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ÖZET

DERİN SİNİR AĞLARI KULLANILARAK GÖZ BÖLÜTLEMESİ

Melih ÖZ

Yüksek Lisans Tezi, Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Dr. Öğr. Üyesi Taner DANIŞMAN

Ocak 2021; 29 sayfa

Gözler insanlık tarihinin başından beri insanların odaklandığı noktalardan birisi ol-

muştur. Görsel girdilerden sorumlu olmasının yanı sıra, kişinin sağlığı hakkında bilgi

taşıması, insanların duygusal durumunu anlama yönünde yardımcı olması gibi özellikle-

rinden dolayı pek çok araştırmada kullanılmaktadır. Bu çalışmada göz fotoğrafları sklera,

iris, göz ve arkaplan olarak bölütlenmesi amaçlanmıştır. Bu amaca hizmet etmesi için

derin sinir ağları kullanılmıştır.

Bu çalışma kapsamında, derin sinir ağlarını eğitebilmek için bir veri seti oluşturulmuş-

tur ve bu veri seti araştırmacıların faydalanması için yayınlanmıştır. Veri setinde bulunan

fotoğraflar farklı ışık, renk, mesefe ve yansıma özellikleri göstermektedir.

Bu çalışmada derin sinir ağları göz bölütleme konusu üzerinden kıyaslanmıştır. İlk

olarak temel derin sinir ağları parametrelerini belirlemek için deneyler yapılmış ve elde

edilen parametreler doğrultusunda derin sinir ağlarının performansları kıyaslanmıştır. Bu

sinir ağları VGGNet, UNet, PSPNet, DeeplabV3+ ve HRNetV2 yapılarını içermektedir.

Bu ağların genelleme yeteneği eğitim ve test setindeki başarıları ölçülmüştür. Veri setinin

bir kısmını oluşturan sentetik datanın ve data çoğaltma tekniklerinin etkisi incelenmiştir,

birbirlerine göre avantajları ve dezavantajları sıralanmıştır.

ANAHTAR KELİMELER: Derin Sinir Ağları, Göz Bölütlemesi
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ABSTRACT

EYE SEGMENTATION USING DEEP NEURAL NETWORKS

Melih ÖZ

MSc Thesis in Computer Engineering

Supervisor: Assist. Prof. Dr. Taner DANIŞMAN

Eyes have been one of the focus points of people since the beginning of human history.

In addition to being responsible for visual inputs, it is used in many research due to its

characteristics such as carrying information about the person’s health and helping people

to understand their emotional state. In this study, it was aimed to segment the eye images

into the sclera, iris, eye, and background. Deep neural networks have been used to aim

this goal.

Within the scope of this study, a dataset created to train deep neural networks, and this

dataset is published for the use of researchers. The photos in the dataset show different

light, color, distance, and reflection characteristics. The dataset contains images from the

MicheII dataset, synthetic images generated from the UnityEyes program, and the dataset

we created from the videos taken for the BAP project TTU-2018-3295.

In this study, the performance of the different deep neural networks was compared

on the subject of eye segmentation. Firstly, experiments were made to determine basic

deep learning parameters. After that, performances of various deep neural networks were

compared in line with the obtained data. These networks include VGGNet, UNet, PSPNet,

DeeplabV3+, and HRNetV2 structure. Their success in the generalization performance

was measured in the training and test set of these networks. Synthetic data that make up

a part of the dataset and data augmentation techniques were examined. Advantages and

disadvantages compared to each other.
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COMMITTEE: Assist. Prof. Dr. Taner DANIŞMAN

Prof. Dr. Melih GÜNAY

Assist. Prof. Dr. Shahram TAHERİ
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INTRODUCTION M. ÖZ

1. INTRODUCTION

The Eyes are part of our body that are responsible for our visual inputs. Visual inputs

are the first step to visual understanding that is a fundamental part of our survival and

being. They are external organs that can be seen without any specialized tools that make

them one of the first things you notice about a person. They are also unique to each indivi-

dual whose color can be different from person to person. The main eye colors are brown,

black, blue, and green. The colored part of the eye is called the iris that has unique patterns

for each person. Therefore, it can be used as a personal identity. The white, veiny part of

the eye is called the sclera. The sclera is responsible for eye structure and protecting the

eye from any harm. The small inner circle inside of the iris is called the pupil. The pupil

works like a regulator that adjusts how much light can enter the eye. With the information

they contain such as iris patterns and the unique vein structure of the sclera, they can be

used to identify a human (Daugman 1994). Also, they show signs about the wellness of

a human. For example, redness of the sclera can be a sign of allergies or infections, the

pupil might lose its brightness due to the cataract disease. They can lose their shape due to

genetics or accidents (Günay et al. 2015). One of the ways to obtain eye information is

Iris

Sclera

Pupil

Figure 1.1. Eye regions

called eye segmentation. Segmentation is the task in which input images are annotated to

parts referring to which objects are in that image. Eye segmentation is the task used to get

boundaries of the parts we want to use. For example, sometimes only iris is required for

the research. Therefore, the eye image is annotated to have two parts iris and background

(Bazrafkan et al. 2018).

