T.C. AKDENİZ ÜNİVERSİTESİ

İNCE METAL YÜZLÜ SANDVİÇ KİRİŞLERDE BATMA YÜKLERİNİN BELİRLENMESİ

Umut HEKİM

FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

YÜKSEK LİSANS TEZİ

KASIM 2018

ANTALYA

T.C. AKDENİZ ÜNİVERSİTESİ

İNCE METAL YÜZLÜ SANDVİÇ KİRİŞLERDE BATMA YÜKLERİNİN BELİRLENMESİ

Umut HEKİM

FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

YÜKSEK LİSANS TEZİ

KASIM 2018

ANTALYA

T.C. AKDENİZ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İNCE METAL YÜZLÜ SANDVİÇ KİRİŞLERDE BATMA YÜKLERİNİN BELİRLENMESİ

Umut HEKİM İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI YÜKSEK LİSANS TEZİ

Bu tez BAP tarafından FYL2016-2414 numaralı proje ile desteklenmiştir.

KASIM 2018

T.C. AKDENİZ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İNCE METAL YÜZLÜ SANDVİÇ KİRİŞLERDE BATMA YÜKLERİNİN BELİRLENMESİ

Umut HEKİM İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI YÜKSEK LİSANS TEZİ

Bu tez 23/11/2018 tarihinde jüri tarafından Oybirliği / Oyçokluğu ile kabul edilmiştir.

Doç. Dr. İzzet Ufuk ÇAĞDAŞ (Danışman) Doç.Dr. Ramazan ÖZÇELİK Dr.Öğr.Üyesi Bayram ER

unbert

ÖZET

İNCE METAL YÜZLÜ SANDVİÇ KİRİŞLERDE BATMA YÜKLERİNİN BELİRLENMESİ

Umut HEKİM

Yüksek Lisans Tezi, İnşaat Mühendisliği Anabilim Dalı

Danışman: Doç. Dr. İzzet Ufuk ÇAĞDAŞ

Kasım 2018; 49 sayfa

Bu çalışmada, yarı-statik tekil yükler altındaki polistren köpük (XPS) çekirdekli ve mdf ara katmanlı galvanizli galvanizli sac dış yüzlü sandviç kirişlerin batma yüklerinin sonlu elemanlar yöntemi ile belirlenmesi amaçlanmıştır. Bu maksatla, geliştirilmiş olan sonlu elemanlar modelleri ile elde edilmiş olan sayısal neticeler eldeki deney neticeleri ile karşılaştırmalı olarak sunulmuştur.

Araştırmada kullanılan sonlu eleman modellerini oluşturmak için Octave ve SAP2000 programları kullanılmıştır ve sayısal model oluşturma aşamaları tez içinde detaylı şekilde açıklanmıştır. Bu modeller vasıtasıyla elde edilen sayısal neticeler bu tezde sunulmuş olan deneysel neticelerin tümüyle bir tabloya aktarılıp, karşılaştırılmıştır. Yapılan karşılaştırma, sayısal modellerin ön batma yüküne ön-tasarım maksadıyla kullanılabilecek nispette yeteri kadar yakın netice verdiğini göstermiştir.

Son olarak, deneysel neticeler ile sayısal modeller arasındaki farkların muhtemel sebepleri tartışılarak sayısal modellerin iyileştirilmesi için bazı önerilerde bulunulmuştur. Ayrıca, köpük çekirdeğin sayısal modelinin gerçeğe daha yakın bir şekilde oluşturulabilmesi için çekirdek malzeme özelliklerinin yükleme yönü ve şekil değiştirme düzeyine bağlı olarak belirlenmesi gerektiği kanaatine varılmıştır.

ANAHTAR KELİMELER: Batma, İndentasyon, Sandviç Kirişler, Sonlu Elemanlar Yöntemi.

JÜRİ: Doç. Dr. İzzet Ufuk ÇAĞDAŞ

Doç.Dr. Ramazan ÖZÇELİK

Dr.Öğr.Üyesi Bayram ER

ABSTRACT

INDENTATION OF SANDWICH BEAMS HAVING THIN METAL FACES

Umut HEKİM

MSc. Thesis in Department of Civil Engineering

Supervisor: Assoc. Prof. Dr. İzzet Ufuk ÇAĞDAŞ

November 2018; 49 pages

It is aimed to investigate the indentation loads of thin galvanized steel sandwich beams using the finite element method.

For this purpose, finite element models are used to calculate the approximate indentation loads. Then, modified analytical expression yielding the pre-indentation loads is developed. After that, indentation tests (Tests are in the scope of the project BAP Code : FYL2016-1424) are conducted on the specimens produced to check validity of the finite element model and the results of analytical expressions.

To create the finite element models Octave and SAP2000 Structural Analysis and Design software have been used and the analysis steps are shown detailed in the thesis. The indentation loads obtained by the finite element model and the test results have been listed and comparison has been made. This comparison shows that, the results are appropriate for pre-design procedures.

Probable causes of this discrepancy are investigated and suggestions have been made. It is tought that, to get better results by the finite element models, specification of the core material (foam) should be determined by using the load direction and deformation issues.

KEYWORDS: Indentation Finite Element Method, Pre-indentation, Sandwich beam.

COMMITTEE: Assoc.Prof.Dr. İzzet Ufuk ÇAĞDAŞ

Assoc.Prof.Dr. Ramazan ÖZÇELİK

Asst.Prof.Dr. Bayram ER

ÖNSÖZ

Bu tezin hazırlanması aşamasında sağlamış olduğu destekler sebebiyle danışman hocam Doç. Dr. İzzet Ufuk ÇAĞDAŞ'a teşekkür ederim. Ayrıca, FYL2016-2414 kodlu Akdeniz Üniversitesi BAP projesi kapsamında elde edilmiş batma deney verilerinin elde edilmesinde yardımları için İsmail Selçuk YILMAZ, Raphiq ALİYEV, Melis TAŞKIN, ve Tuğçe SARGIN'a teşekkürü bir borç bilirim.

Ayrıca, yüksek lisansım boyunca yanımda olan ve motivasyonumun yüksek kalmasını sağlayan arkadaşlarım Hüseyin SERİN, Arif AKDAĞ, Hüseyin URAL, Mehmet SÜNGÜ, Mehmet Yavuz TAŞKIRAN, Serhat TEMLİ, Osman ŞAHİN, Yücel KUTUĞU ve kardeşim Serhat HEKİM'e teşekkür ederim.

Son olarak, bu çalışmanın yapılmasında sağlamış oldukları dolaylı katkılarından ötürü Akdeniz Üniversitesi BAP Birimi'ne de teşekkür ederim.

ÖZET	i
ABSTRACT	ii
ÖNSÖZ	iii
AKADEMİK BEYAN	v
SİMGELER VE KISALTMALAR	vi
ŞEKİLLER DİZİNİ	viii
ÇİZELGELER DİZİNİ	X
1. GİRİŞ	1
2. KAYNAK TARAMASI	3
3. MATERYAL VE METOT	5
3.1. Malzeme Özellikleri	5
3.1.1. Çekirdek malzemesi	5
3.1.2. Dış yüzler	5
3.2. Deney Neticeleri	6
3.3. Sonlu Elemanlar Modelleri	8
3.4. Doğrusal Sayısal Model	8
3.5. SAP2000 Programı İle Yapılmış Olan Model	10
3.5.1. Model için çözüm ağı ve yardımcı ağ çizgilerinin oluşturulması	10
3.5.2. Malzeme özelliklerinin tanımlanması	12
3.5.3. Köpük çekirdeğin tanımlanması	15
3.5.4. Dış yüzün tanımlanması	16
3.5.5. Fiktif eleman tanımlanması	18
3.5.6. Kesitlerin modelde tanımlanması	21
3.5.7. Sınır şartlarının tanımlanması	21
	23
3.5.8. Yüklemenin yapılması	
3.5.8. Yüklemenin yapılması4. BULGULAR VE TARTIŞMA	26
3.5.8. Yüklemenin yapılması4. BULGULAR VE TARTIŞMA4.1. Deney Neticelerinin Yorumlanması	26 26
 3.5.8. Yüklemenin yapılması 4. BULGULAR VE TARTIŞMA 4.1. Deney Neticelerinin Yorumlanması 4.2. Doğrusal Model Neticeleri 	26 26 26
 3.5.8. Yüklemenin yapılması 4. BULGULAR VE TARTIŞMA 4.1. Deney Neticelerinin Yorumlanması 4.2. Doğrusal Model Neticeleri 4.3. SAP2000 Modeli ile Elde Edilen Neticeler 	26 26 26 26 29
 3.5.8. Yüklemenin yapılması 4. BULGULAR VE TARTIŞMA 4.1. Deney Neticelerinin Yorumlanması 4.2. Doğrusal Model Neticeleri 4.3. SAP2000 Modeli ile Elde Edilen Neticeler 5. SONUÇLAR 	26 26 26 29 32
 3.5.8. Yüklemenin yapılması 4. BULGULAR VE TARTIŞMA 4.1. Deney Neticelerinin Yorumlanması 4.2. Doğrusal Model Neticeleri 4.3. SAP2000 Modeli ile Elde Edilen Neticeler 5. SONUÇLAR 6.KAYNAKLAR 	26 26 26 29 32 33

