8	12.81	9.645	9.587	13.42	9.882	10.69	13.42
596	Nd-134	2.3836	15.57	11.11	6.668	6.698	10.73	6.968	7.83	11.79
597	Nd-135	3.6179	35.21	25.75	16.22	16.2	25.29	16.83	18.73	27.19
598	Nd-136	1.9651	8.591	5.998	3.447	3.387	5.518	3.565	4.106	6.432
599	Nd-137	2.7863	31.39	23.29	15.62	15.39	23.25	15.99	17.71	24.49
600	Nd-138	0.8294	1.856	1.179	0.5044	0.4437	0.8483	0.4731	0.6583	1.314

EK 3. 'ün	devamı

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
601	Nd-139	1.3260	12.43	9.14	5.836	5.761	8.91	6.019	6.712	9.614
602	Nd-139m	3.2481	41.69	31.18	21.5	21.04	31.24	21.98	24.13	32.8
603	Nd-140	0.7587	1.419	0.8693	0.3264	0.2627	0.5487	0.2836	0.4463	0.9818
604	Nd-141	0.8282	2.66	1.802	0.9526	0.892	1.492	0.9439	1.157	1.948
605	Nd-141m	0.9782	18.56	13.83	9.502	9.365	13.96	9.811	10.72	14.66
606	Nd-147	0.9414	4.283	2.998	1.713	1.709	2.802	1.795	2.042	3.203
607	Nd-149	1.5890	10.47	7.477	4.448	4.494	7.265	4.692	5.22	7.938
608	Nd-151	1.8638	21.94	16.35	11.16	11.04	16.56	11.49	12.56	17.21
609	Nd-152	0.6873	4.664	3.306	1.944	1.965	3.218	2.055	2.287	3.548
610	Ne-19	1.9981	28.31	20.7	13.37	13.36	20.78	13.95	15.41	22.06
611	Ne-24	1.0795	14.95	10.98	7.064	7.086	11.03	7.35	8.137	11.63
612	Ni-56	3.2130	45.13	33.66	22.67	22.51	33.94	23.48	25.77	35.56
613	Ni-57	2.0399	47.35	35.77	25.9	25.52	36.9	26.42	29.01	37.57
614	Ni-65	0.4537	13.39	10.2	7.524	7.407	10.59	7.734	8.429	10.73
615	Np-232	3.3658	32.05	23.64	15.76	15.6	23.52	16.22	17.82	24.91
616	Np-233	1.1659	2.698	1.792	0.907	0.9278	1.608	0.9748	1.102	1.937
617	Np-234	1.9866	26.89	20.15	14.78	14.47	20.65	14.97	16.42	21.18
618	Np-235	0.3432	0.2821	0.174	0.06212	0.02735	0.04005	0.02817	0.07256	0.1791
619	Np-236	2.4528	4.904	3.226	1.586	1.529	2.628	1.616	1.929	3.466
620	Np-236m	0.6540	1.507	1.004	0.5193	0.5209	0.8913	0.5461	0.6276	1.083
621	Np-237	0.9034	1.27	0.8023	0.3449	0.2849	0.5031	0.2996	0.4251	0.8669
622	Np-238	0.9288	15.21	11.38	8.074	7.882	11.5	8.181	9.057	11.93
623	Np-239	1.7170	5.391	3.668	1.961	1.988	3.353	2.077	2.357	3.956
624	Np-240	2.7878	28.18	20.96	14.03	13.85	20.74	14.41	15.9	22.01
625	Np-240m	0.7847	8.549	6.371	4.282	4.214	6.294	4.377	4.851	6.696
626	Np-241	0.4430	1.16	0.7845	0.4124	0.4134	0.7017	0.4328	0.4937	0.845
627	Np-242	0.2873	6.465	4.897	3.587	3.517	5.052	3.634	3.995	5.159
628	Np-242m	2.3754	24.56	18.29	12.41	12.16	18.07	12.6	13.93	19.13
629	O-14	2.9920	75.64	57.24	42.7	42.32	59.99	43.51	47.22	60.51
630	O-15	1.9980	28.31	20.7	13.37	13.36	20.78	13.95	15.41	22.06
631	O-19	1.5299	23.1	17.32	12.31	12.16	17.77	12.63	13.75	18.17
632	Os-180	1.2950	3.814	2.612	1.454	1.465	2.455	1.539	1.733	2.816
633	Os-181	3.2922	35.45	26.36	18.19	18.04	26.8	18.82	20.42	27.77
634	Os-182	2.0767	12.25	8.74	5.274	5.34	8.572	5.58	6.162	9.349
635	Os-183	3.0893	17.73	12.68	7.634	7.754	12.41	8.077	8.903	13.39
636	Os-183m	1.7891	25.66	19.31	13.72	13.45	19.66	13.99	15.27	20.18
637	Os-185	1.7968	18.93	13.97	9.214	9.157	13.94	9.534	10.51	14.77
638	Os-189m	0.0443	0.01136	0.007344	0.002775	0.001914	0.00272	0.001923	0.00313	0.007563
639	Os-190m	3.9541	43.89	32.1	20.38	20.43	31.97	21.31	23.54	34.08
640	Os-191	1.1441	2.497	1.639	0.8167	0.8625	1.535	0.9132	1.017	1.809

EK 3.'ün devamı

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
641	Os-191m	0.1553	0.2058	0.133	0.06183	0.06376	0.1162	0.06715	0.0781	0.1461
642	Os-193	0.3780	1.902	1.344	0.7966	0.8108	1.321	0.8459	0.9387	1.438
643	Os-194	0.1367	0.1325	0.0826	0.03302	0.02879	0.05512	0.03059	0.04294	0.09132
644	Os-196	0.4026	2.282	1.621	0.9603	0.9785	1.586	1.021	1.13	1.732
645	P-30	1.9978	28.33	20.71	13.39	13.37	20.79	13.97	15.42	22.08
646	Pa-227	0.4601	0.7415	0.4788	0.2239	0.2176	0.3816	0.2291	0.2763	0.5191
647	Pa-228	3.4845	35.59	26.43	18.1	17.83	26.58	18.59	20.35	27.67
648	Pa-229	1.0165	1.994	1.314	0.6401	0.6529	1.141	0.6837	0.7829	1.416
649	Pa-230	1.9969	17.88	13.19	8.887	8.808	13.19	9.144	10.04	13.86
650	Pa-231	0.7408	1.43	0.9529	0.4893	0.4365	0.7207	0.4582	0.5813	1.02
651	Pa-232	1.8418	24.84	18.52	12.7	12.51	18.6	12.99	14.3	19.44
652	Pa-233	1.4730	6.451	4.508	2.569	2.588	4.236	2.702	3.045	4.83
653	Pa-234	3.5141	38.48	28.7	19.64	19.37	28.73	20.14	22.02	30.15
654	Pa-234m	0.0253	0.3521	0.2643	0.1854	0.1817	0.2676	0.1899	0.2074	0.2771
655	Pa-235	0.0010	0.00052	0.0003187	0.0001154	0.0000553	0.00007294	0.00005545	0.0001304	0.0003236
656	Pa-236	1.3258	22.58	17.03	12.22	12.06	17.44	12.45	13.58	17.85
657	Pa-237	0.8628	16.17	12.02	8.255	8.165	12.19	8.518	9.354	12.74
658	Pb-194	2.8443	27.75	20.55	14.17	14	20.92	14.63	15.92	21.65
659	Pb-195m	4.2887	44.8	32.99	21.6	21.62	33.03	22.54	24.66	34.79
660	Pb-196	2.5500	13.95	9.94	5.991	6.077	9.803	6.355	7.001	10.56
661	Pb-197	2.8058	38.32	28.68	20.26	19.98	29.35	20.81	22.49	30.12
662	Pb-197m	3.5404	31.65	23.27	15.13	15.14	23.24	15.79	17.34	24.52
663	Pb-198	2.4347	12.39	8.79	5.219	5.326	8.634	5.555	6.126	9.371
664	Pb-199	2.3461	26.34	19.58	13.6	13.45	20.05	14.08	15.22	20.59
665	Pb-200	2.1593	6.058	4.119	2.207	2.297	3.958	2.413	2.683	4.471
666	Pb-201	2.5726	20.47	15.04	9.636	9.656	14.93	10.13	11.11	15.8
667	Pb-201m	0.9751	10.05	7.406	4.832	4.825	7.336	5.028	5.534	7.85
668	Pb-202	0.1970	0.05148	0.03315	0.01252	0.008447	0.012	0.008478	0.0142	0.03411
669	Pb-202m	3.2279	52.85	39.44	26.82	26.56	39.83	27.64	30.45	41.61
670	Pb-203	2.0733	9.06	6.312	3.584	3.672	6.111	3.826	4.26	6.79
671	Pb-204m	2.9401	54.42	40.36	27.93	27.65	41.08	28.7	31.61	42.81
672	Pb-205	0.1994	0.05213	0.03357	0.01269	0.008553	0.01215	0.008585	0.01438	0.03455
673	Pb-210	0.2721	0.1822	0.1128	0.04446	0.03293	0.05769	0.03412	0.05444	0.121
674	Pb-211	0.1211	1.725	1.28	0.8518	0.8461	1.284	0.883	0.9709	1.355
675	Pb-212	0.9766	4.152	2.878	1.6	1.651	2.784	1.73	1.919	3.101
676	Pb-214	1.0597	7.134	5.121	3.051	3.09	4.998	3.232	3.571	5.436
677	Pd-100	2.4574	4.552	2.901	1.275	1.145	2.049	1.218	1.594	3.167
678	Pd-101	1.9032	10.3	7.389	4.545	4.334	6.643	4.555	5.216	7.776
679	Pd-103	0.6930	0.8697	0.5214	0.174	0.06212	0.1069	0.06607	0.2151	0.5572
680	Pd-109m	0.8202	3.276	2.237	1.2	1.206	2.039	1.262	1.45	2.411