The most common use case of eye segmentation is iris recognition. Iris recognition

systems use special hardware to capture eye image that is highly restricted and uses image

processing methods to locate iris location. Main methods used for such task is called

1



M. ÖZ

Hough Circle Transformation and Daughman’s Method. The main difference between

those algorithms is Daughman’s Method does not expect the iris to be perfectly circular.

Therefore, it is more commonly used in iris recognition task (Daugman 1994).

The problem with image processing methods is the expected input of repeated pat-

terns, that are near impossible to get when we consider 3d model of the eye. Therefore,

there is a need for a model that adapts different patterns in inputs. This is where neural

networks excel. Segmentation using neural networks is a common practice since it’s being

used in various problems such as segmenting the roads for autonomous driving cars, de-

tecting faulty cells for disease detection, and even art style transformation (Chollet 2017).

Neural networks require input, output pairs to understand the problem and create the re-

quired filters to address a solution for the problem. For different images to be segmented,

an adequate amount of manually segmented input and output pairs need to be given to

train the network. Thus, this creates a challenge compared to image processing methods

which only require certain calculations to do the task (Goodfellow et al. 2016).

In order to satisfy training and testing data required for deep neural networks, several

datasets are created. The first dataset contains images taken for BAP project TTU-2018-

3295. The second dataset contains 900 synthetic images generated from the UnityEyes

interface (Wood et al 2016). Alongside these datasets, 415 images from the MicheII chal-

lenge are also annotated (Marisco et al. 2017). Datasets contain images are in different

angles, distances, and lighting conditions. Thus, that makes them a good candidate for

comprehensive image segmentation. In addition to sparse images, the effect of the data

augmentation methods is also tested. The model used for training also affects the results.

In this thesis, various deep neural network models are evaluated using the datasets cre-

ated. VGGNet (Simonyan and Zisserman 2015), UNet (Ronneberger et al. 2015), PSPNet

(Zhao et al. 2017), HRNetV2 (Sun et al. 2019), and DeeplabV3+ (Chen et al. 2018) are

used for testing how different structures affect the segmentation.

This thesis explores eye segmentation methods in the literature, DNN’s in general,

and eye segmentation in DNN’s. Then the methods are used in this thesis. The following

section is "Experiments and Discussion" where the results are shared, also comments on

the results are made. The last part of this thesis is "Conclusion" where the thesis interpre-

tations are made.

2
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LITERATURE REVIEW M. ÖZ

2. LITERATURE REVIEW

2.1. Eye Segmentation Methods

In this section eye segmentation and its sub-forms, iris and sclera segmentation met-

hods explored.

2.1.1. Early Iris Segmentation Methods

The human eye has been a region of interest. However, the main interest has always

been in iris recognition since iris being offered as an individual recognition method in

1923 by Burch (Bazrafkan et al. 2018). With the possibility of the eyes being used for

identification, algorithm development for the task continued until John Daugman (1994)

created an algorithm that can be used in commercial systems Fig 2.2 shows the workflow

of the system. Daugman got a patent for his algorithm and that patent covers the method of

iris recognition expired in 2005. Thus, this event accelerated the development of different

iris segmentation methods (Bazrafkan et al. 2018).

Figure 2.2. Iris recognition schematic

Early iris recognition systems had satisfactory rates of false accept rate about one in a

million and false reject rate below one percent. Their shortcomings were user-contributed

3
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constraints: the user needed to stay without any movement in a position and waited several

seconds for the iris image to be captured. Constraints prevented the systems from being

used with ease by disabled people and dropped the experience of users (Matey et al.

2006). Matey and friends developed a more mobile system that uses multiple cameras can

capture iris when the subject moves along a certain path.

Iris recognition system developed by Daugman used Integro-Differential Operator

(IDO) for iris segmentation, which is formulated as

max(r,x0,y0) =

∣∣∣∣Gσ(r)
∂x

∂r

∮
r,x0,y0

I(x, y)

2
ds

∣∣∣∣ (2.1)

Gaussian filter represented with Gσ(r), σ is a ratio that is used to remove grainy look,

reduce the effect of light reflections and obtain a smooth region in radius r. I(x, y) rep-

resents pixel intensity values at the image domain. Search function moves circularly then

defines a pixel wide circular anchor point, then it tries to find the circular region with the

maximum amount of intensity change compared to first point x0, y0 for the pixels within a

range of r in the image if it’s not restricted. Maximum intensity change points are circular

edges in this case, since these images are constrained eye images, the function returns

either inner or outer iris boundary regarding on search radius defined before.

Other iris recognition systems use some circular edge detection as well. The most po-

pular one is circular Hough transformation and one of the most known applications of

the method was proposed by Wildes (1997). Wildes also first used the gaussian filter to

smooth the eye image. In order to get the outer iris boundary, he first applied an almost

vertical edge detector and created the edge map of the eye image. Then, he used circu-

lar Hough transformation to get the outer iris boundary. Circular Hough transformation

formulated as

Hc(xc, yc, rc) =
n∑
e=1

(xe, ye, xc, yc, rc), (2.2)

total number of edge points presented by n and this formula represents number of edge

points (xe, ye) on circle defined as (xc, yc, rc) and the potential circle with max edge points

4
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calculated with votes:

Hc(xe, ye, xc, yc, rc) =

1, if(xe, ye, xc, yc, rc) = 0

0, else

(2.3)

This formula represents that if a distance between (xe, ye) on the circle defined as (xc, yc, rc)

is 0 that counts as a vote, and the potential circle with most votes returned as the outer iris

boundary. After finding the circle (xc, yc, rc) the inner iris boundary found by applying an

edge detector without any orientation and applying circular Hough transformation within

range of rc (Wildes 1997). Eyelid boundaries are also calculated as two different parabo-

lic arcs. In order to find those arcs, horizontal edge detection is applied to the eye image.