İÇİNDEKİLER

AKADEMİK BEYAN

Yüksek Lisans Tezi olarak sunduğum "İnce Metal Yüzlü Sandviç Kirişlerde Batma Yüklerinin Belirlenmesi" adlı bu çalışmanın, akademik kurallar ve etik değerlere uygun olarak yazıldığını belirtir, bu tez çalışmasında bana ait olmayan tüm bilgilerin kaynağını gösterdiğimi beyan ederim.

/2018 Umur HEKIM

SİMGELER VE KISALTMALAR

Simgeler

- *I* : Atalet momenti
- ε : Birim şekil değiştirme
- *X*_c : Çekirdek malzemesinin basınç dayanımı
- *b*_c : Çekirdek malzemesinin genişliği
- *t*_c : Çekirdek malzemesinin kalınlığı
- *L_c* : Çekirdeğin uzunluğu
- dk : Dakika
- δ : Delta
- δ_b : Eğilme deformasyonu
- *E* : Elastisite modülü
- σ : Gerilme
- γ : Kayma birim şekil değiştirmesi
- A : Kesit alanı
- kg : Kilogram
- kN : Kilonewton
- MPa : Megapascal
- m : Metre
- mm : Milimetre
- M : Moment
- N : Newton
- s : Saniye
- P : Yük

Tezde kullanılan ondalık yazımda ondalık ayraç olarak nokta kullanılmıştır.

<u>Kısaltmalar</u>

- XPS : Ekstrüde Polistren Köpük
- GS : Galvanizli Sac

ŞEKİLLER DİZİNİ

Şekil 1.1. Sandviç panelin yükleme durumundaki çekme-basınç durumu	1
Şekil 2.1. Sandviç kiriş 4 nokta yükleme testi	4
Şekil 3.1. Deney düzeneğinin fotoğrafı	5
Şekil 3.2. Örnek deney görseli	7
Şekil 3.3. Deney neticeleri	8
Şekil 3.4. Doğrusal model için çözüm ağı	9
Şekil 3.5. SAP2000 programında çözüm ağı ve yardımcı çizgilerin oluşturulması 1	1
Şekil 3.6. Yardımcı çizgileri oluşturma menüsü	1
Şekil 3.7. Yardımcı çizgiler	1
Şekil 3.8. Malzeme özelliklerinin tanımlanması 12	2
Şekil 3.9. XPS malzeme özelliklerinin tanımlanması – 1	2
Şekil 3.10. XPS malzeme özelliklerinin tanımlanması – 2	3
Şekil 3.11. XPS malzeme özelliklerinin tanımlanması1	3
Şekil 3.12. Galvanizli sac özelliklerinin tanımlanması – 1	4
Şekil 3.13. Galvanizli sac özelliklerinin tanımlanması - 2	4
Şekil 3.14. Galvanizli sac için nonlineer malzeme özelliklerinin tanımlanması 1	5
Şekil 3.15. XPS için kesit tanımlanması – 1	5
Şekil 3.16. XPS için kesit tanımlanması – 2	5
Şekil 3.17. XPS için kesit tanımlanması – 3 10	5
Şekil 3.18. Dış yüz kesitinin tanımlanması – 11	7
Şekil 3.19. Dış yüz kesitinin tanımlanması – 21	7
Şekil 3.20. Dış yüz kesitinin tanımlanması - 3	8
Şekil 3.21. Fiktif elemanın tanımlanması	9
Şekil 3.22. Fiktif elemanın modelde görünümü	9
Şekil 3.23. Fiktif elemanın kesit özellikleri	9

Şekil 3.24. Dış yüze uygulanan plastik moment	21
Şekil 3.25. Plastik mafsala moment uygulanması	21
Şekil 3.26. Modele dış yüz kesitinin çizilmesi	21
Şekil 3.27. Mesnetlerin tanımlanması - 1	22
Şekil 3.28. Mesnetlerin tanımlanması – 2	22
Şekil 3.29. Numune üzerinde yükleme yapılacak alanın seçilmesi	23
Şekil 3.30. Seçilen alana nonlineer yük tanımlama	23
Şekil 3.31. Modelin yüklenmesi	24
Şekil 3.32. Yük değerlerinin tanımlanması	24
Şekil 3.33. Üniform yayılı yükün modelde görünüşü	25
Şekil 4.1. Doğrusal model ile elde edilmiş olan deforme olmuş geometri	27
Şekil 4.2. Doğrusal model ile elde edilmiş olan σ_y gerilme dağılımı	27
Şekil 4.3. Doğrusal model ile elde edilmiş olan σ_x gerilme dağılımı	28
Şekil 4.4. Doğrusal model ile elde edilmiş olan τ_{xy} gerilme dağılımı	28
Şekil 4.7. Dış yüzde eğilme momenti dağılımı	30
Şekil 4.8. Plastik mafsal civarında eğilme momenti değerleri	30
Şekil 4.9. Köpük çekirdekte düşey gerilme dağılımı	31
Şekil 5.1. Kullanılan yöntem ve sonuçların tablo hali	32

ÇİZELGELER DİZİNİ

Çizelge 3.1. Polistren köpük (XPS) malzemesinin mekanik özellikleri

1. GİRİŞ

Sandviç panel yapıları her zaman aynı basit modeli takip eder. Her sandviç panelin oluşumunda basit bir yöntem izlenir. Bu da yüzeyleri çekme ve basma gerilmelerine direnç gösterecek şekilde tasarlamak ve malzeme seçimini buna göre yapmaktır. Herhangi bir yüzey bir yük ile karşılaştığında, yüzeylerden biri basınç etkisinde kalırken diğeri çekme etkisine maruz kalır, bu durum Şekil 1.1'de gösterilmektedir.

Şekil 1.1. Sandviç panelin yükleme durumundaki çekme-basınç durumu

Sandviç panellerin çekirdek kısmı iki veya tek tabakayla, genelde mukavemet yönünden benzer özelliklere sahip malzemelerle kaplanır. Yüzey malzemeleri ise çelik, alüminyum, ahşap, fiber takviyeli plastik hatta yalnızca plastik bile olabilir. Sandviç yapının birçok çeşidi vardır ve farklı yüzeyler, farklı çekirdek malzemelerle birleştirilerek elde edilebilirler.

Sandviç panel geleneksel metalik kompozit yapı elemanlarına kıyasla ağırlık/yüksek rijitlik oranı nedeniyle havacılık endüstrinde yaygın olarak kullanılan yapısal elemandır. Havacılık ve otomobil sektöründe oldukça yoğun şekilde kullanılan sandviç paneller, inşaat sektöründe bulunan rekabetçi malzemelerin arasına girmeye başlamıştır. Sandviç panellerin düşük ağırlığı sebebiyle düşük taşıma maliyetleri, kolay montaj, ısı yalıtım özelliği, yüksek dayanım, düşük maliyet gibi avantajlara sahiptir. Sandviç panelin kullanımının özellikle inşaat sektöründe artmasına bunlar sebep olarak gösterilebilir.