EK 3.'ün devamı

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
681	Pd-109	0.3788	0.5783	0.3555	0.1305	0.07553	0.1387	0.08052	0.1651	0.3873
682	Pd-111	0.0747	1.202	0.8991	0.6241	0.6145	0.9095	0.6386	0.7013	0.9478
683	Pd-112	0.2656	0.2871	0.1741	0.05874	0.01976	0.02938	0.02056	0.06989	0.181
684	Pd-114	0.1359	0.7306	0.5095	0.2902	0.2974	0.4966	0.312	0.345	0.5477
685	Pd-96	3.1202	38.47	28.5	19.19	18.98	28.48	19.79	21.75	29.98
686	Pd-97	3.4310	59.21	44.48	31.15	31.03	45.35	32.06	34.97	46.88
687	Pd-98	2.1685	11.85	8.498	5.237	5.131	7.996	5.395	6.053	8.958
688	Pd-99	2.9095	33.18	24.88	16.7	16.53	24.83	17.13	18.88	26.05
689	Pm-136	4.8796	73.72	54.45	36.01	35.9	54.72	37.41	41.14	57.82
690	Pm-137m	4.7176	48.9	35.92	23.09	23	35.53	23.99	26.47	37.83
691	Pm-139	2.0031	25.67	18.91	12.28	12.29	18.93	12.81	14.15	20.09
692	Pm-140m	4.7014	80.53	59.99	40.74	40.45	60.64	42.11	46.31	63.4
693	Pm-140	2.0237	28.87	21.19	13.79	13.82	21.31	14.37	15.85	22.48
694	Pm-141	1.5699	19.73	14.59	9.674	9.625	14.64	9.972	11.04	15.44
695	Pm-142	1.7594	23.52	17.28	11.21	11.2	17.32	11.68	12.89	18.36
696	Pm-143	1.1494	9.072	6.572	4.27	4.158	6.37	4.362	4.867	7.005
697	Pm-144	3.2297	43.2	31.83	20.94	20.74	31.66	21.6	23.95	33.66
698	Pm-145	0.7791	1.483	0.9104	0.3534	0.2998	0.612	0.3214	0.4793	1.029
699	Pm-146	1.7557	20.85	15.3	10.03	9.885	15.17	10.33	11.43	16.24
700	Pm-148	0.5873	14.26	10.77	7.74	7.634	11.08	7.926	8.686	11.33
701	Pm-148m	3.3428	53.88	39.76	26.68	26.47	40.21	27.6	30.43	42.3
702	Pm-149	0.0375	0.3244	0.2335	0.1417	0.1434	0.2299	0.1493	0.1656	0.2482
703	Pm-150	1.8185	36.68	27.61	19.62	19.33	28.36	20.08	21.95	28.88
704	Pm-151	1.2714	9.272	6.667	4.043	4.065	6.488	4.24	4.731	7.068
705	Pm-152m	2.9441	38.7	28.87	20.02	19.77	29.36	20.53	22.41	30.43
706	Pm-152	0.5345	7.27	5.453	3.827	3.77	5.542	3.899	4.274	5.712
707	Pm-153	0.7533	2.376	1.594	0.818	0.8254	1.44	0.8661	1.001	1.731
708	Pm-154	1.6791	41.79	31.75	23.71	23.35	32.95	24.25	26.35	33.44
709	Pm-154m	2.8044	44.74	33.53	23.9	23.58	34.23	24.45	26.76	35.21
710	Po-203	3.0969	41.6	31.12	21.95	21.61	31.78	22.44	24.51	32.73
711	Po-204	4.0088	31.18	22.84	15.13	15.1	22.96	15.76	17.26	24.09
712	Po-205	2.8976	40.37	30.27	21.39	20.99	30.84	21.85	23.89	31.87
713	Po-206	3.3494	31.79	23.59	15.72	15.61	23.56	16.26	17.75	24.66
714	Po-207	2.5916	33.3	24.96	17.36	17.14	25.34	17.82	19.52	26.26
715	Po-209	0.0179	0.1647	0.121	0.07977	0.0799	0.1217	0.0834	0.09119	0.1281
716	Po-211	0.0112	0.2168	0.1611	0.111	0.1097	0.1636	0.114	0.1255	0.171
717	Po-212m	0.0462	1.658	1.273	0.9957	0.9784	1.354	1.012	1.091	1.334
718	Po-214	0.0001	0.00219	0.001638	0.001136	0.001119	0.001658	0.001167	0.001277	0.001733
719	Po-215	0.0004	0.004902	0.003575	0.002253	0.002251	0.003565	0.002358	0.002601	0.003808
720	Pr-134	5.6688	83.48	62.06	41.65	41.4	62.61	43.1	47.31	65.53

EK 3.'ün devamı

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
721	Pr-134m	3.5884	59.15	44.01	30.27	30.21	45.03	31.26	34.32	46.7
722	Pr-135	2.5497	24.32	17.78	11.28	11.27	17.47	11.7	13.03	18.79
723	Pr-136	3.3839	55.33	41.19	28.35	27.98	42.04	29.19	31.96	43.72
724	Pr-137	1.1952	10.39	7.61	4.814	4.757	7.368	4.936	5.561	7.987
725	Pr-138	1.7370	22.62	16.54	10.68	10.68	16.55	11.12	12.32	17.6
726	Pr-138m	4.1625	65.61	49	33.39	32.86	49.28	34.29	37.75	51.51
727	Pr-139	0.8907	4.099	2.867	1.655	1.583	2.559	1.677	1.964	3.055
728	Pr-140	1.4106	15.42	11.25	7.141	7.103	11.08	7.412	8.255	11.95
729	Pr-142	0.0370	1.342	1.032	0.7822	0.7639	1.074	0.7928	0.8627	1.082
730	Pr-144	0.0231	0.6658	0.5071	0.3771	0.3713	0.5283	0.3849	0.4196	0.5329
731	Pr-144m	0.2996	0.5975	0.3703	0.1501	0.1248	0.248	0.1341	0.1993	0.4174
732	Pr-145	0.0311	0.4646	0.3458	0.2383	0.2348	0.3501	0.2436	0.2682	0.3652
733	Pr-146	1.0952	24.63	18.5	13.38	13.24	19.23	13.71	14.99	19.58
734	Pr-147	1.9046	13.66	9.864	6.33	6.247	9.624	6.549	7.285	10.48
735	Pr-148	1.3576	24.54	18.42	13.04	12.94	18.91	13.38	14.6	19.42
736	Pr-148m	2.0166	25.25	18.65	12.05	12.01	18.64	12.57	13.81	19.64
737	Pt-184	4.1752	20.59	14.55	8.649	8.788	14.26	9.227	10.17	15.54
738	Pt-186	2.2372	18.87	13.81	8.93	8.938	13.75	9.264	10.21	14.59
739	Pt-187	2.7605	16.99	12.28	7.697	7.733	12.21	8.163	8.93	12.98
740	Pt-188	1.7668	5.991	4.093	2.239	2.322	3.956	2.433	2.697	4.462
741	Pt-189	2.4408	13.52	9.714	6.015	6.077	9.606	6.369	7.017	10.3
742	Pt-191	2.1749	8.595	5.998	3.445	3.515	5.833	3.696	4.099	6.449
743	Pt-193	0.0961	0.02949	0.01877	0.006987	0.004408	0.006161	0.004424	0.007895	0.01925
744	Pt-193m	0.2363	0.3579	0.2322	0.1093	0.1127	0.2046	0.1199	0.1378	0.2546
745	Pt-195m	1.2485	2.314	1.509	0.7234	0.762	1.365	0.8032	0.9089	1.656
746	Pt-197	0.3514	0.7358	0.4869	0.2475	0.2576	0.4523	0.2737	0.3059	0.5326
747	Pt-197m	0.8776	2.443	1.662	0.9085	0.9292	1.576	0.9804	1.098	1.803
748	Pt-199	0.5020	5.489	4.022	2.571	2.568	4.005	2.671	2.958	4.253
749	Pt-200	0.6571	1.768	1.191	0.6253	0.6494	1.123	0.6845	0.7606	1.301
750	Pu-232	0.8645	1.891	1.248	0.6158	0.6298	1.097	0.6619	0.7587	1.354
751	Pu-234	0.9793	2.082	1.372	0.6736	0.6842	1.188	0.7175	0.8285	1.486
752	Pu-235	1.3139	2.871	1.917	0.9655	0.9646	1.653	1.009	1.173	2.056
753	Pu-236	0.1187	0.09857	0.06028	0.02104	0.008223	0.01169	0.00843	0.02448	0.06208
754	Pu-237	0.9042	1.672	1.092	0.5188	0.5054	0.881	0.5302	0.6396	1.179
755	Pu-238	0.1094	0.09012	0.0551	0.01914	0.007327	0.01031	0.007512	0.02233	0.05669
756	Pu-239	0.0457	0.03776	0.02308	0.008044	0.003162	0.004496	0.003244	0.009391	0.02374
757	Pu-240	0.1029	0.08489	0.05198	0.01806	0.006942	0.009789	0.00712	0.02102	0.05348
758	Pu-242	0.0882	0.07273	0.04454	0.01547	0.005945	0.008379	0.006093	0.01804	0.04582
759	Pu-243	0.3817	0.812	0.5357	0.2616	0.2621	0.4602	0.2765	0.3201	0.5793
760	Pu-244	0.0938	0.4967	0.3699	0.2543	0.2438	0.3502	0.2543	0.2842	0.3856