Fig 2.3 shows results of gradient-based edge detection with different directions applied to

the eye image.

a) b) c) d)

Figure 2.3. a) The eye image b) result of vertical, c) horizontal, and d) without any

orientation edge detector applied to the image

The problem with early iris segmentation methods is their too strict conditions, the re-

quirement of near-infrared images and iris not being circular, repeated patterns that near

impossible to get when we consider 3d model of the eye. However, in restricted conditi-

ons, early methods had a satisfactory rate of accuracy (Matey et al. 2006). The problem

of the eye not being circular and concentric is solved with future works (Daugman 2007;

Shah et al. 2009).

2.1.2. Image Processing Based Sclera Segmentation Methods

When the sclera is extracted from an eye image, it’s called sclera segmentation. Sclera

information also can be used as a biometric (Zhou et al. 2011). Image processing based

5
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sclera segmentation methods are partially similar to iris segmentation methods. The iris

boundaries are detected using edge detection methods, and the sclera region is detected by

color intensity differences since the sclera region is mostly white (Alkassar et al. 2017).

These methods also work in restricted conditions.

2.1.3. Deep Neural Networks

For the segmentation task, there is a need for a model that adapts different patterns

in inputs. This is where Deep Neural Networks (DNN) shines. Although the usage of

DNN’s goes back to several decades, they became standard in recent years in the image

segmentation task.

Two events started the rise of Deep DNNs, firstly the release of the ImageNet database,

and secondly the introduction of the AlexNet (Deng et al. 2009). The idea was to keep the

segmentation data towards multiple layers of fully connected layers to contain as much

information as possible. VGGNet structure also used this with multiple convolutions each

layer to keep multiple levels of data. VGGNet was created for the image classification

task, it was in the top five in ImageNet results when it was published. While going in-

depth with filters, some information was lost. This problem rose from mapping two layers

directly. To tackle this problem, the idea of learning the difference between layers instead

of direct mapping created. With that idea, losing information problem while going de-

eper into layers improved (He et al. 2016). While computing through the layers, dimen-

sions shrink due to convolution operations, and to get the original dimensions, directly

using up-sampling methods can lead to data loss. To tackle this problem encoder-decoder

networks were proposed (Badrinarayanan et al. 2017; Ronneberger et al. 2015). While

encoder structures work like regular network without up-sampling operation. Decoder

structures take low-level features and up-samples them by convolving with changeable

decoder layers. UNet decoder structure concatenates corresponding level encoder outputs

with up-sampling outputs to segmentation data. Thus, that enables recovery of the higher-

level filter outputs. PSPNet introduced a decoder structure that keeps rich segmentation

information thanks to different rates of pooling operations applied to the output of the en-

coder. Still more in-depth the network, more computation power is required. To get more

information in a layer, parallel convolutional operations with dimension reduction were

6
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proposed (Szegedy et al. 2015). Later, that idea improved by separable convolutions on

every channel with dimension reduction. In the end, that way, multiple contexts in a layer

are compressed without increasing computational complexity (Howard et al. 2017). De-

eplabV3+ Structure combines parallel convolutional operations with dilated convolutions

with different rates that encode different scale information with lesser computational po-

wer. A very recent HRNetV2 structure proposed the idea of maintaining high-resolution

representations through the whole process. Unlike other DNNs HRNetV2 approach con-

nects lower resolution convolution streams in parallel rather than in series. Thus, higher

resolution information is kept during the process that outputs precise results.

2.1.4. Deep Learning Based Eye Segmentation Studies

With the rise of DNNs, multiple research on eye segmentation using DNNs are con-

ducted. In this section starting from iris segmentation, segmentation models using DNNs

are mentioned. Liu et al. (2016) proposed a network that includes three parallel convo-

lution layers with different rates that concatenate at the last layer. Arsalan et al. (2017)

proposed a two-stage model that uses image processing methods to get rough iris bounda-

ries than for each pixel used VGGNet based DNN. Bazrafkan et al. (2017) used UNet like

architecture to segment the iris region. These researches show that DNN architectures are

applicable to solve the iris segmentation problem. Lucio et al. (2018) used Generative Ad-

versarial Network (GAN), FCN, and SegNet in sclera segmentation. Proposed system had

two layers one layer detected ROI used YOLO object detection algorithm and it’s output

fed to the neural network. Naqvi and Loh (2019) used ResNet based encoder-decoder ne-

twork to segment sclera region. Rot et al. (2018) used SegNet based network to segment

the eye into six distinct regions. Garbin et al. (2019) used Segnet based neural network to

introduce their controlled eye dataset. Luo et al. (2020) segmented eye into the three regi-

ons iris, sclera, and background using SegNet based encoder-decoder network with GAN.