Bu çalışmada, köpük çekirdekli ve katmanlı metal yüzlü sandviç kirişlerin batma yüklerinin belirlenmesi konusunda çalışılmıştır. Kullanacağımız sandviç panel, iki yüzeyi 0.5 mm kalınlığında galvaniz sac ile kaplanmış, 2.7 mm kalınlığında MDF panelin 10 cm kalınlığındaki XPS malzeme üzerine çift komponentli poliüretan yapıştırıcı yardımıyla yapıştırılmasıyla oluşturulmuştur. Sandviç yapılar kullanım alanlarına göre farklı yüklemelere maruz kalır ve deformasyonla karşılaşırlar. İnsan sağlığı ve güvenlik açısından bu deformasyonun kontrollü sağlanması önem arz etmektedir.

Sandviç panellerin mukavemetini arttırmak ve yük kapasitesini anlamak için, çekirdek malzemesini ve yüzey malzemesini bir takım deneylere maruz bırakmak bize yardımcı olacaktır. Bu çalışmada batma yüklerinin belirlenmesi için çalışmalar yapılacak olup, sandviç levha oluşturmak için, yukarıda belirtildiği üzere piyasadan temin edilmiş bir polistren köpük (XPS) ve yüzey malzemesi olarak belirlenen galvanizli sac çelik levha kullanılacaktır.

XPS kullanılmasının sebebi ise ısı yalıtımı, yüksek mekanik dayanım, deneysel çalışmalarımızı fiziksel olarak gözlemleme kolaylığı gibi sahip olduğu özelliklerdir. Ayrıca, yaygın olarak kullanılan bir malzeme olmasından dolayı sandviç panellerde genelde çekirdek malzemesi olarak XPS kullanılmaktadır.

Galvanizli sac ise piyasada kolayca ulaşılabilecek bir malzeme olup, malzeme özellikleri sebebiyle indentasyon yüklerini tanımlamada bize önemli derecede katkı sağlayacaktır.

Oluşturacağımız sonlu elemanlar modelinde sadece geometrik non-linearite göz önünde bulundurulmuş ve ilk önce plastik mafsalı oluşturan yükün şiddeti belirlenmiştir. Böylece, batma hadisesinin başlangıcına karşılık gelen ön-batma yükü sayısal olarak belirlenmiştir.

Numunelerin malzeme non-linearitesini de içeren batma sonrası davranış incelenmemiştir. Bunun temel sebebi seçilen XPS köpük malzemesinin gözenekli yapıya sahip olmasından dolayı malzeme özelliklerinin ve dolayısıyla davranışının şekil değiştirmeye bağlı olarak değişmesidir. Ayrıca, XPS köpük için Poisson oranı basmada ve çekmede farklı değerler almaktadır.

Bu çalışmada toplam 3 adet batma deney neticesi kullanılmıştır ve iki farklı sayısal model oluşturulmuştur. Sonlu elemanlar yöntemi ile elde edilen modeller, 2 farklı program kullanılarak oluşturulmuştur. Bunlardan biri programlama dili olan Octave programı iken, diğeri SAP2000 paket programıdır. Modellerin oluşturulması ve analizlerin detaylı sonuçlarına tez içerisinde yer verilmiştir. Sonlu elemanlar yöntemi ile elde edilen bu sayısal neticeler eldeki deney sonuçları ile karşılaştırmalı olarak sunulmuş ve detaylı olarak çeşitli parametreler için hangi yönteme başvurabileceğimiz konusu tartışılmıştır.

2. KAYNAK TARAMASI

Literatürde batma yüklerinin analitik olarak belirlenmesiyle ilgili birçok çalışma mevcuttur. Hetenyi (1946), batma problemini elastik zemine oturan kiriş problemine benzeterek ele almış ve hem dış yüzlerin hem de çekirdek malzemesinin elastik davranış gösterdiğini varsaymıştır. Thomsen, Frostig vd. (1997) ve Frostig ve Baruch (1992) de problemi benzer şekilde ele almışlardır.

Steeves ve Fleck (2004) ise diğerlerinden farklı olarak; dış yüzlerin elastik malzeme özelliği, çekirdek malzemesinin ise plastik davranış gösterdiğini varsayarak ve aynı zamanda tekil yükün etki ettiği basma alanını ihmal ederek analitik bir ifade geliştirmişlerdir. Bu kabulün daha sonra yapılan çalışmalarla doğru olmadığı ortaya çıkmıştır. Çünkü, gerçekte batma esnasında sandviç yapının hem dış yüzeyleri, hem de köpük çekirdek malzemesi plastik davranış göstermektedir.

Triantafillou ve Gibson (1987) dış yüzeydeki malzemelerin katkısını ihmal ederek batma yükünü basma alanı ile çekirdek malzemenin basınç dayanımının çarpımına eşitlemişlerdir. Ancak bu şekilde elde edilen batma yüklerinin, gerçek batma yüklerinden düşük olacağı bilinen bir sonuçtur. Bu sebepten ötürü, önerilen ifadenin sadece çok ince dış yüzlere sahip sandviç kirişler için gerçeğe yakın değerler vereceği düşünülmektedir. Diğer durumlar üzerinde detaylı çalışmalar yapılmadan kesin bir şey söylenememektedir.

Ashby vd. (2000) hem dış yüzlerin hem de çekirdek malzemenin plastik malzeme davranışı gösterdiğini varsaymıştır. Bu varsayıma dayanarak da plastik limit analizi yöntemine dayanan bir formül geliştirmişlerdir. Bu formül ayrıca Bart-Smith vd. tarafından basma alanı göz önünde bulundurularak geliştirilmiştir. Ashby vd. (2000) ve Bart-Smith vd. (2001) tarafından ikisinin de yapmış olduğu bir diğer kabul ise basma alanı çevresindeki köpük çekirdek malzemesinin tamamen plastik malzeme davranışı gösterdiğidir.

Ayrıca, literatürde batma problemi ile ilgili teorik çalışmalara ek olarak deneysel çalışmalar da bulunmaktadır. Mohan vd. (2007) metal yüzlü sandviç panellerde batma durumuna bağlı muhtemel göçme modlarını tanımlamıştır. Buna ek olarak, Daniel vd. (2002) ve Gdoutos ve Daniel (2008) sandviç kirişlerin dış yüzlerini batmaya karşı güçlendirme yolunu denemişler ve bu konuda başarılı olmuşlardır. Davies (2008) ise kiriş eğilme deneylerinde Şekil 2.1'deki deney düzeneğini kullanarak basma alanını artırma yoluna gitmiştir.

Şekil 2.1. Sandviç kiriş 4 nokta yükleme testi

Şekil 2.2'de Gdoutos ve Daniel (2008) tarafından sandviç kirişlerin nonlineer davranışlarını gözlemlemek yapılan ve uygulanan moment ile birlikte kirişin çekme yüzeyinden malzemenin aksına olan mesafenin değişimini gösteren parametreler yer almaktadır. Bu çalışmada da non-lineer sonlu elemanlar modelleri de indentasyon konusunu incelemek üzerine ele alınmıştır. Ancak, çalışılan sonlu elemanlar analizinde karşılaşılan sorun, göçme kriterlerinin gözenekli malzemeler için uygun ve elverişli olmamasıdır.

Şekil 2.2. Kirişin çekme yüzeyinden aksa olan mesafenin momente bağlı değişimi

Gözenekli malzemelerde göçme kriterlerinin uygunsuzluğu konusunu Abrate (2008) de ele almış ve göçme esnasında, numunenin durumu ve neler olduğuyla ilgili bilginin yeterli olmadığını belirtmiştir. Bu sebepten dolayı; sayısal yaklaşımlardan vazgeçilip, deneysel çalışmalar üzerinden analitik ifadeleri ispatlama yoluna gidilmiştir. Günümüzde hala indentasyon derinliğini belirlemek için en iyi yöntemin non-lineer sonlu elemanlar analizi olduğu anlaşılmaktadır. Bahsi geçen malzeme kusurlarından dolayı indentasyon yük taşıma kapasitesinin yüksek oranda düşmesi durumunda bu çözüm geçerli olabilir.