EK 3.'ün devamı

Sira	İzoton	L	AP	RA	RL	RP	РА	LP	LL	L.A
761	Du 245	$\frac{1}{1} \frac{1}{106}$	10.02	8.024	5 102	5 101	7.072	5 402	5.044	0 161
701	Pu-243	1.1400	10.95	0.024	3.192	3.191	7.973	3.402	3.944	0.401
762	Pa 210	1.5575	4.393	2.932	2.021	2.051	2.397	2 1 4 5	2 284	2.640
703	Ra-219 Do 220	0.7409	4.000	0.00469	2.031	2.031	0.00474	2.145	2.364	0.101
764	Ra-220	0.0101	0.15	0.09408	0.00019	0.00028	0.09474	0.06294	0.00945	0.101
705	Ra-221	0.3039	0.2566	0.7334	0.3909	0.398	0.0770	0.4108	0.4709	0.0150
700	Ra-222	0.0299	0.2500	0.1830	0.1101	0.112	0.1809	0.1107	0.1285	0.1965
/0/	Ra-225	1.1293	4.05	2.78	1.54	1.584	2.008	1.004	1.849	2.995
/08	Ra-224	0.0488	0.2899	0.2036	0.1101	0.1196	0.1984	0.1254	0.1381	0.2180
/69	Ra-225	0.4395	0.6708	0.413	0.1578	0.1288	0.2574	0.138	0.2101	0.4572
770	Ra-226	0.0505	0.2068	0.1422	0.07794	0.08103	0.1374	0.08475	0.09380	0.1555
//1	Ra-227	1.0736	4.425	3.111	1.811	1.//2	2.862	1.848	2.12	3.305
112	Ra-228	0.1586	0.1254	0.07644	0.02695	0.01007	0.01328	0.01022	0.03087	0.07817
113	Ra-230	0.5636	2.28	1.59	0.911	0.9244	1.528	0.9715	1.083	1.701
//4	RD-//	3.4934	41.79	30.83	20.08	20.1	30.93	20.94	23.11	32.6
115	Rb-/8m	4.2838	80.52	60.45	42.32	41.93	62	43.64	47.68	64.12
//6	Rb-/8	3.7638	89.67	67.93	50.89	50.74	/1.49	52.14	56.29	/1.52
///	Rb-79	3.4774	39.48	28.98	18.62	18.6/	28.84	19.37	21.45	30.66
778	Rb-80	2.2667	32.86	24.12	15.66	15.61	24.17	16.3	18	25.64
779	Rb-81	1.3854	14.03	10.31	6.621	6.591	10.22	6.87	7.618	10.87
780	Rb-81m	0.5276	0.887	0.6161	0.3449	0.3195	0.496	0.3362	0.4012	0.6482
781	Rb-82	2.0958	30.46	22.4	14.56	14.58	22.45	15.18	16.76	23.79
782	Rb-82m	4.1813	76.18	56.81	39.61	38.9	57.83	40.69	44.54	60.07
783	Rb-83	1.4658	13.66	10	6.443	6.41	9.864	6.671	7.388	10.58
784	Rb-84	1.6292	24.1	17.97	12.28	12.18	18.09	12.63	13.91	19.02
785	Rb-84m	1.4515	10.72	7.695	4.614	4.651	7.533	4.872	5.42	8.205
786	Rb-86m	0.9920	15.04	11.05	7.254	7.193	11.11	7.552	8.317	11.79
787	Rb-86	0.0864	2.343	1.772	1.275	1.253	1.823	1.313	1.431	1.864
788	Rb-88	0.4036	14.29	10.95	8.405	8.181	11.54	8.559	9.232	11.55
789	Rb-89	1.6922	52.29	39.94	29.76	29.35	41.59	30.47	33.1	42
790	Rb-90	0.9365	38.78	30.08	24.21	23.9	32.29	24.63	26.43	31.55
791	Rb-90m	2.1220	70.24	53.84	41.29	40.58	56.87	42.12	45.59	56.64
792	Re-178	2.8882	40.39	30.29	21.7	21.56	31.24	22.28	24.12	31.91
793	Re-179	2.8002	28.2	20.85	13.92	13.92	21.08	14.5	15.79	21.99
794	Re-180	2.4659	31.63	23.46	16.17	16.04	23.82	16.63	18.26	24.81
795	Re-181	2.6705	21.98	16.09	10.29	10.3	15.99	10.72	11.82	17.01
796	Re-182	5.1720	46.7	34.18	23.09	22.89	34.7	24.04	26.24	36.2
797	Re-182m	2.7248	30.87	23.03	16.22	16	23.67	16.72	18.14	24.23
798	Re-183	1.7700	4.803	3.186	1.611	1.682	2.966	1.773	1.999	3.511
799	Re-184	2.0535	23.75	17.61	12.01	11.91	17.76	12.34	13.57	18.58
800	Re-184m	1.7668	10.49	7.568	4.732	4,787	7.489	4,984	5.5	8.028