SegNet network output given to pre-trained GAN encoder and discriminator, ground truth

given to encoder, taking advantage of both structures.

7
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3. MATERIAL AND METHOD

3.1. Optimizers

Gradient Descent based methods are used as optimizer in this study. Gradient descent

is a method to minimize a function J(θ) calculated by a model’s parameters by updating

relative θ. The learning rate η determines the step size to reach the minimum. The idea

of calculating loss function using the whole dataset is computationally too expensive for

the deep learning algorithms. Thus, to solve this problem using a random sample from

a set of data used to calculate the minimum is created. This method is called Stochastic

Gradient Descent (SGD) used in this study to train the DNNs (Chollet 2017).

3.1.1. SGD With Momentum

SGD with Momentum usually referred to as Momentum optimizer, in addition to SGD

uses momentum parameter to escape local minima by updating gradients with respect to

previous gradients (Chollet 2017).

3.1.2. Adam

Name of the Adam derives from adaptive momentum estimation. Adam combines the

properties of two optimization methods: the ability of AdaGrad to deal with sparse gra-

dients, and the ability of RMSProp to deal with non-stationary objectives. Adam is using

two-moment parameters with bias correction to update weight parameters (Kingma and

Ba 2015).

3.2. Activation Functions

The activation functions are essential for DNNs, they are used to determine the output

of the hidden layers of a network. They are used to make weights of the layers to be

updated in a non-linear manner. Therefore, they are used to solve non-linear problems

(Chollet 2017).
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3.2.1. ReLU

Rectified Linear Unit (ReLU) function is faster learning activation function with good

generalization properties (Goodfellow 2016). The ReLU activation function is a threshold

operation to each input given that values less than zero are set to zero hence the ReLU is

given by

f(x) = max(0, x)

Xi, if xi ≤ 0

0, else

(3.4)

This function removes the inputs values that are less than zero. Thus, forcing them to

zero and solving the vanishing gradient problem which occurs in certain types of activa-

tion functions.

Figure 3.4. Relu response

3.2.2. Softmax Activation Function

The Softmax activation function is used to calculate the probability distribution for gi-

ven inputs and number of classes. Calculated class probabilities for each class is between

0 and 1. The total of the probabilities for classes is equal to 1.

S(xi) =
exi∑
j e

xj
(3.5)

The softmax function in image segmentation models used to calculate class of each pixel

values in the input image and mostly used on the last layer of the network or blended in

with loss function (Goodfellow 2016).
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3.3. Models

In this section DNN models used for eye segmentation are briefly explained.

3.3.1. UNet

U-net is a decoder-encoder network. While encoder parts use 3×3 convolutions to

extract features, decoder part concatenates deconvolution operation output with corres-

ponding or encoder output. This decoder structure helps to preserve pattern information

(Ronneberger et al. 2015). It doesn’t have any fully connected layers which lower com-

putational cost and can be trained with a small dataset.
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Figure 3.5. VGGNet encoder with UNet decoder

3.3.2. PSPNet

PSPNet takes features extracted from encoder structures. Same extracted output pro-

cessed with different pooling rates to get rich contextual information. Then, each one

corresponding to a pyramid level and processed by a 1x1 convolutional layer to reduce

their dimensions. That enables the network to make use of information held on different

sub-regions. The output of these layers upsampled and concatenated to acquire the final

prediction (Zhao et al. 2016).
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Figure 3.6. VGGNet encoder with PSPNet decoder

DCNN
1x1 Conv

Upsample
by 4

Concatenation 3x3 Conv Upsample by 4

1x1 Conv

Image

Prediction

ENCODER

DECODER

Figure 3.7. Deeplabv3+ network structure

3.3.3. HRNetV2

The unique feature of the HRNet is unlike encoder-decoder networks or fully con-

nected neural networks keeps the high-resolution feature maps until the last layer while
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extracting lower resolution feature maps alongside. Traditional convolution blocks use

pooling operation after several convolution operations, HRNet uses pooling after each

convolutional blocks as well, however, the output before pooling operation also joins

another convolutional block. Modified version of HRNet used for segmentation is named

HRNetV2 (Sun et al. 2019).

Figure 3.8. HRNet network structure (Sun et al. 2019)

3.3.4. DeeplabV3+

In this study, the segmentation task is done with Google’s Deeplabv3+ neural network.

Deeplabv3+, in addition to the previous work, adds depth-wise separable convolution to

get better results in benchmark datasets. Deeplabv3+ uses depthwise separable convolu-

tion with different rates of atrous convolutions to get the context (Chen et al. 2018). This

results in increased performance and speed compared to traditional convolution operation.

Iout[i] =
∑
k

Iin[i+ r · k]f [k] (3.6)

When we chose r value as 1, it becomes a traditional convolution operation. Iout is

convolution output f is the filter and Iin is the input image. Depthwise separable convo-

lution merges every channel of the layer with 1×1 convolution on every channel simulta-

neously, instead of filtering each channel separately and merging them later. The decoder

first uses depthwise separable convolution to capture low-level features then merge them

with encoder results, using 3x3 convolution to polish results and upsample to get segmen-

tation results (Chen et al. 2018).
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3.4. Dataset

Our original dataset consists of 308 images that vary in distance, angle, and lightning.