3. MATERYAL VE METOT

FYL2016-1424 kodlu araştırma projesi kapsamında Akdeniz Üniversitesi BAP Birimi tarafından sağlanmış olan veri toplama sistemi, ve potansiyometrik cetvel kullanılarak elde edilmiş ve bu tez kapsamında kullanımıma sunulmuş olan batma deneyleri neticeleri, bu tez kapsamında geliştirilmiş olan sonlu elemanlar modelleri ile kıyaslama yapmak için kullanılmıştır.

3.1. Malzeme Özellikleri

3.1.1. Çekirdek malzemesi

Kullanılan çekirdek malzemesi olan 23.4 kg/m³ yoğunluğa sahip polistren köpük (XPS) kiriş düzlemi içindeki malzeme özellikleri aşağıda Çizelge 3.1'de verilmiştir.

Mekanik Özellik	Tanım	Değer
$X_{C,2}^{XPS}$ (MPa)	1 doğrultusunda basınç dayanımı	0.19
$X_{C,1}^{XPS}$ (MPa)	2 doğrultusunda basınç dayanımı	0.11
E_2 (MPa)	1 doğrultusu elastisite modülü	6.33
E_1 (MPa)	2 doğrultusu elastisite modülü	4.41
G_{12} (MPa)	1-2 düzlemi için kayma modülü	4.32
V12	1-2 düzlemi için Poisson oranı	0.35

Çizelge 3.1. Polistren köpük (XPS) malzemesinin mekanik özellikleri

3.1.2. Dış yüzler

Dış yüzler 0.5 mm kalınlığında iki çelik sac katman arasında 2.7 mm kalınlığında bir mdf katman bulunacak şekilde seçilmiştir. Böylece, dış yüz plastik moment kapasitesinin ve dolayısıyla batma yükünün artırılması hedeflenmiştir.Kullanılan mdf katman 650 mm/m³ yoğunluktadır. Yapıştırıcı olarak Mikrokim marka poliüretan bazlı bir yapıştırıcı kullanılmıştır. Yapıştırıcı kalınlığı da göz önünde bulundurulduğunda dış yüz toplam kalınlığı 5 mm olarak hesaplanmıştır. Şekil 3.1'de deney düzeneği ve numunenin son hali gösterilmiştir.

Galvanizli sac için şu değerler kullanılmıştır;

$$E_{c} = 2 \times 10^{5} MPa$$
, $\sigma_{c} = 120 MPa$, $v_{celik} = v_{c} = 0.3$,

burada E_c ve σ_c kullanılan galvanizli sacın sırasıyla Elastisite Modülü ve çekmede akma gerilmesi değerleridir. σ_c değeri üretici firma olan Erdemir A.Ş.'nin ürünler kataloğundan alınmıştır.

3.2. Deney Neticeleri

Deney neticeleri Şekil 3.1'de gösterilen ve yeteri kadar rijit bir çelik kutu profil ve numunenin hareketini engellemek için iki mengeneden ibaret olan deney düzeneği kullanılarak elde edilmiştir. Şekil 3.1'de gösterildiği üzere kiriş ekseni doğrultusunda malzeme ekseni 1, eksene dik doğrultuda malzeme ekseni ise 2 olarak işaretlenmiştir.

Şekil 3.1. Deney düzeneğinin fotoğrafı

Batma numunelerini desteklemek amacıyla çelik kirişten faydalanılmış ve RANTEK-100 elektromekanik deney cihazı, 100 kN'luk yük hücresi (Puls Elektronik HT1-W), veri toplayıcısına (TESTART-Testbox 1001) bağlanmış 0.1 mm hassasiyetinde ve 100 mm ölçme kapasitesinde potansiyometre (Opkon-100) kullanılmıştır. Örnek bir deney görseli Şekil 3.2'de görülebilir. Bu şekilden görülebileceği üzere, numuneler kenarlarından mengeneler ile altlarındaki rijit çelik kirişe sabitlenmişlerdir. Böylece numune uçlarının yukarı hareketi engellenmiştir. Deneylerde yükleme hızı sabit tutulmuş ve 3.6 mm/dakika'ya sabitlenmiştir. Batma plakasının genişliği b_f =50mm olarak seçilmiştir.

Şekil 3.2. Örnek deney görseli

Bu çalışmada sayısal neticeler ile kıyaslama maksadıyla kullanılmış olan deney neticeleri Şekil 3.3'te gösterilmektedir.

Şekil 3.3. Deney neticeleri

3.3. Sonlu Elemanlar Modelleri

Öncelikle Octave program kullanılarak yazılmış olan SANDWICH_IND adlı program ile doğrusal statik analiz yapılmıştır. Daha sonra SAP2000 programı ile daha kapsamlı bir çalışma yapılarak deney neticeleri ile yapılmış olan sonlu elemanlar modellerinden elde edilmiş olan sayısal neticeler arasındaki uyum incelenmiştir. Malzeme parametrelerindeki belirsizlikler nedeniyle düzlem modeller yapılması uygun görülmüştür.

3.4. Doğrusal Sayısal Model

Çözüm ağı Şekil 3.4'te gösterilmiş olan doğrusal sayısal modelde 3 düğümlü izoparametrik ve kayma deformasyonlu bir kiriş elemanı ve 6 düğümlü bir izoparametrik membran elemanı kullanılmıştır. Simetriden yararlanılmış olan bu ilk modelde toplam 16 membran elemanı ve üst yüzde toplam 4 kiriş elemanı kullanılmıştır. Şekil 3.4'te gösterilen çözüm ağında sağ kenarda düşey deplasman serbest bırakılmıştır. Kiriş elemanının bulunduğu üst kenarda yatay ve düşey deplasmanlar ve dönmeler serbest bırakılmıştır. Ancak, sol üst köşede bulunan düğüm dönmeye karşı tutulmuştur. Alt kenardaki ve sağ üst köşedeki düğümler yatay ve düşey doğrultularda tutulmuşlardır.

Şekil 3.4. Doğrusal model için çözüm ağı

Dış yüzün modellenmesinde kullanılmış olan izoparametrik kiriş elemanı aşağıda kısaca tanımlanmıştır. Kullanılmış olan diğer eleman olan izoparametrik membran elemanı ile ilgili detaylı bilgi ilgili kaynaklarda bulunabilir (Pitaressi G ve Amorim J. 2011).

Uzunluğu L^e ile gösterilen kiriş elemanın toplam üç düğümü vardır ve i=1,2,3 olmak üzere, düğüm serbestlikleri düşey deplasman w_i ve dönme θ_i dir. Eleman deplasman vektörü δ_e aşağıda tanımlanmıştır.

$$\boldsymbol{\delta_e}^T = \{ w_1 \quad \theta_1 \quad w_2 \quad \theta_2 \quad w_3 \quad \theta_3 \}$$
(1)

Şekil fonksiyonları, N_i, ise aşağıda verilmiştir;

$$N_1(\xi) = \frac{1}{2}\xi(\xi - 1), \ N_2(\xi) = (1 - \xi)(1 + \xi), \ N_3(\xi) = \frac{1}{2}\xi(1 + \xi)$$
(2)

burada ξ Gauss noktasının lokal koordinatıdır. Elemanın 2. düğümünün eleman ortasında olması halinde Jacobian $J=L^{e/2}$ olur. Gerilme-birim şekil değiştirme bağıntısı aşağıda verilmiştir.

$$\begin{cases} M \\ V \end{cases} = \begin{bmatrix} EI & 0 \\ 0 & kGA \end{bmatrix} \begin{pmatrix} \theta \\ \phi \end{bmatrix}$$
(3)