EK 3.'ün devamı

Sıra	İzotop	$I_{\nu,t}$	AP	RA	RL	RP	PA	LP	LL	LA
801	Re-186	0.2167	0.6071	0.4058	0.2078	0.2196	0.3831	0.2302	0.2563	0.4434
802	Re-186m	0.5091	0.589	0.3764	0.1667	0.1661	0.3076	0.1749	0.2136	0.4153
803	Re-188	0.2668	1.636	1.173	0.7254	0.7321	1.17	0.7738	0.846	1.244
804	Re-188m	1.1216	2.208	1.437	0.6871	0.7276	1.319	0.7708	0.8687	1.592
805	Re-189	0.2987	1.553	1.088	0.626	0.6413	1.071	0.6711	0.7454	1.169
806	Re-190	2.9835	36.28	26.75	17.35	17.32	26.65	18.05	19.91	28.29
807	Re-190m	2.5129	25.43	18.65	11.87	11.93	18.49	12.41	13.69	19.64
808	Rh-100m	1.0689	2.323	1.559	0.7929	0.653	1.016	0.686	0.9334	1.664
809	Rh-100	3.1176	64.83	49.2	36.12	35.79	50.56	36.68	40.23	51.79
810	Rh-101	2.3165	8.517	5.813	3.119	3.121	5.264	3.269	3.766	6.269
811	Rh-101m	1.5552	8.503	6.029	3.483	3.422	5.523	3.568	4.072	6.407
812	Rh-102	1.3597	14.13	10.38	6.649	6.574	10.13	6.86	7.615	10.91
813	Rh-102m	3.8393	57.62	42.93	28.98	28.65	43.11	29.84	32.89	45.37
814	Rh-103m	0.0742	0.09345	0.056	0.01864	0.006758	0.01172	0.007193	0.02314	0.05983
815	Rh-104	0.0238	0.3322	0.2442	0.1609	0.1591	0.2446	0.1669	0.184	0.2593
816	Rh-104m	1.1934	1.949	1.217	0.4861	0.3863	0.7189	0.4089	0.6233	1.327
817	Rh-105	0.2483	2.175	1.556	0.9325	0.9463	1.533	0.9858	1.091	1.668
818	Rh-106	0.3420	5.517	4.082	2.706	2.702	4.123	2.819	3.106	4.325
819	Rh-106m	3.7558	73.75	55.24	38.5	38	56.35	39.42	43.24	58.31
820	Rh-107	0.9688	8.786	6.283	3.809	3.852	6.223	4.039	4.436	6.729
821	Rh-108	0.6478	8.769	6.443	4.143	4.138	6.442	4.32	4.761	6.832
822	Rh-109	1.0998	8.478	6.074	3.614	3.634	5.899	3.792	4.203	6.469
823	Rh-94	4.3616	93.62	70.59	50.21	49.52	72.39	51.4	56.23	74.54
824	Rh-95	3.1490	63.68	47.94	34.1	33.58	49.25	34.79	38.03	50.64
825	Rh-95m	1.2183	21.51	16.11	11.36	11.44	16.6	11.73	12.76	17.06
826	Rh-96	5.3888	102.2	76.23	52.86	52.03	77.82	54.27	59.43	80.57
827	Rh-96m	1.8123	32.43	24.31	17.12	16.95	24.7	17.48	19.27	25.65
828	Rh-97	2.6934	38.26	28.38	19	18.79	28.71	19.68	21.62	30.05
829	Rh-97m	2.7788	51.04	38.54	28.54	28.13	39.81	29.06	31.71	40.61
830	Rh-98	2.9961	48.5	35.88	24.01	23.94	36.19	24.91	27.36	37.95
831	Rh-99	2.3610	16.05	11.6	7.202	7.07	11.01	7.388	8.284	12.19
832	Rh-99m	1.9191	17.83	13.14	8.493	8.375	12.76	8.713	9.707	13.78
833	Rn-207	2.5211	26.72	19.68	12.81	12.88	19.68	13.27	14.7	20.76
834	Rn-209	2.6461	30.81	23.01	15.68	15.51	23.2	16.16	17.56	24.13
835	Rn-210	0.1802	1.642	1.209	0.7941	0.7927	1.207	0.8229	0.9069	1.271
836	Rn-211	3.1387	48.12	35.98	25.19	24.83	36.65	25.87	28.25	37.91
837	Rn-212	0.0005	0.009122	0.006764	0.004589	0.004543	0.006852	0.004726	0.005186	0.007178
838	Rn-218	0.0012	0.02063	0.01522	0.01012	0.01004	0.01529	0.01051	0.01157	0.01619
839	Rn-219	0.2059	1.64	1.174	0.7062	0.7144	1.158	0.747	0.8209	1.257
840	Rn-220	0.0011	0.01728	0.01267	0.008306	0.008261	0.01273	0.008621	0.009524	0.01352

EK 3.'ün devamı

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
841	Rn-222	0.0008	0.01075	0.007859	0.005078	0.005073	0.007888	0.005295	0.00585	0.008379
842	Rn-223	1.1427	9.272	6.809	4.469	4.461	6.78	4.656	5.09	7.167
843	Ru-103	0.9990	13.77	10.07	6.482	6.474	10.08	6.759	7.466	10.72
844	Ru-105	1.4328	20.24	14.95	9.947	9.864	15.01	10.28	11.35	15.86
845	Ru-107	0.5617	8.912	6.658	4.588	4.517	6.771	4.711	5.162	7.035
846	Ru-108	0.4706	1.788	1.216	0.6519	0.672	1.154	0.7058	0.7889	1.315
847	Ru-92	6.1833	54.99	40.58	26.67	26.31	40.4	27.45	30.26	42.6
848	Ru-94	1.6979	14.43	10.59	6.78	6.685	10.22	6.946	7.75	11.13
849	Ru-95	2.4551	32.33	24.13	16.52	16.26	24.24	16.9	18.57	25.33
850	Ru-97	1.6766	7.106	4.917	2.731	2.709	4.484	2.828	3.242	5.276
851	S-37	0.9444	54.57	42.63	35.25	34.29	46.12	35.59	38.16	44.55
852	S-38	0.8707	36.8	28.45	22.17	21.7	30.14	22.54	24.34	29.83
853	Sb-111	3.3819	40.67	29.88	19.33	19.26	29.81	20.12	22.21	31.61
854	Sb-113	2.7115	34.95	25.66	16.57	16.57	25.57	17.29	19.11	27.21
855	Sb-114	3.2860	67.79	51.05	35.97	35.57	52.36	36.91	40.48	53.82
856	Sb-115	2.1941	24.94	18.17	11.65	11.55	17.87	12.05	13.41	19.31
857	Sb-116	2.6915	56.32	42.38	30.47	30.03	43.68	31.17	34.13	44.7
858	Sb-116m	4.8946	79.74	59.79	41.98	41.22	60.53	42.83	46.93	62.89
859	Sb-117	1.7334	5.805	3.938	2.047	1.984	3.378	2.092	2.481	4.239
860	Sb-118	1.7079	22.29	16.31	10.54	10.52	16.3	10.98	12.14	17.33
861	Sb-118m	4.5947	67.16	50.26	35.48	34.58	50.56	36.1	39.54	52.6
862	Sb-119	0.8932	1.383	0.8341	0.2747	0.1296	0.2721	0.1404	0.3651	0.9176
863	Sb-120	1.2763	12.84	9.373	5.94	5.846	9.09	6.103	6.845	9.918
864	Sb-120m	4.6265	63.47	47.43	33.23	32.56	47.97	33.96	37.22	49.81
865	Sb-122m	1.5201	2.877	1.811	0.7554	0.6622	1.261	0.7048	0.9807	2.008
866	Sb-122	0.7821	12.18	8.984	5.931	5.898	9.033	6.179	6.794	9.537
867	Sb-124	1.8900	45.4	34.18	24.86	24.44	35.2	25.37	27.7	36.3
868	Sb-124m	0.7531	12.05	8.888	5.875	5.829	8.903	6.072	6.706	9.435
869	Sb-125	1.4104	12.51	9.122	5.7	5.625	8.729	5.869	6.58	9.676
870	Sb-126	4.3252	74.41	55.19	37.11	36.8	55.54	38.47	42.16	58.44
871	Sb-126m	2.6044	42.12	31.15	20.67	20.61	31.32	21.45	23.56	32.97
872	Sb-127	1.2395	18.82	13.92	9.238	9.2	14	9.562	10.55	14.76
873	Sb-128	4.7534	82.64	61.38	41.8	41.26	61.97	43.05	47.25	65.15
874	Sb-128m	3.0558	51.16	38	25.67	25.34	38.2	26.43	28.98	40.25
875	Sb-129	1.6499	37.06	27.85	19.73	19.47	28.47	20.31	22.2	29.39
876	Sb-130m	3.5147	70.12	52.68	36.78	36.3	53.57	37.84	41.53	55.73
877	Sb-130	5.0306	85.65	63.88	44.09	43.35	64.6	45.22	49.67	67.15
878	Sb-131	2.0622	51.01	38.4	27.8	27.48	39.75	28.57	31.25	40.61
879	Sb-133	2.1779	64.25	48.97	36.37	35.97	50.96	37.35	40.51	51.58
880	Sc-42m	4.9937	105.8	79.26	56.29	55.84	81.54	57.76	63.12	83.75