The images taken from low light videos, therefore, have lower quality. The images have

a resolution of 640 × 480, have RGB channels, and are referred to as the Base dataset.

The second dataset, 900 synthetic eye images are generated from the Unityeyes software

used (Wood et al. 2016). The synthetic data created from the Unityeyes already have

sclera and iris annotations; therefore, only the iris region is annotated by us. The third and

last datasets were created from MICHEII (Mobile Iris Challenge Evaluation II) dataset.

143 images from the SamsungGalaxyTab2 dataset that have the same resolution as the

Base and Syn datasets used. 312 images from the SamsungGalaxyS4 dataset that have

16:9 aspect ratio and scaled to 540×960 resolution are used (De Marisco et al. 2017).

Images with their name ending with *1.jpg chosen for annotation to avoid favoritism and

reduce the annotation labour these datasets referred to as the Miche480 and Miche640

respectively. All images are manually annotated with the annotation program created. To

create a challenging segmentation problem, datasets are split into training and test set

with around 4 to 1 ratio. Figure 3.9 show samples images from our real-life dataset. Table

3.1 shows the summary of the datasets used in this study. When all of the train and test

datasets are combined it’s referred to as All dataset.

Table 3.1. Dataset attributes

Dataset Name Resolution Number of Train Images Number of Test Images

Base 640×480 248 60

Syn 640×480 715 181

Miche480 640×480 116 27

Miche960 540×960 250 62

3.5. Augmentation

In the scope of this thesis, the effect of augmentation methods is tested. In this section,

these operations are explained.
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Figure 3.9. Sample images from the a) Base, b) Syn, c) Miche480, and d) Miche640

datasets

3.5.1. Rotation

Rotation is a common image augmentation technique and new location of the rotated

pixel can be represented as:

xn = cos(θ) ∗ (Xn−1 −X0) + sin(θ) ∗ (Yn−1 − Y0)

Yn = sin(θ) ∗ (Xn−1 −X0) + cos(θ) ∗ (Yn−1 − Y0)
(3.7)

X0 and Y0 represents anchor point of rotation Xn−1 and Yn−1 old location of the pixel

value and Xn and Yn new location of the pixel obtained.

3.5.2. Resize

In order to simulate different distance conditions resizing operation used. For resizing

operation, method of bicubic interpolation used. Bicubic interpolation creates a surface

for unlimited resizing by the formula.

fi(x, y) =
3∑
i=0

3∑
j=0

aijx
iyj (3.8)
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The equation (3.8) shows that 16 aij coefficients need to be calculated to find the inter-

polated area. Four of the coefficients are calculated with the horizontal derivatives, four

of the coefficients are calculated with the vertical derivatives, four of the coefficients are

calculated with the diagonal derivatives, and four of the coefficients are corner intensity

values (Jain 1989).

3.5.3. Blur

Blur is a process to convolve the image with different kernel matrices in order to get

a smoother image. Motion blur is a process to convolve the image with various kernels to

give it a shaky look. It can be formulated as (3.9).

Ib(x, y) = I(x, y) ∗K(s, s) (3.9)

In our study, kernels we used for blurring is a matrix filled with ones, for vertical motion

blur a matrix filled with ones on the middle vertical row, and for horizontal motion blur a

matrix filled with ones on the middle horizontal row (Jain 1989).

3.6. Evaluation

In this study mean Intersection Over Union(IoU) metric used as evaluation metric

(3.10). IoU calculates the ratio of segmentation success by comparing correct segmen-

tation results to correct segmentation results and incorrect segmentation results. Then the

total of each class IoU averaged by the total class count to calculate mIoU (Danışman

2020).

IOU =
TP

TP + FP + FN
(3.10)

Correct segmentation of the calculated class results presented by true positives TP and

incorrect segmentations represented by false positives FP segmentations of the class from

regions belong to other classes and false negatives FN represent the missed points from

the classified class.
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4. RESULTS AND DISCUSSION

In the scope of this thesis network performances compared using different datasets. Go-

ogle Colab notebooks used for experiments and models trained using Keras-Tensorflow

structure (Chollet and others 2015). While there can be differences between the notebooks

GPU used for experiments mainly Nvidia Tesla K20 with 12GB memory used. In order

to find optimal parameters for the networks, several experiments are conducted.
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Figure 4.10. Initial network used for the experiments

4.1. Shuffling

Dataset shuffling means that each epoch batches created with a different order. To find

out how much it effects the results experiment conducted with the Base dataset. Table 4.2

shows that shuffling makes a very significant change in generalization abilities. Therefore,

the next experiments are always conducted with dataset shuffling.

Table 4.2. Effect of the shuffling

Dataset Shuffle Optimizer
Learning

Rate

Train

Loss

Train

mIoU

Validation

Loss

Validation

mIoU

Base False Adam 1e-4 0.0065 0.9660 0.3034 0.6155

Base True Adam 1e-4 0.0072 0.9645 0.1528 0.7334
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4.2. Optimizers

Using the All dataset Momentum and Adam optimizers compared with different lear-

ning rates. For this experiment ten sized batches are used, Table 4.3 shows results obtained

with different settings. Adam’s suggested learning rate of 0.0001 worked better compared

to the momentum optimizer with different rates. In some cases, Adam performs better on

the training set and Momentum is better at generalizing (Zhou et al. 2020). However, Mo-

mentum optimizer requires more tweaks on learning and momentum variables. Fig 4.11

shows clear difference between the optimizers. While Adam sometimes makes big leaps

to escape local minima, Momentum optimizer shows smaller updates even with higher

learning rate. Since it doesn’t create any unfairness, the rest of the experiments conduc-

ted with Adam optimizer with the rate of 0.0001, the cross-entropy loss is used as a loss

function, epoch size is 150 unless it’s stated differently, and mIoU used as the evaluation

metric.