Eşitlik 3'te *EI* eğilme rijitliği, kGA düzeltilmiş kayma rijitliği, ϕ kayma açısıdır. Böylece, eleman rijitlik matrisi $[k^e]$ aşağıda gösterildiği şekilde hesaplanabilir;

$$[k^{e}] = \int_{-1}^{1} [B]^{T} [D] [B] \frac{L^{e}}{2} d\xi$$
(4)

Eşitlik 4'te kullanılan [B] ve [D] matrisleri aşağıda tanımlanmıştır.

$$[B] = \begin{bmatrix} 0 & 2N_1'/L^e & 0 & 2N_2'/L^e & 0 & 2N_3'/L^e \\ -2N_1'/L^e & N_1 & -2N_2'/L^e & N_2 & -2N_3/L^e & N_3 \end{bmatrix}$$
(5)

$$[D] = \begin{bmatrix} EI & 0\\ 0 & kGA \end{bmatrix}$$
(6)

3.5. SAP2000 Programı İle Yapılmış Olan Model

Çalışmanın ikinci aşamasında SAP2000 paket program kullanılarak yeni bir sonlu elemanlar modeli oluşturulmuştur. Bu modelin oluşturulma aşamaları ileride yapılacak çalışmalarda yol gösterici olması için ayrıntılı olarak izah edilmiştir.

3.5.1. Model için çözüm ağı ve yardımcı ağ çizgilerinin oluşturulması

"File" sekmesinden "New Model" seçeneği ve Şekil 3.5'te gösterilen ekrandan "Grid Only" seçeneğini seçilmiştir. Bu sekmeden aynı zamanda "N,mm,C" olan çalışma birimleri de seçilmiştir.

New Model Initialization		Project Information
 Initialize Model from Defaults with Units 	N, mm, C 🗸 🗸	
O Initialize Model from an Existing File		Modify/Show Information
	Save Options as Default	

Şekil 3.5. SAP2000 programında çözüm ağı ve yardımcı çizgilerin oluşturulması

Daha sonra Şekil 3.6'da gösterildiği şekilde L=300 mm olan numune modeli için X yönünde 13 adet nokta (bölüm uzunlukları= 25mm, 25*12=300mm), Z yönünde ise 5 adet nokta (4*12.5=50mm) ile XPS katmanı oluşturulmuştur. Model 2 boyutlu olacağı için Y yönünde sadece bir adet nokta seçilmiştir. Böylece Şekil 3.7'de gösterilen yardımcı çizgiler elde edilmiştir.

Quick Gr	id Lines		×
Cartesian	Cylindrical		
Coordin	nate System Nan	ne	
GLO	DBAL		
Numbe	r of Grid Lines		
X dire	ction	13	
Y dire	ction	1	
Z dire	ction	5	
Grid Sp	acing		
X dire	ction	25	
Y dire	ction	1	
Z dire	ction	12.5	
First G	rid Line Location		
X dire	ction	0.	
Y dire	ction	0.	
Z dire	ction	0.	

Şekil 3.6. Yardımcı çizgileri oluşturma menüsü

	() ()					

Şekil 3.7. Yardımcı çizgiler

3.5.2. Malzeme özelliklerinin tanımlanması

Çözüm ağı oluşturulduktan sonra XPS ve galvanizli çelik sac malzeme özellikleri ve kesitleri tanımlanmıştır. Bunun için Şekil 3.8'de gösterildiği şekilde "Define" menüsünden "Materials" sekmesi seçilmiş ve "Add New Material" sekmesinden XPS malzemesini tanımlanmıştır. Şekil 3.9.'da gösterildiği üzere, "Region" kısmı "User", "Material Type" kısmı ise "Other" seçilmiştir.

erials	Click to:
00Psi 92Fv50	Add New Material
â.	Add Copy of Material
	Modify/Show Material
	Delete Material

Şekil 3.8. Malzeme özelliklerinin tanımlanması

Region	User	~
Material Type	Other	~
Standard	User	
Grade		

Şekil 3.9. XPS malzeme özelliklerinin tanımlanması – 1

Daha sonra Şekil 3.10'da gösterildiği şekilde "Directional Symmetry Type" seçeneği "Anisotropic" olarak seçilmiş ve "Modify/Show Material Properties" sekmesi seçilmiştir. Malzemenin adı "XPS" şeklinde girilmiştir.

Material Name XPS		
Material Notes	Modify/Show	
Options		
Material Type	Other \lor	
Directional Symmetry Type	Anisotropic 🗸 🗸	
Display Color		
Material Properties are	Temperature Dependent	~
		~

Şekil 3.10. XPS malzeme özelliklerinin tanımlanması – 2

Daha sonra Şekil 3.11'de gösterildiği şekilde, XPS'in güçlü yönü için Çizelge 3.1'de verilmiş olan malzeme parametreleri girilmiştir.

VDC			Material Type	Symmetry Ty	pe
APS			Other	Anisotropic	
Modulus of Elasticity	Poisson		Weight and Mass		Units
E1 6.33	U12	0.35	Weight per Unit Volume 0		N, mm, C 🗸 🗸
E2 4.41	U13	0.35	Mass per Unit Volume 0		
E3 2.4	U23	0.35	Advanced Material Broparty Data		
Shaar Modulus	U14	0.	Nonlinear Material Data	Material	amping Properties
G12 4 32	U24	0.	Time Depandent Properties	There	nal Properties
012 4	U34	0.	time preparation reported	- Inch	nur Properties
G23 3.31	U15	0.			
020	U25	0.			
Coeff of Thermal Expansion	U35	0.			
A1 1.170E-05	U45	0.			
A2 1.170E-05	U16	0.			
A3 1.170E-05	U26	0.			
A12 0.	U36	0.			
A13 0.	U46	0.			

Şekil 3.11. XPS malzeme özelliklerinin tanımlanması

Galvanizli sacı tanımlamak için de benzer adımlar uygulanmıştır. Malzeme bu sefer izotropik seçilmiş ve "Modify/Show Material Properties" seçeneğine tıklanarak malzeme özellikleri girilmiştir, ilgili işlem Şekil 3.12'de gösterilmiştir.

Son olarak, Şekil 3.13 ve Şekil 3.14'te gösterildiği şekilde "Nonlinear Data" seçeneğinden malzemeye nonlinearite özelliği tanımlanmıştır.

Material Name Galvaniz	li Sac				
Material Notes	Modify/Show				
ptions					
Material Type	Other 🗸				
Directional Symmetry Type	Isotropic 🗸 🗸				
Display Color					
] Material Properties are Temp	erature Dependent				

Şekil 3.12. Galvanizli sac özelliklerinin tanımlanması – 1

Material Name	Material Type		Symmetry Ty	pe
Galvanizli Sac	Other		Isotropic	
Modulus of Elasticity	Weight and Mass			Units
E 200000.	Weight per Unit Volume	0		N, mm, C \sim
	Mass per Unit Volume	0		
	Advanced Material Property D	ata		
Poisson	Nonlinear Material Da	ta	Material C	amping Properties
U 0.3	Time Dependent Prope	rties	Ther	mal Properties
Coeff of Thermal Expansion				
Coeff of Thermal Expansion A 1.170E-05				
Coeff of Thermal Expansion A 1.170E-05 Shear Modulus G 76923.08				

Şekil 3.13. Galvanizli sac özelliklerinin tanımlanması - 2

Galvanizli Sac Other ysteresis Type Drucker-Prager Parameters Units Takeda Friction Angle 0. Dilatational Angle 0.
ysteresis Type Drucker-Prager Parameters Units Takeda V Friction Angle 0. N, mm, C Dilatational Angle 0.
Takeda V Friction Angle 0. N, mm, C Dilatational Angle 0.
Dilatational Angle 0.
tress-Strain Curve Definition Options
Parametric Convert To User Defined
Ileas Defead
1 -1 000F-03 -120
2 6 000E-04 -120
3 0. 0. A
3 0. 0. A 4 6.000E-04 120.