EK 3.'ün devamı

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
881	Sc-43	1.9857	27.3	19.93	12.83	12.81	20.01	13.41	14.82	21.26
882	Sc-44	2.8963	55.82	41.58	28.66	28.44	42.47	29.62	32.37	43.89
883	Sc-44m	0.9028	7.593	5.445	3.279	3.333	5.389	3.494	3.839	5.77
884	Sc-46	1.9997	51.11	38.58	27.57	27.13	39.59	28.35	30.98	40.57
885	Sc-47	0.6830	3.01	2.056	1.128	1.184	2.027	1.251	1.37	2.233
886	Sc-48	3.0769	83.63	63.21	45.86	45.01	65.26	46.99	51.27	66.39
887	Sc-49	0.0006	0.02346	0.01805	0.01388	0.01354	0.01891	0.0141	0.01529	0.01889
888	Sc-50	2.9139	78.16	59.15	43.08	42.53	61.11	44.14	48.24	62.38
889	Se-70	2.7574	20.2	14.7	9.226	9.214	14.51	9.601	10.6	15.55
890	Se-71	2.9806	42.78	31.58	21.05	21.01	32.06	21.93	24.09	33.5
891	Se-72	1.2801	1.32	0.8316	0.3414	0.3152	0.6065	0.3335	0.4469	0.9192
892	Se-73	3.2740	30.55	22.26	13.91	13.93	22.03	14.55	16.12	23.52
893	Se-73m	0.6795	7.237	5.313	3.408	3.409	5.286	3.546	3.925	5.627
894	Se-75	2.3277	10.91	7.655	4.372	4.496	7.478	4.705	5.197	8.183
895	Se-77m	0.7612	2.464	1.683	0.9153	0.9508	1.625	0.9959	1.107	1.816
896	Se-79m	0.4971	0.393	0.2574	0.1196	0.1144	0.1958	0.1197	0.144	0.2753
897	Se-81	0.0190	0.2173	0.1591	0.1017	0.1017	0.1585	0.1062	0.1172	0.1689
898	Se-81m	0.5333	0.5193	0.342	0.1656	0.1635	0.2796	0.1712	0.1988	0.3684
899	Se-83m	0.9968	24.22	18.25	13.19	13.01	18.88	13.56	14.81	19.23
900	Se-83	3.3591	65.59	49.11	34.73	34.36	50.43	35.64	39.04	51.86
901	Se-84	1.0247	11.78	8.546	5.329	5.349	8.483	5.609	6.16	9.109
902	Si-31	0.0007	0.02163	0.01643	0.01207	0.01184	0.017	0.01238	0.01344	0.01724
903	Sm-139	3.0643	39.14	28.86	18.92	18.85	29	19.71	21.7	30.56
904	Sm-140	1.6667	15.33	11.28	7.462	7.361	11.16	7.674	8.483	11.91
905	Sm-141	2.6381	37.07	27.57	18.51	18.41	27.85	19.07	21.06	29.15
906	Sm-141m	3.7834	50.99	37.97	25.77	25.62	38.31	26.57	29.17	39.9
907	Sm-142	0.8753	3.599	2.485	1.39	1.351	2.23	1.42	1.673	2.667
908	Sm-143	1.3752	14.81	10.81	6.911	6.871	10.66	7.156	7.979	11.47
909	Sm-143m	0.9788	18.31	13.64	9.361	9.227	13.77	9.669	10.57	14.44
910	Sm-145	1.5138	2.912	1.802	0.7139	0.6317	1.269	0.6759	0.9617	2.028
911	Sm-151	0.0003	0.0004154	0.0002502	0.00008229	0.00003008	0.00005477	0.00003222	0.000104	0.0002686
912	Sm-153	0.9877	2.255	1.454	0.6639	0.6669	1.235	0.7063	0.8531	1.614
913	Sm-155	1.0021	3.019	2.026	1.044	1.102	1.914	1.153	1.276	2.196
914	Sm-156	0.8575	3.358	2.286	1.23	1.272	2.174	1.331	1.493	2.483
915	Sm-157	1.4442	11.15	8.084	5.118	5.154	8.033	5.369	5.895	8.55
916	Sn-106	3.0712	32.82	24.23	15.91	15.73	23.92	16.33	18.15	25.48
917	Sn-108	2.6590	19.54	14.12	8.63	8.525	13.47	8.854	9.948	14.96
918	Sn-109	2.5747	53.14	40.08	29.47	28.97	41.16	29.9	32.71	42.03
919	Sn-110	1.7065	8.809	6.152	3.449	3.382	5.578	3.542	4.091	6.596
920	Sn-111	1.2430	13.15	9.771	6.487	6.359	9.579	6.622	7.366	10.23

EK 3.'ün devamı

-										
Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
921	Sn-113	0.7494	1.254	0.769	0.2788	0.1613	0.3073	0.1733	0.3611	0.8426
922	Sn-113m	0.5093	0.7984	0.4827	0.1602	0.07886	0.1647	0.08528	0.213	0.5304
923	Sn-117m	1.5594	4.935	3.293	1.666	1.626	2.831	1.717	2.042	3.578
924	Sn-119m	0.5740	0.8817	0.5303	0.1745	0.08052	0.1682	0.08731	0.2311	0.5838
925	Sn-121m	0.1732	0.2849	0.172	0.05807	0.03259	0.06938	0.03523	0.07832	0.1905
926	Sn-123	0.0063	0.1723	0.1304	0.09379	0.09218	0.134	0.09645	0.1053	0.1369
927	Sn-123m	0.9666	3.984	2.714	1.466	1.518	2.602	1.607	1.782	2.94
928	Sn-125m	1.0104	9.638	6.977	4.251	4.286	6.875	4.493	4.921	7.395
929	Sn-125	0.3297	8.337	6.296	4.539	4.458	6.501	4.648	5.087	6.613
930	Sn-126	0.9303	1.983	1.27	0.5765	0.5529	1.011	0.5859	0.729	1.403
931	Sn-127m	0.9935	15.19	11.27	7.492	7.433	11.38	7.733	8.543	11.93
932	Sn-127	2.1174	47.2	35.6	25.6	25.21	36.53	26.25	28.69	37.5
933	Sn-128	2.9445	18.05	12.89	7.778	7.615	11.97	7.936	9.03	13.67
934	Sn-129	1.2988	26.15	19.56	13.64	13.45	20.01	14.01	15.31	20.7
935	Sn-130	2.8043	25.81	18.89	12.23	12.11	18.62	12.57	13.96	19.94
936	Sn-130m	1.7461	22.85	17.1	11.96	11.67	17.25	12.12	13.32	18
937	Sr-79	3.1892	33.02	24.04	15.26	15.21	23.83	15.88	17.65	25.55
938	Sr-80	1.4104	12.14	8.901	5.682	5.667	8.727	5.91	6.538	9.409
939	Sr-81	3.2815	38.04	27.92	17.86	17.87	27.86	18.67	20.58	29.45
940	Sr-82	0.5680	0.3321	0.2023	0.07315	0.03254	0.04258	0.0327	0.08271	0.2067
941	Sr-83	2.0618	21.88	16.32	10.91	10.82	16.24	11.25	12.41	17.1
942	Sr-85	1.5381	13.99	10.24	6.542	6.506	10.05	6.753	7.522	10.81
943	Sr-85m	1.0731	6.099	4.268	2.432	2.502	4.161	2.622	2.892	4.592
944	Sr-87m	0.9246	9.012	6.511	4.016	4.042	6.435	4.235	4.649	6.962
945	Sr-91	0.8174	18.36	13.77	9.694	9.521	14.04	9.928	10.88	14.51
946	Sr-92	1.0337	32.13	24.42	18.14	17.75	25.37	18.52	20.18	25.64
947	Sr-93	2.7195	56.37	42.4	30.23	29.88	43.49	30.93	33.89	44.83
948	Sr-94	1.0412	33.89	25.86	19.3	18.93	26.86	19.67	21.42	27.14
949	Ta-170	2.5121	28.97	21.35	13.8	13.81	21.34	14.39	15.91	22.58
950	Ta-172	3.2508	43.54	32.54	22.49	22.23	33.01	23.07	25.3	34.2
951	Ta-173	2.1500	15.35	11.22	7.415	7.38	11.26	7.732	8.463	11.89
952	Ta-174	2.5588	25.23	18.59	12.54	12.43	18.74	12.99	14.16	19.55
953	Ta-175	2.7951	28.13	20.87	14.42	14.31	21.27	14.88	16.22	21.96
954	Ta-176	2.7221	52.57	39.81	29.54	29.24	41.24	30.08	32.84	41.81
955	Ta-177	0.9395	2.203	1.441	0.7047	0.7316	1.321	0.7728	0.8819	1.588
956	Ta-178	0.9904	3.527	2.455	1.435	1.451	2.353	1.53	1.707	2.639
957	Ta-178m	5.2877	33.02	23.5	13.77	13.93	22.93	14.6	16.21	25.08
958	Ta-179	0.4281	0.8674	0.5524	0.2515	0.2598	0.4857	0.275	0.3226	0.6157
959	Ta-180	0.7842	1.642	1.05	0.4849	0.5044	0.9372	0.532	0.6181	1.17
960	Ta-182	2.2951	32.61	24.45	17.32	17.06	25.01	17.78	19.35	25.64