Figure 4.11. Adam optimizer with learning rate of 0.0001 compared to Momentum

optimizer with learning rate of 0.01

4.3. Batch Size

One of the important factors that affect network performance is batch size. Parame-

ter itself doesn’t have an optimal number, it’s performance varies with dataset size and

learning rate. One good rule of thumb is not using a batch size of 1 because that limits
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Table 4.3. Initial network results

Dataset Optimizer
Learning

Rate

Train

Loss

Train

mIoU

Validation

Loss

Validation

mIoU

All Adam 1e-3 0.0035 0.9756 0.0953 0.8171

All Adam 1e-4 0.0027 0.9817 0.0679 0.8381

All Adam 1e-5 0.0065 0.9598 0.066 0.8048

All Momentum 1e-2 0.0062 0.9600 0.0644 0.8201

All Momentum 1e-3 0.0104 0.9334 0.0608 0.8161

All Momentum 1e-4 0.0215 0.9100 0.0810 0.706

networks generalization abilities. Due to memory limitations, DeeplabV3+ and HRNetV2

can work with batch sizes up to 5. Keeping that in mind, several batch sizes are tested with

the All dataset. Table 4.4 shows that the batch size of 1 makes the network more likely

to overfit and should be avoided. A batch size of five seems to be a reasonable choice for

performance-wise, also it adds consistency to the network comparisons.

Table 4.4. Batch size results

Dataset
Batch

Size

Train

Loss

Train

mIoU

Validation

Loss

Validation

mIoU

All 1 0.0074 0.9628 0.2 0.7535

All 2 0.0023 0.9841 0.082 0.8371

All 5 0.0036 0.9745 0.0535 0.8420

All 10 0.0027 0.9817 0.0679 0.8381

The second part of the batch size experiment is while testing the batch size effect

on each part of the dataset, also creates the standard results for comparison of the next

experiments. Performance of each network shown at Table 4.5. While the batch size of 2

shows a slight improvement in sub-datasets only the Miche480 results can be considered

as an improvement since other differences can be due to the weight initialization.
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Table 4.5. Batch size results subsets

Dataset
Batch

Size

Train

Loss

Train

mIoU

Validation

Loss

Validation

mIoU

Base 2 0.0072 0.9645 0.1528 0.7334

Base 5 0.0068 0.9645 0.1423 0.7266

Miche480 2 0.0024 0.964 0.0318 0.8206

Miche480 5 0.0024 0.9651 0.0342 0.7745

Miche640 2 0.0011 0.9759 0.0471 0.7993

Miche640 5 0.0016 0.9774 0.0365 0.7765

Syn 2 0.0016 0.9685 0.0365 0.9311

Syn 5 0.0037 0.9848 0.0386 0.9285

4.4. Augmentation

Augmentation is a good way to prevent overfitting (Chollet 2017). In order to see the

effect of the augmentation operations the network trained with the following settings,

images are rotated in both directions up to 20 degrees, moved in any direction up to 5%,

sheared 5%, zoomed in or out up to 5%, and horizontally flipped. This operation is called

Augmin in the Table 4.6, Augmid and Augmax also shares same properties but multiplied

by two and four respectively.

Table 4.6. Augmentation results

Dataset Augmentation
Validation

Loss

Validation

mIoU

All Augmin 0.0321 0.8422

All Augmid 0.031 0.83547

All Augmax 0.0334 0.8355

4.5. Different Network Structures

Within the scope of this study full VGGNet encoder with UNet decoder as shown in Fig

3.5, partial VGGNet encoder with PSPNet decoder as shown in Fig 3.6, DeeplabV3+ ,and
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HRNetV2 structures tested with the min augmentation settings. Results at Fig 4.7 suggest

that all deeper network performed similarly expect VGGPSPNet which performed similar

to the initial network which is expected when it’s depth regarded.

Table 4.7. Dataset Results of the networks trained with All dataset per-class

Dataset
Network

Name

Train

Loss

Train

mIoU

Validation

Loss

Validation

mIoU

All VGGPSPNet 0.0243 0.8778 0.0334 0.839

All VGGUNet 0.012 0.9355 0.0323 0.8521

All DeeplabV3+ 0.0077 0.9437 0.0359 0.8682

All HRNetV2 0.7488 0.9133 0.7524 0.8689

In the second step of the network experiment, these network’s sub-dataset perfor-

mance and each class performance tested. Table 4.8 shows those results. When compared

to the results of Table 4.5 and Table 4.4, while PSPNet shows similar results with the ini-

tial network other networks shown improvement in the All and sub-datasets. Since these

networks are also deeper than the initial network these might be the effect of network

structure. Syn dataset results seem similar that suggests, a dataset produces more con-

sistency with the sample size. However, other datasets especially the Base dataset shows

significant improvements when trained with the other datasets.