3.5.3. Köpük çekirdeğin tanımlanması

Köpük çekirdek kesitini tanımlamak için "Define" menüsünde bulunan "Section Properties" sekmesinden "Area Sections" sekmesi seçilmiştir. Daha sonra "Shell" ve "Add New Section" seçenekleri seçilmiştir.

Şekil 3.15. XPS için kesit tanımlanması – 1

ections	Select Section Type To Add
None	Shell V
	Click to:
	Add New Section
	Add Copy of Section
	Modify/Show Section
	Delete Section
	OK

Şekil 3.16. XPS için kesit tanımlanması – 2

"Add New Section" sekmesinden Şekil 3.17'de gösterildiği gibi malzeme adı ve türü belirlenmiştir.

Section Name	XPS KESITI		Display Color
Section Notes	Modify	/Show	
lype		Thickness	
O Shell - Thin		Membrane	50
O Shell - Thick		Bending	50
O Plate - Thin		Material	
O Plate Thick		Material Name	* XPS ~
Membrane		Material Anole	0.
O Shell - Layered/No	nlinear	Time Dependent Propertie	
Modify/SI	tow Layer Definition	Set Time Dependent Properties	» pendent Properties
Concrete Shell Section I	Design Parameters	Stiffness Modifiers	Temp Dependent Properties
Modify/Show	Shell Design Parameters	Set Modifiers	Thermal Properties

Şekil 3.17. XPS için kesit tanımlanması – 3

3.5.4. Dış yüzün tanımlanması

Dış yüz kesitini tanımlamak için yine "Define" menüsünden sırayla "Section Properties" ve "Frame Sections" seçenekleri seçilmiştir.

File	Edit	View	Defi	ne Draw Select Assign	An	alyze	Display Design Options To				
			E,	Materials	_	Ð,	🔍 🖑 🧤 3-d xy xz yz nv				
	厦 X-3	Z Plane (IJ	Section Properties	•	I	Frame Sections				
1			•?	Mass Source		~	Tendon Sections				
3			Coordinate Systems/Grids	Coordinate Systems/Grids	6	Cable Sections					
				Area Sections							
N.				Joint Patterns		Solid Properties					
Su la			7.	Groups	1	1	Reinforcement Bar Sizes				
1			ØØ	Section Cuts		× [€]	Link/Support Properties				
1			<	Generalized Displacements		KHZ	Frequency Dep. Link Props				
1			^o f _x	Functions	•	T.	Hinge Properties				
-			2 DE	Load Patterns							
			10 D 15 E	Load Cases							
			+E	Load Combinations							
4			<u>111</u>	Moving Loads	٠	-					
				Named Property Sets	٠						
				Pushover Parameter Sets	٠		· · ·				
•				Named Sets							

SAP2000 v19.2.1 Ultimate 64-bit - (Untitled)

Şekil 3.18. Dış yüz kesitinin tanımlanması – 1

Section Name	Katman	Display Color
Section Notes	Modify/Show Notes	
mensions		Section
Depth (t3)	50,	2
Width (t2)	5,	Å
		3
		Y
		Properties
aterial	Property Modifiers	Section Properties
+ sac1	▼ Set Modifiers	Time Dependent Properties

Şekil 3.19. Dış yüz kesitinin tanımlanması – 2

Şekil 3.19'da gösterildiği şekilde, kalınlık 5 mm ve genişlik 50 mm olarak girilmiş ve hesaplanmış olan kesit özelliklerini Şekil 3.20'de gösterildiği gibi "Section Properties" sekmesi seçilerek girilmiştir.

roperty Data	-		
Section Name		Katman	
Properties			
Cross-section (axial) area	50,	Section modulus about 3 axis	50,84
Moment of Inertia about 3 axis	254,2	Section modulus about 2 axis	208,34
Moment of Inertia about 2 axis	10417,	Plastic modulus about 3 axis	625,
Product of Inertia about 2-3	0,	Plastic modulus about 2 axis	112,5
Shear area in 2 direction	50,	Radius of Gyration about 3 axis	1.
Shear area in 3 direction	50,	Radius of Gyration about 2 axis	1.
Torsional constant	1,	Shear Center Eccentricity (x3)	0,
		K Cancel	

Şekil 3.20. Dış yüz kesitinin tanımlanması - 3

Programa girilmiş olan dış yüz malzeme özellikleri aşağıda verilmiştir:

- 3 Eksenindeki Atalet Momenti(I3): 2x(50x0,5x2,25²+50x0,5³/12)=254,2Mpa
- 2 Eksenindeki Atalet Momenti(I2): 2x0,5x50³/12=10417 Mpa
- 3 Yönündeki Kesme Alanı:50 mm²
- 2 Yönündeki Kesme Alanı:50 mm²
- 3 Yönündeki Plastik Modül: 4x(0,5x25x12,5)=625 mm³
- 2 Yönündeki Plastik Modül: 2x(0,5x50x2,25)=112,5 mm³

3.5.5. Fiktif eleman tanımlanması

Modelde mafsal oluşturmak için orta noktaya bir fiktif eleman tanımlanmıştır. Bunun için önce dış yüz ilave düğüm atamak suretiyle bölünmüştür. Bu işlem için önce ekranın sol kenarındaki "Snap" menüsünden "Lines and Edges" seçeneğine tıklanmış ve bölmek istediğimiz çubuk elemanı işaretlenmiştir. Daha sonra "draw" menüsünden "Draw Special Point" seçeneği tıklanarak Şekil 3.21 ve Şekil 3.22'de gösterildiği gibi çubuk elemanının bölüneceği nokta işaretlenmiştir.

Fiktif eleman kesit özellikleri Şekil 3.23'te gösterilmektedir. Yükün uygulandığı noktaya mafsal atamak amacıyla eğilme rijitliği (*EI*) çok küçük, kayma rijitliği (*GA*) ve eksenel rijitliği (*AE*) çok yüksek fiktif bir eleman tanımlanmıştır.

Şekil 3.21. Fiktif elemanın tanımlanması

Şekil 3.22. Fiktif elemanın modelde görünümü

Property Data	-		
Section Name		fiktif	
Properties			
Cross-section (axial) area	10000,	Section modulus about 3 axis	1,
Moment of Inertia about 3 axis	1,	Section modulus about 2 axis	1.
Moment of Inertia about 2 axis	1.	Plastic modulus about 3 axis	1.
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	1,
Shear area in 2 direction	10000,	Radius of Gyration about 3 axis	1.
Shear area in 3 direction	10000,	Radius of Gyration about 2 axis	1.
-	1.		0.

Şekil 3.23. Fiktif eleman kesit özellikleri

SAP2000 modelinde XPS çekirdek malzemesi üzerine çelik saç ve mdf'den oluşan katman tanımlanmıştır. Bu katmanın yük uygulanan orta noktasında aşağıdaki şekilde dış yüz için hesaplanmış olan plastik moment (13500 Nmm) uygulanmıştır.

Şekil 3.24. Dış yüze uygulanan plastik moment

Katmanlı metal yüzün orta noktasındaki plastik mafsala moment uygulamak için önce ilgili düğüm noktası seçilmiş ve "Assign", "Joint Loads", butonları seçildikten sonra plastik moment değeri bu noktaya yönüyle beraber Şekil 3.25'te gösterildiği gibi girilmiştir.

Şekil 3.25. Plastik mafsala moment uygulanması

3.5.6. Kesitlerin modelde tanımlanması

Alanları çizmek için ekranın solundaki çizim menüsünde yer alan "Quick Draw Area" seçeneği kullanılmıştır. Alan olarak tanımlanmış olan XPS kesitinin üzerine önceden çubuk eleman olarak tanımlanmış olan ve galvanizli çelik sac ve mdf malzemelerinden oluşan "Katman" kesiti "Draw Frame/Cable" seçeneği ile çizilmiştir.

Şekil 3.26. Modele dış yüz kesitinin çizilmesi

3.5.7. Sınır şartlarının tanımlanması

Sınır şartlarını tanımlamak için "Assign" menüsünden "Joint" sekmesinden "Restraints" seçeneği seçilmiştir.