EK 3.'ün devamı

Sıra	İzotop	Int	AP	RA	RL	RP	PA	LP	LL	LA
961	Ta-182m	2.1638	7.651	5.22	2,768	2.881	5	3.03	3.382	5.66
962	Ta-183	2.0908	8.615	5.912	3.259	3.359	5.689	3.515	3.93	6.427
963	Ta-184	3.6526	42.31	31.23	20.41	20.46	31.26	21.24	23.29	32.91
964	Ta-185	1.1120	4.38	3.029	1.667	1.725	2.927	1.807	2.001	3.253
965	Ta-186	3.4810	38.54	28.38	18.3	18.34	28.27	19.05	21.03	29.91
966	Tb-146	3.6907	87.12	65.84	48.21	47.61	68.24	49.08	53.73	69.52
967	Tb-147m	2.2016	46.19	34.88	25.5	25.16	35.94	26.09	28.46	36.69
968	Tb-147	3.2640	55.32	41.59	29.3	28.92	42.4	30.1	32.74	43.6
969	Tb-148m	5.3420	84.15	62.4	42.18	41.83	62.89	43.51	47.77	66.12
970	Tb-148	3.1763	59.14	44.35	31.32	30.86	45.43	31.97	35.02	46.81
971	Tb-149m	2.5934	37.11	27.57	18.55	18.38	27.56	19.08	21.1	29.08
972	Tb-149	2.6238	34.39	25.8	17.84	17.63	26.13	18.27	20.01	27.08
973	Tb-150m	5.1079	69.31	51.02	33.47	33.27	50.99	34.66	38.38	54.18
974	Tb-150	2.9207	57.41	43.24	31.56	31.36	44.8	32.29	35.24	45.72
975	Tb-151	3.3177	27.47	20.02	12.65	12.6	19.67	13.21	14.61	21.12
976	Tb-151m	0.4320	2.313	1.655	0.9977	0.9901	1.576	1.031	1.17	1.767
977	Tb-152	2.6354	19.53	14.08	8.614	8.629	13.73	9.007	10.01	14.89
978	Tb-152m	2.9158	41.31	30.76	21.53	21.21	31.26	21.99	24.09	32.41
979	Tb-153	2.0167	9.699	6.801	3.956	3.988	6.484	4.156	4.718	7.262
980	Tb-154	2.7031	52.4	39.75	29.73	29.3	41.2	30.24	32.95	41.68
981	Tb-155	2.0259	5.756	3.816	1.906	1.928	3.414	2.037	2.362	4.171
982	Tb-156	3.8114	49.96	37.37	25.78	25.53	37.73	26.46	28.9	39.27
983	Tb-156m	0.7370	1.474	0.9303	0.4017	0.3971	0.7667	0.4228	0.5291	1.041
984	Tb-156n	0.0682	0.1417	0.08941	0.03905	0.03825	0.07361	0.04082	0.05109	0.0998
985	Tb-157	0.1038	0.2033	0.1262	0.05172	0.04802	0.09565	0.05147	0.06908	0.1419
986	Tb-158	1.8951	21.43	15.92	10.91	10.73	15.93	11.18	12.27	16.73
987	Tb-160	1.7105	29.07	21.78	15.21	14.95	22.13	15.6	17.08	22.87
988	Tb-161	0.7576	1.461	0.9185	0.382	0.3436	0.6611	0.367	0.4988	1.016
989	Tb-162	2.2322	29.45	21.76	14.61	14.54	21.92	15.06	16.62	23.03
990	Tb-163	1.9639	22	16.05	10.07	10.09	15.89	10.57	11.59	17.02
991	Tb-164	3.7468	62.16	46.6	32.63	32.15	47.46	33.26	36.44	49.11
992	Tb-165	0.8320	20.42	15.4	11.25	11.11	15.98	11.55	12.63	16.31
993	Tc-101	1.0522	9.42	6.76	4.1	4.135	6.693	4.333	4.777	7.217
994	Tc-102m	2.5611	59.97	45.22	32.76	32.47	46.75	33.48	36.58	47.66
995	Tc-102	0.1180	2.088	1.561	1.072	1.061	1.587	1.101	1.205	1.649
996	Tc-104	2.4316	52.71	39.92	28.98	28.9	41.32	29.77	32.58	42.11
997	Tc-105	1.8735	20.41	15.19	10.29	10.22	15.37	10.59	11.57	15.96
998	Tc-91	2.8091	59.39	44.83	32.28	32.23	46.21	33.05	36.11	47.39
999	Tc-91m	2.6060	38.76	28.52	18.7	18.73	28.7	19.45	21.45	30.22
1000	Tc-92	5.9257	97.11	72.52	50.56	50.31	74.22	52.04	56.95	76.65

EK 3.'ün devamı

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
1001	Tc-93	1.8277	37.89	28.71	21.23	20.78	29.41	21.51	23.55	30.02
1002	Tc-93m	1.1990	21.45	16.15	11.95	11.87	16.76	12.25	13.24	16.9
1003	Tc-94	3.9490	70.5	52.59	36.36	35.81	53.04	37.24	41.04	55.66
1004	Tc-94m	2.7647	50.19	37.58	26.1	25.88	38.35	26.84	29.44	39.83
1005	Tc-95	1.6696	21.46	15.99	10.88	10.64	15.83	11.13	12.26	16.8
1006	Tc-95m	2.0503	18.8	13.82	9.019	8.908	13.55	9.285	10.26	14.53
1007	Tc-96	3.6931	66.19	49.52	34.38	33.7	49.72	35.11	38.73	52.19
1008	Tc-96m	0.3857	1.417	1.014	0.6333	0.5734	0.8439	0.6045	0.7151	1.061
1009	Tc-97	0.6312	0.6387	0.3886	0.1327	0.04509	0.06445	0.04661	0.156	0.4006
1010	Tc-97m	0.4897	0.5407	0.3288	0.1119	0.04009	0.06148	0.04188	0.1334	0.3428
1011	Tc-98	2.0230	38.02	28.24	19.25	19.01	28.53	19.86	21.68	29.98
1012	Tc-99m	0.9645	3.55	2.405	1.285	1.344	2.318	1.417	1.568	2.609
1013	Te-113	2.9440	56.38	41.99	29.49	29.17	43.05	30.29	33.13	44.5
1014	Te-114	2.6185	32.65	24.29	17.01	16.59	24.4	17.31	19.03	25.52
1015	Te-115	3.1611	57.49	43.09	30.09	29.68	43.99	30.81	33.79	45.42
1016	Te-115m	3.2535	65.49	49.12	34.88	34.42	50.27	35.73	39.14	51.68
1017	Te-116	1.5951	4.086	2.691	1.318	1.161	2.003	1.234	1.618	2.924
1018	Te-117	2.2455	38.9	29.16	20.64	20.4	29.59	21.16	23.16	30.83
1019	Te-118	0.7254	1.173	0.7052	0.2351	0.122	0.2618	0.1324	0.3165	0.7812
1020	Te-119	1.7958	20.99	15.55	10.37	10.11	15.22	10.59	11.77	16.34
1021	Te-119m	2.8414	38.18	28.5	20.15	19.75	28.83	20.56	22.47	30
1022	Te-121	1.7521	16.5	12.04	7.636	7.518	11.57	7.841	8.828	12.78
1023	Te-121m	1.3711	6.43	4.466	2.497	2.475	4.103	2.589	2.964	4.762
1024	Te-123	0.0012	0.001863	0.001119	0.0003723	0.0001892	0.0004059	0.0002058	0.0004999	0.001238
1025	Te-123m	1.3257	4.502	3.015	1.553	1.544	2.684	1.63	1.901	3.272
1026	Te-125m	1.2258	2.054	1.238	0.421	0.2409	0.5193	0.262	0.5712	1.374
1027	Te-127	0.0135	0.1374	0.09931	0.06148	0.06157	0.098	0.06456	0.07123	0.1059
1028	Te-127m	0.3774	0.6325	0.382	0.1305	0.07503	0.1597	0.08149	0.176	0.4239
1029	Te-129	0.2811	1.834	1.323	0.7983	0.7747	1.221	0.8105	0.9232	1.389
1030	Te-129m	0.3179	1.242	0.8617	0.4916	0.447	0.7075	0.4708	0.5786	0.9204
1031	Te-131	1.2900	11.25	8.23	5.295	5.293	8.17	5.529	6.071	8.671
1032	Te-131m	2.2826	37.73	28.24	19.61	19.23	28.58	20.08	22.02	29.77
1033	Te-132	1.8023	7.286	4.979	2.643	2.605	4.428	2.723	3.191	5.379
1034	Te-133	1.7082	30.15	22.55	15.79	15.66	23	16.22	17.72	23.72
1035	Te-133m	2.5736	47.67	35.57	25.05	24.67	36.47	25.68	28.14	37.66
1036	Te-134	2.3426	24	17.61	11.26	11.26	17.35	11.67	12.99	18.65
1037	Th-223	1.0098	2.216	1.472	0.7449	0.7693	1.336	0.8094	0.911	1.598
1038	Th-224	0.1527	0.6518	0.4515	0.2517	0.2588	0.4363	0.2699	0.3023	0.4864
1039	Th-226	0.1304	0.2636	0.1757	0.08994	0.08801	0.1497	0.09212	0.1082	0.1892
1040	Th-227	1.1797	3.856	2.653	1.473	1.464	2.42	1.524	1.749	2.847