In order to expand the generalization abilities of the networks, they are trained with

cross subsets that contain all images except one set. For example, the CrossBase train

set contains all other subsets, and the test set contains Base dataset images. Results are

given in Table 4.9. These results are shown that in the case of eye segmentation, Deep-

labV3+ has the best ability to learn the training data and HRNetV2 has the best ability of

generalization. Table 4.10 shows each network’s test set performance on each the class.

Even in the cross setting the background class shown high mIoU results, which means the

networks can extract the eye location with ease.
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Table 4.8. Test set results of the networks trained with All dataset per-class

Dataset
Network

Name

Total

mIoU

Background

mIoU

Sclera

mIoU

Iris

mIoU

Pupil

mIoU

All VGGPSPNet 0.839 0.9914 0.8 0.8292 0.7347

All VGGUNet 0.8521 0.991 0.8157 0.8455 0.7561

All DeeplabV3+ 0.8682 0.9929 0.8353 0.8597 0.7844

All HRNetV2 0.8689 0.9929 0.8399 0.8617 0.7803

Base VGGPSPNet 0.7182 0.9786 0.6757 0.7243 0.494

Base VGGUNet 0.7510 0.9809 0.716 0.7526 0.5547

Base DeeplabV3+ 0.7752 0.9827 0.7275 0.7731 0.6177

Base HRNetV2 0.7753 0.9815 0.7288 0.7699 0.6213

Miche480 VGGPSPNet 0.7757 0.992 0.6756 0.81 0.6254

Miche480 VGGUNet 0.7822 0.9929 0.7 0.8339 0.6019

Miche480 DeeplabV3+ 0.8015 0.9934 0.7151 0.8423 0.655

Miche480 HRNetV2 0.8244 0.9951 0.7435 0.8748 0.6842

Miche640 VGGPSPNet 0.7428 0.9948 0.6491 0.8004 0.5175

Miche640 VGGUNet 0.7753 0.9952 0.69 0.8372 0.5737

Miche640 DeeplabV3+ 0.7967 0.996 0.7206 0.8565 0.6083

Miche640 HRNetV2 0.783 0.9959 0.7231 0.8458 0.5561

Syn VGGPSPNet 0.9212 0.9945 0.9110 0.8765 0.9025

Syn VGGUNet 0.9222 0.9927 0.9088 0.8805 0.9071

Syn DeeplabV3+ 0.9333 0.9952 0.928 0.892 0.9181

Syn HRNetV2 0.9357 0.9953 0.9308 0.8954 0.9213
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Table 4.9. Different network results cross-datasets

Dataset
Network

Name

Train

Loss

Train

mIoU

Validation

Loss

Validation

mIoU

CrossBase VGGPSPNet 0.0272 0.8778 0.3876 0.412

CrossBase VGGUNet 0.0152 0.9273 0.3787 0.4264

CrossBase DeeplabV3+ 0.0093 0.9283 0.4469 0.4495

CrossBase HRNetV2 0.7546 0.9046 0.8706 0.4007

CrossMiche480 VGGPSPNet 0.0253 0.8672 0.0365 0.6606

CrossMiche480 VGGUNet 0.0169 0.91 0.0476 0.6788

CrossMiche480 DeeplabV3+ 0.0092 0.9416 0.0467 0.6466

CrossMiche480 HRNetV2 0.7523 0.8871 0.7527 0.7472

CrossMiche960 VGGPSPNet 0.022 0.9097 0.0521 0.5887

CrossMiche960 VGGUNet 0.0156 0.9306 0.0509 0.5839

CrossMiche960 DeeplabV3+ 0.0089 0.9484 0.0494 0.6042

CrossMiche960 HRNetV2 0.7564 0.9010 0.7633 0.5974

CrossSyn VGGPSPNet 0.0453 0.7016 0.2527 0.5172

CrossSyn VGGUNet 0.0244 0.8397 0.2976 0.5224

CrossSyn DeeplabV3+ 0.0102 0.8992 0.2818 0.5529

CrossSyn HRNetV2 0.7708 0.8158 0.8106 0.6033
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Table 4.10. Different network results of the cross-datasets per-class

Dataset
Network

Name

Background

mIoU

Sclera

mIoU

Iris

mIoU

Pupil

mIoU

CrossBase VGGPSPNet 0.9247 0.353 0.3376 0.0812

CrossBase VGGUNet 0.9352 0.361 0.3406 0.0657

CrossBase DeeplabV3+ 0.9383 0.3551 0.3617 0.1428

CrossBase HRNetV2 0.884 0.2846 0.2997 0.1337

CrossMiche480 VGGPSPNet 0.9901 0.6099 0.7331 0.2886

CrossMiche480 VGGUNet 0.9896 0.5898 0.7163 0.4164

CrossMiche480 DeeplabV3+ 0.9907 0.6007 0.6787 0.3162

CrossMiche480 HRNetV2 0.9932 0.6826 0.8058 0.5074

CrossMiche960 VGGPSPNet 0.9893 0.4397 0.5521 0.3643

CrossMiche960 VGGUNet 0.9891 0.4219 0.5664 0.355

CrossMiche960 DeeplabV3+ 0.989 0.4698 0.6516 0.3019

CrossMiche960 HRNetV2 0.9876 0.457 0.6411 0.2995

CrossSyn VGGPSPNet 0.9413 0.436 0.4213 0.2641

CrossSyn VGGUNet 0.9473 0.4546 0.4219 0.2659

CrossSyn DeeplabV3+ 0.9639 0.6028 0.455 0.1897

CrossSyn HRNetV2 0.9637 0.57 0.4253 0.4541
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Within the scope of this thesis eye segmentation problem analyzed. Image processing

based iris and sclera segmentation methods are examined, their advantages are can be

summarized as:

• Reliable on controlled settings

• Doesn’t require heavy computational power like DNNs

Their shortcomings are

• Requires specialized equipment like IR cameras

• Images needs to be taken stationary

• They don’t work as reliable when there are outside factors like reflections

• There aren’t any image processing based methods can effectively segment the sc-

lera, iris, and pupil regions together.

Therefore, to tackle these shortcomings this thesis suggested the idea of using DNNs.

In this thesis, the eye segmentation problem explored using structurally different DNNs.

The requirement of the data for this task is fulfilled by manually segmenting 1660 images

1150 of them being unique and rest is being from MicheII dataset. Thus, 1660 image

masks and 1150 images are shared with researchers at:

https://github.com/melihoz/eyedataset.

Experiments on the DNNs shown several outcomes:

• Shuffling significantly increases a network’s generalization abilities.

• Adam optimizer works efficiently without the need of tweaking recommended set-

tings.

• Batch size needs to be above 1 to increase networks generalization abilities. Howe-

ver, the ideal batch size depends on the dataset size.

• Augmentation operations observed to not to have a negative effect on the eye seg-

mentation if parameters are set low.
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• Deeper and more complex network structures observed to bring improvements on

the segmentation quality. However dataset content seems to be more impact-full.

of the additional datasets never observed to be harmful. In some cases, it observed

to improve results significantly.

• In the eye segmentation case, when we use a network trained with a similar context

data it’s observed that network can still identify outer eye boundaries with high

performance.

With the results obtained in this thesis, it’s concluded that DNNs can be used in the eye

segmentation problem with significant performance in loosely controlled situations. Thus,

this study also shows that data has more effect than the network used for segmentation.

Also, the roadmap of this thesis can be applied to any DNN based case studies.
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Rot, P., Emeršič, Ž., Struc, V. and Peer, P. 2018. Deep multi-class eye segmentation for

ocular biometrics. In: 2018 IEEE International Work Conference on Bioinspired

Intelligence (IWOBI). pp. 1–8. IEEE, 2018.

Shah, S. and Ross, A. 2009. Iris segmentation using geodesic active contours. IEEE

Transactions on Information Forensics and Security, 4(4):824–836.

Simonyan, K. and Zisserman, A., 2015. Very deep convolutional networks for large-scale

image recognition.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,

V. and Rabinovich, A. 2015. Going deeper with convolutions. In: Proceedings of

the IEEE conference on computer vision and pattern recognition. pp. 1–9. 2015.

Wildes, R.P. 1997. Iris recognition: An emerging biometrie technology. Proceedings of

the IEEE, 85(9):1348–1363.

28

REFERENCES



M. ÖZ

Wood, E., Baltrušaitis, T., Morency, L.P., Robinson, P. and Bulling, A. 2016. Learning

an appearance-based gaze estimator from one million synthesised images. In:

Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research

& Applications. pp. 131–138. 2016.

Zhao, H., Shi, J., Qi, X., Wang, X. and Jia, J. 2017. Pyramid scene parsing network. In:

Proceedings of the IEEE conference on computer vision and pattern recognition.

pp. 2881–2890. 2017.

Zhou, P., Feng, J., Ma, C., Xiong, C., HOI, S. et al. 2020. Towards theoretically unders-

tanding why sgd generalizes better than adam in deep learning. arXiv preprint

arXiv:201005627.

Zhou, Z., Du, E.Y., Thomas, N.L. and Delp, E.J. 2011. A new human identification met-

hod: Sclera recognition. IEEE Transactions on Systems, Man, and Cybernetics-

Part A: Systems and Humans, 42(3):571–583.

29

REFERENCES



 

 

CURRICULUM VITAE 

Melih ÖZ 

melihoz@akdeniz.edu.tr 

   
EDUCATION 

Master of Science 

2017-2021 

 Akdeniz University 

 Institute of Natural and Applied Sciences,  

 Computer Engineering, Antalya, Turkey 

Bachelor of Science 

2008-2014 

 Akdeniz University 

 Faculty of Engineering,  

 Electrical Electronics Engineering, Antalya, Turkey 

WORK EXPERIENCE 

Research Assistant 

10/2017-Present 

 Akdeniz University 

 Faculty of Engineering,  

 Computer Engineering, Antalya, Turkey 

PUBLICATIONS 

1- Akçay, H. G., Kabasakal, B., Aksu, D., Demir, N., Öz, M., and  rdoğan, A. 2020. 

Automated bird counting with deep learning for regional bird distribution 

mapping. Animals, 10(7), 1207. 

 

 