● ■ ● ● ● ● ● ● ●	J . Joint	•	2.	Restraints	2 B •	n 71 to -	nd S Len	\$101 P	10. 4.	I •	• 5	•
X-Z Plane @ Y=0	Frame	•	÷	Constraints								_
	Cable	•	11	Springs								
	- Tendon		3	Masses								
	C ¹ Solid		**	Local Axes								
	Link/Support		1.4	Merge Number								
	taint lands			inerge noniberii								
	Frame Loads					-	-		~	-		
8 8	2* Cable Loads				8	8	8	8	8	8		
	- Tendon Loads		_	T		 1						
	Area Loads											
	Solid Loads											
	Link/Support Loads	•	-	+ +		 				_		
	Joint Patterns											
	Assign to Group Ctr	l+Shift+G										
L.,	Update All Generated Hinge Pr	roperties	_			 						
	Clear Display of Assigns		of Obj	ect								
	Copy Assigns		ype	Straight	Frame							
	Paste Assigns		ases	Contin	uous							
		XY Plane Of Drawing Cor	fset No	ormal 0.	acebara							
		on a wing con	and typ	po None cap								

Şekil 3.27. Mesnetlerin tanımlanması - 1

Mesnetlenecek noktaları seçtikten sonra Şekil 3.28'de gösterilen menüden "pinned" - "sabit mesnet" seçeneği işaretlenmiştir.

K Assign Joint Restraints	×				
Restraints in Joint Local Dire	ections				
✓ Translation 1	Rotation about 1				
✓ Translation 2	Rotation about 2				
✓ Translation 3	Rotation about 3				
Fast Restraints	Pinned				
ОК	Close Apply				

Şekil 3.28. Mesnetlerin tanımlanması – 2

3.5.8. Yüklemenin yapılması

Modele uygulanacak yükleme ortadan olacağı için modelin tam ortasındaki 50 mm uzunluğundaki katman seçilmiştir.

	 (L) (L)	() ()	8		8	 (L)	8
4							4

Şekil 3.29. Numune üzerinde yükleme yapılacak alanın seçilmesi

Daha sonra Şekil 3.30'daki gibi "Define" menüsünde bulunan "Load Cases" sekmesinden nonlineer yük tanımlanmıştır.

Şekil 3.30. Seçilen alana nonlineer yük tanımlama

Yük tanımlama işlemi için sırasıyla "Assign", "Frame Loads", "Distributed" seçenekleri seçilmiştir. Açılan ekran menüsünden ortadaki 2 kesite yük eklemek için yayılı yük 22 N/mm yani, 50*22=1100 N olacaktır. 1100 N değerinin ilk plastik mafsalın oluştuğu değer olduğunu not ediniz.

A SAP2000 v19.2.1 Ultimate 64-bit - güçlü 50	at Arrian Araban Diadau Darian Ort	Kana Taala Ilala	
	() Soint	• nv 3 60 ♠ ♣ 號 ☑ 🛒 •	Inht
X-Z Plane @ Y=0	Y* Frame	•	
- - -	🐫 Cable	•	
*	👗 Tendon	•	
	Trea Area	•	
	Solid	•	
	💥 Link/Support	•	
X	Set Joint Loads		
8	Im Frame Loads	Gravity	38 8
	₩ Cable Loads	· · · ·	
	* Tendon Loads	Point	-
	dui Area Loads	Distributed	
•	Att Solid Loads	Temperature	11 1
	Link/Support Loads	1/2 Strain	H I
-4ª		Deformation	
Se .	Joint Patterns	X* Target Force	
*	Assign to Group Ctrl+Shift+G	et ingerioren	
-44	Update All Generated Hinge Properties	Auto Wave Loading Parameters	
R4	Clear Display of Assigns	FE Open Structure Wind Parameters	_
107 4		Fireproofing	
	Copy Assigns		
all ^b	Paste Assigns	>	
PS			

Şekil 3.31. Modelin yüklenmesi

Şekil 3.32. Yük değerlerinin tanımlanması

8		8		8	क्षेत	Î	ТŶ	1	\$	*	8	8
4												4
\vdash												-
\vdash	_	_		_	_		_	_	_	_	_	-
4	ZÅ.	Å	A	25	À	<u>A</u>	Å	À	<u>A</u>	<u>A</u>	A	4

Şekil 3.33. Üniform yayılı yükün modelde görünüşü

4. BULGULAR VE TARTIŞMA

4.1. Deney Neticelerinin Yorumlanması

Abot vd. (2002) tarafından da izah edildiği üzere, yükün deplasman karşısındaki eğrisi indentasyon sürecini anlamanın iyi yollarından biridir. Şekil 3.3'te gösterilmiş olan yük-maksimum deplasman grafiklerinden görülebileceği üzere plastik mafsalın oluşma noktasından sonra rijitlik düşmekte ve bu sebepten indentasyon derinliği de yüklemenin artış hızına oranla daha hızlı artmaktadır.

Şekil 3.3.'ten görülebileceği üzere, toplam düşey yük P=1000 N olana kadar yük-deplasman eğrileri neredeyse lineer olup bu yük değerindeki deplasman ortalama 2 mm civarındadır. Artan yük düzeyi ile plastik mafsallar oluşmakta ve rijitlik hızla azalmaktadır. P=1200 N gibi bir yük düzeyinde çelik çekme testinde gözlenen akma platosu benzeri bir davranış gözlemlenmektedir. Yükün daha da artması ile de pekleşme benzeri bir davranış gözlemlenmekte ve yük-deplasman eğrisinin eğimi bir miktar artmaktadır.

Eldeki deneyselverilerin ışığında, öncelikli olarak rijitliğin belirgin bir şekilde azalmaya başladığı ilk yük düzeyinin belirlenmesi konusunda çalışılmasının lüzumlu olduğu kanaatine varılmıştır.

4.2. Doğrusal Model Neticeleri

Şekil 3.3'ten görülebileceği üzere, doğrusal modelden elde edilen rijitlik deneylerde gözlemlenmiş olan rijitlikten düşüktür. Bunun temel sebebinin rijit köpük çekirdek malzemenin sayısal modelinin gerçek davranışı ifade etmekte yetersiz kalmasının olduğu düşünülmektedir.

Şekil 4.1'den görülebileceği üzere dış yüzde ilk plastik mafsalın oluştuğu toplam 1127 N düşey yük için basma plakası saviyesindeki düşey deplasman değeri yaklaşık 2.73 mm olarak hesaplanmıştır ki bu değerin Şekil 3.3'te sunulmuş olan deney neticeleri ile uyumlu olduğu görülebilir. Ancak, modelin rijitliğinin daha düşük olduğu anlaşılmaktadır.

Ayrıca, bu yük düzeyi için, köpük çekirdek malzemede oluşan düşey doğrultudaki gerilme dağılımı Şekil 4.2'de sunulmuştur. Şekil 4.2'den görülebileceği üzere, basma plakasının hemen altında oluşan basınç gerilmeleri kullanılan rijit köpük malzeme için Çizelge 3.1'de verilmiş olan basınç dayanımlarından çok daha yüksek değerler almıştır. Ancak, gerilmelerin basma plakasından uzaklaştıkça hızla düştüğü gözlemlenebilir. Bu sebeple, yapılan yaklaşık sayısal model ile elde edilen neticelerin ön tasarım için kabul edilebilir olduğu düşünülmektedir. Şekil 4.3'te gösterilen yatay gerilme dağılımı ve Şekil 4.4'te gösterilen düzlem içi kayma gerilmesi dağılımı beklenildiği şekilde çok düşük yatay ve kayma gerilmeleri oluştuğunu göstermektedir.

Şekil 4.1. Doğrusal model ile elde edilmiş olan deforme olmuş geometri

Şekil 4.2. Doğrusal model ile elde edilmiş olan σ_y gerilme dağılımı.

Şekil 4.3. Doğrusal model ile elde edilmiş olan σ_x gerilme dağılımı.

Şekil 4.4. Doğrusal model ile elde edilmiş olan τ_{xy} gerilme dağılımı.