EK 3.'ün devamı

Sira	İzoton	I	٨D	DA	DI	DD	DA	IP	II	T A
1041	TL 200	<u>γ,t</u>	AI	0.07(02	KL	NI 0.00727	0.04555	0.02066	0.04046	0.00126
1041	Th-228	0.1108	0.1197	0.07682	0.03401	0.02/3/	0.04555	0.02866	0.04046	0.08126
1042	Th-229	1.5793	2.924	1.928	0.9519	0.941	1.624	0.9895	1.164	2.08
1045	Th-230	0.0860	0.06539	0.04028	0.01548	0.00872	0.01555	0.009012	0.01801	0.04199
1044	Th-231	0.9290	1.039	0.6501	0.2562	0.1/63	0.3048	0.1848	0.3116	0.6913
1045	Th-232	0.0781	0.05618	0.03465	0.01293	0.006613	0.009871	0.006818	0.01498	0.0359
1046	Th-233	0.2308	1.023	0.7246	0.435	0.4295	0.6769	0.4488	0.5086	0.7658
1047	Th-234	0.2060	0.3406	0.2191	0.1024	0.09844	0.175	0.104	0.1266	0.2391
1048	Th-235	0.10/6	1.456	1.078	0./141	0./101	1.08	0.7376	0.8133	1.141
1049	Th-236	0.2046	0.9734	0.689	0.4142	0.4154	0.6638	0.4346	0.4833	0.7339
1050	T1-44	1.8952	4.378	2.865	1.391	1.496	2.701	1.578	1.757	3.145
1051	Ti-45	1.6995	24.12	17.65	11.4	11.38	17.7	11.89	13.14	18.79
1052	Ti-51	1.0117	10.22	7.426	4.569	4.618	7.365	4.801	5.301	7.845
1053	Ti-52	1.1800	3.633	2.443	1.272	1.33	2.316	1.4	1.555	2.648
1054	Tl-190	2.7819	35.33	25.98	16.86	16.86	26.07	17.57	19.39	27.51
1055	Tl-190m	4.7926	66.36	49.04	32.48	32.34	49.25	33.7	37.1	51.94
1056	Tl-194	2.3340	25.26	18.55	11.85	11.82	18.44	12.34	13.64	19.62
1057	Tl-194m	5.4705	68.38	50.46	33.17	33.01	50.55	34.46	37.94	53.27
1058	Tl-195	2.2474	29.8	22.48	16.12	15.86	23.02	16.5	17.89	23.49
1059	Tl-196	2.9519	46.16	34.69	24.62	24.41	35.67	25.23	27.55	36.44
1060	Tl-197	1.7577	12.15	8.897	5.838	5.839	8.913	6.077	6.656	9.384
1061	Tl-198	2.9784	48.57	36.78	26.43	26.29	37.8	26.99	29.53	38.58
1062	Tl-198m	3.4788	33.62	24.67	15.68	15.78	24.37	16.32	18.07	26.09
1063	Tl-199	1.6547	7.17	5.028	2.926	2.989	4.891	3.131	3.455	5.365
1064	T1-200	2.7360	33.95	25.27	17.3	17.16	25.55	17.85	19.44	26.52
1065	T1-201	1.2804	2.809	1.846	0.9151	0.9647	1.734	1.022	1.137	2.035
1066	T1-202	1.8492	13.16	9.539	5.8	5.843	9.36	6.099	6.745	10.1
1067	T1-204	0.0193	0.03808	0.02471	0.01194	0.01263	0.02292	0.01336	0.01502	0.02742
1068	Tl-206m	5.1573	64.85	48	31.66	31.53	48.26	32.77	36.17	50.63
1069	T1-206	0.0008	0.001484	0.0009698	0.0004694	0.0005043	0.0009124	0.0005333	0.0005928	0.00107
1070	T1-207	0.0026	0.06076	0.04546	0.0321	0.03162	0.0465	0.03298	0.03611	0.04811
1071	T1-208	2.3997	72.08	55.02	42.49	41.9	58.36	43.34	46.65	58.02
1072	T1-209	3.1232	52.23	39.18	28.21	28.09	40.48	28.96	31.57	41.36
1073	TI-210	3.3426	67.55	50.82	36.63	36.29	52.35	37.48	40.95	53.67
1074	Tm-161	3.9533	33.23	24.46	16.64	16.44	24.63	17.21	18.9	25.76
1075	Tm-162	2.6883	45.96	34.65	25.09	24.82	35.7	25.65	27.88	36.55
1076	Tm-163	3.1423	33.6	25.02	17.41	17.08	25.32	17.81	19.55	26.2
1077	Tm-164	1.6909	20.35	15.13	10.19	10.12	15.25	10.52	11.56	15.91
1078	Tm-165	2.4400	15.97	11.48	7.019	7.031	11.17	7.374	8.179	12.13
1079	Tm-166	2.9648	48.01	36.36	26.2	25.85	37.3	26.71	29.13	38.02
1080	Tm-167	1.4270	4.646	3.115	1.618	1.65	2.866	1.736	1.99	3.408

EK	3.'ün	devamı	

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
1081	Tm-168	3.2570	33.67	24.83	16.35	16.31	24.84	16.99	18.61	26.22
1082	Tm-170	0.0580	0.1301	0.08436	0.03962	0.04169	0.07652	0.04413	0.05035	0.09308
1083	Tm-171	0.0106	0.02185	0.01399	0.006256	0.006398	0.01211	0.006786	0.008131	0.01556
1084	Tm-172	0.5395	11.44	8.659	6.363	6.261	8.926	6.489	7.112	9.058
1085	Tm-173	1.0567	10.93	7.913	4.906	4.937	7.857	5.163	5.688	8.467
1086	Tm-174	4.0804	47.32	34.96	23	22.98	35.14	23.97	26.24	36.82
1087	Tm-175	1.7954	28.81	21.37	14.53	14.42	21.61	15.03	16.46	22.6
1088	Tm-176	2.8959	47.66	35.74	25.6	25.4	36.71	26.27	28.45	37.58
1089	U-227	1.0193	3.462	2.383	1.298	1.324	2.221	1.379	1.552	2.555
1090	U-228	0.1272	0.1818	0.1189	0.05554	0.04784	0.08057	0.05014	0.06616	0.1263
1091	U-230	0.1280	0.1213	0.07595	0.03048	0.01932	0.03085	0.02014	0.03589	0.07945
1092	U-231	1.8951	2.94	1.898	0.8659	0.7948	1.378	0.8321	1.058	2.032
1093	U-232	0.1172	0.09261	0.05694	0.02058	0.009344	0.0137	0.009656	0.02384	0.05879
1094	U-233	0.0583	0.04478	0.0274	0.009827	0.004394	0.00643	0.004515	0.01142	0.02837
1095	U-234	0.1064	0.08251	0.05049	0.01803	0.007785	0.01113	0.00796	0.02087	0.05204
1096	U-235	1.2472	4.699	3.217	1.755	1.804	3.053	1.887	2.1	3.468
1097	U-236	0.0962	0.0735	0.04489	0.01593	0.006597	0.009252	0.006745	0.01841	0.04622
1098	U-237	1.8106	4.414	2.927	1.486	1.495	2.563	1.573	1.815	3.193
1099	U-238	0.0774	0.05899	0.03602	0.01277	0.005258	0.007366	0.005374	0.01475	0.0371
1100	U-239	0.6883	1.584	1.047	0.5314	0.5437	0.9549	0.573	0.6541	1.14
1101	U-240	0.3228	0.3666	0.2301	0.09387	0.06548	0.1089	0.06868	0.1124	0.2424
1102	U-242	0.2441	1,199	0.848	0.5033	0.5076	0.8202	0.5355	0.5927	0.9065
1103	V-47	1.9371	27.52	20.14	13.03	12.99	20.21	13.58	15	21.45
1104	V-48	3.0913	73.61	55.22	39.52	38.92	56.88	40.45	44.39	58.23
1105	V-50	0.9999	33.41	25.5	19.22	18.77	26.58	19.49	21.26	26.91
1106	V-52	1.0080	34.12	26.1	19.57	19.14	27.13	19.93	21.66	27.35
1107	V-53	1.0153	26.3	19.86	14.27	13.99	20.4	14.66	15.93	20.88
1108	W-177	3.5307	24.94	18.11	11.64	11.59	18.09	12.19	13.37	19.16
1109	W-178	0.2572	0.516	0.3308	0.1513	0.1568	0.2928	0.1658	0.1936	0.3665
1110	W-179	0.9830	1.964	1.247	0.5498	0.5441	1.029	0.5766	0.7102	1.387
1111	W-179m	0.6525	1,737	1.153	0.5767	0.6016	1.072	0.6323	0.7166	1.269
1112	W-181	0.6589	1.363	0.8768	0.401	0.4169	0.7767	0.4402	0.5129	0.97
1113	W-185m	0.2849	0.7359	0 4904	0.2498	0.2607	0.4623	0.2751	0.3079	0.5378
1114	W-185	0.0005	0.001373	0.0009072	0.000449	0.000476	0.0008553	0.0005023	0.0005599	0.0009962
1115	W-187	1.1695	12.34	9.06	5.886	5.889	9.027	6.108	6.742	9.592
1116	W-188	0.0093	0.05281	0.03708	0.02125	0.02168	0.03615	0.02264	0.02523	0.03981
1117	W-190	1.7426	4,556	3 023	1.533	1.608	2.848	1.707	1.908	3.32
1118	Xe-120	2 2525	12.06	8 56	5 147	4 985	7 809	5 208	6.025	9 102
1119	Xe-120	2 5729	36.22	27.18	19.02	18 84	27 55	19 47	21.25	28 54
1120	Xe-122	0.9408	2.594	1 699	0.8164	0.7137	1.253	0.7564	1.01	1.859

EK	3. 'ün	devamı	

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	LL	LA
1121	Xe-123	2.1299	17.28	12.64	8.186	8.066	12.34	8.41	9.356	13.29
1122	Xe-125	2.0629	8.416	5.806	3.158	3.077	5.125	3.22	3.782	6.238
1123	Xe-127	2.0522	8.594	5.879	3.17	3.149	5.303	3.272	3.826	6.385
1124	Xe-127m	1.6148	5.149	3.448	1.753	1.752	3.093	1.847	2.146	3.749
1125	Xe-129m	1.3925	2.599	1.592	0.5968	0.4239	0.863	0.4556	0.7984	1.785
1126	Xe-131m	0.5727	1.05	0.6421	0.2347	0.1623	0.335	0.1748	0.3157	0.7182
1127	Xe-133	0.8850	1.824	1.159	0.4958	0.4581	0.8697	0.4881	0.6417	1.286
1128	Xe-133m	0.6637	1.634	1.046	0.4688	0.4002	0.7297	0.4253	0.5922	1.159
1129	Xe-135	0.9917	6.984	4.939	2.885	2.94	4.845	3.089	3.401	5.291
1130	Xe-135m	0.9365	11.86	8.682	5.6	5.569	8.625	5.813	6.44	9.257
1131	Xe-137	0.3492	4.988	3.711	2.446	2.428	3.743	2.532	2.793	3.917
1132	Xe-138	1.2685	26.19	19.82	14.56	14.43	20.54	14.86	16.12	20.78
1133	Y-81	3.3751	32.62	23.75	14.99	14.99	23.52	15.64	17.36	25.18
1134	Y-83	2.9058	36.45	26.81	17.7	17.59	26.88	18.35	20.29	28.42
1135	Y-83m	2.1380	23.34	16.97	10.76	10.73	16.85	11.22	12.44	18.06
1136	Y-84m	5.1232	103.4	77.43	53.93	53.08	78.91	55.28	60.66	81.65
1137	Y-85	2.2384	29.81	21.89	14.17	14.19	21.93	14.73	16.32	23.24
1138	Y-85m	2.1496	33.63	25.11	17.39	17.27	25.51	17.9	19.61	26.45
1139	Y-86	4.2433	89.22	67.26	48.05	47.31	68.94	48.99	53.67	70.76
1140	Y-86m	1.0078	6.091	4.293	2.481	2.553	4.206	2.667	2.947	4.595
1141	Y-87	1.5005	12.58	9.166	5.803	5.754	8.923	5.985	6.654	9.686
1142	Y-87m	0.9223	8.659	6.256	3.847	3.863	6.165	4.039	4.458	6.693
1143	Y-88	2.5378	63.04	47.97	35.97	35.19	49.8	36.56	39.96	50.55
1144	Y-89m	0.9968	23.41	17.53	12.41	12.18	17.97	12.72	13.94	18.55
1145	Y-90m	1.9534	17.72	12.77	7.873	7.911	12.65	8.29	9.145	13.59
1146	Y-91	0.0026	0.07701	0.05846	0.0428	0.04207	0.06059	0.04396	0.0477	0.06149
1147	Y-91m	0.9810	14.57	10.68	7.021	6.969	10.74	7.313	8.042	11.42
1148	Y-92	0.2655	6.36	4.777	3.415	3.354	4.921	3.508	3.843	5.043
1149	Y-93	0.1329	2.337	1.756	1.25	1.245	1.807	1.282	1.402	1.846
1150	Y-94	0.7829	19.38	14.57	10.48	10.3	15.04	10.76	11.71	15.37
1151	Y-95	0.6073	23.41	18.07	14.08	13.84	19.21	14.39	15.48	19.02
1152	Yb-162	1.8396	7.395	5.106	2.867	2.934	4.915	3.073	3.441	5.504
1153	Yb-163	1.7805	19.12	14.21	9.58	9.509	14.26	9.934	10.85	14.95
1154	Yb-164	0.8142	1.911	1.24	0.594	0.5978	1.091	0.6315	0.7548	1.376
1155	Yb-165	2.0836	9.661	6.852	4.164	4.168	6.647	4.404	4.894	7.3
1156	Yb-166	1.5249	3.16	2.011	0.8991	0.9105	1.725	0.9591	1.17	2.246
1157	Yb-167	3.0778	8.332	5.512	2.778	2.877	5.101	3.025	3.436	6.046
1158	Yb-169	3.5897	10.42	6.935	3.504	3 624	6 381	3.805	4 348	7.627
1159	Yb-175	0.1577	1,115	0.7967	0 4747	0 4801	0.7792	0.501	0.5557	0.8491
1160	Yb-177	0.5399	5.072	3 729	2.53	2 513	3 789	2 63	2.864	3 922

EK 3. 'ün d	evamı

Sıra	İzotop	$I_{\gamma,t}$	AP	RA	RL	RP	PA	LP	$\mathbf{L}\mathbf{L}$	LA
1161	Yb-178	0.1125	1.076	0.7756	0.4735	0.4784	0.7652	0.5006	0.5514	0.8295
1162	Yb-179	1.9215	26.79	19.72	12.89	12.83	19.71	13.37	14.77	20.93
1163	Zn-60	3.0946	42.18	30.92	20.05	20.13	31.05	20.94	23.1	32.91
1164	Zn-61	2.4198	39.92	29.7	20.13	19.99	30.21	20.78	22.86	31.38
1165	Zn-62	1.0758	12.31	8.983	5.756	5.733	8.893	5.989	6.65	9.579
1166	Zn-63	2.0235	30.05	22.09	14.36	14.4	22.21	14.97	16.49	23.4
1167	Zn-65	0.5340	14.49	10.97	7.915	7.775	11.31	8.17	8.861	11.52
1168	Zn-69m	0.9482	11.62	8.468	5.338	5.337	8.453	5.591	6.159	9.021
1169	Zn-71	0.5305	8.401	6.233	4.176	4.175	6.321	4.341	4.764	6.608
1170	Zn-71m	3.0091	42.6	31.33	20.47	20.4	31.5	21.4	23.5	33.3
1171	Zn-72	1.1438	4.156	2.829	1.522	1.59	2.725	1.668	1.845	3.061
1172	Zr-85	2.7756	39.91	29.46	19.26	19.28	29.59	20.12	22.13	31.2
1173	Zr-86	2.3763	8.825	6.121	3.431	3.358	5.5	3.508	4.042	6.519
1174	Zr-87	1.8195	25.39	18.66	12.18	12.17	18.77	12.68	13.97	19.77
1175	Zr-88	1.5978	11.22	8.102	4.932	4.889	7.751	5.096	5.696	8.561
1176	Zr-89	1.9373	30.59	22.78	15.8	15.59	23.05	16.13	17.78	24.05
1177	Zr-89m	1.0425	17.02	12.6	8.495	8.434	12.73	8.787	9.659	13.32
1178	Zr-95	0.9873	19.56	14.57	10.01	9.864	14.74	10.3	11.26	15.46
1179	Zr-97	1.1798	23.22	17.36	12.01	11.81	17.62	12.35	13.49	18.33

ÖZGEÇMİŞ

FATMA ONAT

fatma.onat@enerji.gov.tr onatfatma44@gmail.com

ÖĞRENİM BİLGİLERİ

Yüksek Lisans 2019-2021	Akdeniz Üniversitesi, Fen Bilimleri Enstitüsü, Radyasyon Güvenliği ve Koruma Anabilim Dalı, Antalya
Lisans	Hacettepe Üniversitesi, Mühendislik Fakültesi,
2012-2018	Nükleer Enerji Mühendisliği Bölümü, Ankara

MESLEKİ VE İDARİ GÖREVLER

Enerji ve Tabii Kaynaklar Uzman Yardımcısı		
2020-Devam Ediyor	Enerji ve Tabii Kaynaklar Bakanlığı, Ankara	