4.3. SAP2000 Modeli ile Elde Edilen Neticeler

SAP2000 programı analiz menüsü seçeneklerinden "Nonlinear Static" dışındakileri pasif hale getirip analiz yapılmıştır. Şekil 4.5. Şekil 4.6'dan görülebileceği üzere, toplam 1100 N düşey yük için maksimum deplasman 2.226 mm olarak elde edilmiştir. Bu değer, Şekil 3.3'te sunulmuş olan deney neticeleri ile uyumludur.

a	-			Click to:	
Case Name	linear Statio	Status	Action	Run/Do Not Run Case	
MODAL ACASE1	Modal Nonlinear Static	Not Run Not Run Not Run	Do not Run Run	Show Case	
				Delete Results for Case	
				Run/Do Not Run All	
				Delete All Results	
				Show Load Case Tree	
nalysis Monitor Options	3			Model-Alive	
Always Show				Run Now	

Şekil 4.5. Analiz seçeneklerinin girilmesi

Şekil 4.7'de numune dış yüzü için eğilme moment dağılımı gösterilmektedir. Bu şekilden görülebileceği üzere, numunenin orta noktasında oluşan Maksimum moment 14716 Nmm'dir. Bu durumda Şekil 4.8'de görüldüğü üzere, tanımlanmış olan fiktif plastik mafsala uygulanmış olan 13500 Nmm şiddetindeki plastik moment dışında bir miktar ilave moment oluştuğu anlaşılmıştır. Ancak, farkın çok yüksek olmaması sebebiyle bu konuda ilave bir çalışma yapılmamıştır.

Şekil 4.7. Dış yüzde eğilme momenti dağılımı

Şekil 4.8. Plastik mafsal civarında eğilme momenti değerleri

Şekil 4.9'da köpük çekirdekte düşey gerilme dağılımı gösterilmektedir. Bu şekilden görülebileceği üzere, maksimum basınç gerilmesi değeri XPS köpüğün maksimum basınç dayanımı değeri olan 0.19 MPa'dan küçüktür. Gerçekte yükleme plakası altında ve civarında çok yüksek düşey gerilmeler olmalıdır.

Şekil 4.9. Köpük çekirdekte düşey gerilme dağılımı

5. SONUÇLAR

Bu çalışmada, galvaniz sac ve mdf kullanılarak imal edilmiş katmanlı yüzlü ve rijit köpük çekirdekli sandviç kirişlerin yarı-statik yükler altındaki indentasyonu konusunda çalışılmıştır. Eldeki deney neticeleri iki farklı sonlu elemanlar modeli ile elde edilmiş olan sayısal neticeler ile mukayese edilerek sunulmuştur.

3 ayrı deney neticelerini grafikte incelediğimizde plastik mafsal oluşumunun 1000-1100 N civarında oluştuğunu ve bu yük değeri için deplasmanın 2 mm düzeylerinde olduğunu gözlemlemekteyiz.

Öncelikle, Octave program kullanılarak geliştirilmiş doğrusal bir sonlu elemanlar modeli kullanılmıştır. Octave programının çalıştırılması sonucunda plastik mafsal oluşumu anına denk gelen yük 1127 N olarak hesaplanmış ve düşey deplasman değeri yaklaşık olarak 2.73 mm olarak gözlenmiştir. Bunun yanısıra, aynı yük değeri için düşey gerilmeler plaka altında 0.3-0.5 MPa civarlarında bir değer almıştır. Malzemenin maksimum gerilme dayanımı 0.19 MPa civarındadır. Bu da bize modelin deney sonuçlarıyla yakın değerler verdiğini göstermektedir. Bu modelden elde edilen sayısal neticelerin deney neticeleri ile uyum içinde olduğunu söyleyebiliriz. Bu da, doğrusal modelin ön-tasarım için kullanılabilir olduğu kanaatine varmamızı sağlamaktadır.

Daha sonra, SAP2000 paket programı kullanılarak yeni ve daha gelişmiş bir sonlu elemanlar modeli yapılmıştır. Model incelendiğinde 1100 N düşey yük için maksimum deplasman 2.226 mm' dir. Gerilme değerleri yükleme plakası altında 0.07 MPa civarlarındadır ki bu değer gerçek değere göre çok düşüktür. Bu sayısal neticeler yine deneysel neticeler ile kıyaslanmış ve SAP2000 modelinin gerilme değeri dışında doğrusal modele yakın netice verdiği görülmüştür. Yük-deplasman tasarımı için model uygundur. Ancak, modelde bazı kusurlar olduğu belirlenmiştir. Öncelikle, tanımlanan fiktif plastik mafsalda ilave momentler oluştuğu görülmüştür. Ayrıca, yükleme levhası altında beklenenin çok altında düşey gerilmeler oluştuğu görülmüştür. Bu kusurların giderilmesi için ilave çalışmalar yapılması gerekmektedir.

Parametre & Birim	Octave	SAP2000	Deney Sonuçları
bf (mm)	50	50	50
c (mm)	100	100	100
l (mm)	300	300	300
P (N)	1127	1100	1100
? (mm)	2.73	2.226	2.1
? (MPa)	0.4	0.07	-

Şekil 5.1. Kullanılan yöntem ve sonuçların tablo hali

6. KAYNAKLAR

- Abot JL, Daniel IM ve Gdoutos EE. 2002. Contact law for composite sandwich beams. J Sand Struct Mat, 4(2): 157-173.
- Abrate S. 2008. Criteria for yielding or failure of cellular materials. *J Sand Struct Mat*, 10(1): 5-51.
- Ashby MF, Evans T, Fleck NA, vd. 2000. Metal foams: a design guide. 1st ed. Woburn, Elsevier, 117 s.
- Bart-Smith H, Hutchinson JW ve Evans AG. 2001. Measurement and analysis of the structural performance of cellular metal sandwich construction. *Int J Mech Sci*, 43(8): 1945-1963.
- Berthelot JM ve Lolive É. 2002. Non-linear behaviour of foam cores and sandwich materials, Part 1: Materials and modelling. J Sand Struct Mat, 4(3): 219-247.
- Chen C, Harte AM ve Fleck NA. 2001. The plastic collapse of sandwich beams with a metallic foam core. *Int J Mech Sci*, 43(6): 1483-1506.
- Daniel IM, Gdoutos EE, Wang KA, vd. 2002. Failure modes of composite sandwich beams. *Int J Damage Mech*, 11(4): 309-334.
- Frostig Y, Baruch M, Vilnay O, vd. 1992. High-order theory for sandwich-beam behavior with transversely flexible core. *J Eng Mech*, 118(5): 1026-1043.
- Frostig Y ve Baruch M. 1993. High-order buckling analysis of sandwich beams with transversely flexible core. *J Eng Mech*, 119(3): 476-495.
- Frostig Y ve Baruch M. 1996. Localized load effects in high-order bending of sandwich panels with flexible core. *J Eng Mech.* 122(11): 1069-1076.
- Gdoutos E ve Daniel IM. 2008. Failure modes of composite sandwich beams. Int J Theor Appl Mech, 35(1-3): 105-118.
- Hetenyi M. 1946. *Beams on elastic foundation*. Ann Arbor: University of Michigan Press.
- McCormack TM, Miller R, Kesler O, vd. 2001. Failure of sandwich beams with metallic foam cores. *Int J Solid Struct*, 38(28): 4901-4920.
- Mohan K, Hon YT, Idapalapati S, vd. 2005. Failure of sandwich beams consisting of alumina face sheet and aluminum foam core in bending. *Mater Sci Eng*, 409(1): 292-301.
- Mohan K, Yip TH, Sridhar I, vd. 2007. Effect of face sheet material on the indentation response of metallic foams. *J Mater Sci*, 42(11): 3714-3723.
- Navarro P, Abrate S, Aubry J, Marguet S, Ferrero JF. 2013 Jun 30. Analytical modeling of indentation of composite sandwich beam. *Composite Structures*, 100:79-88.
- Pitarresi G ve Amorim J. 2011. Indentation of rigidly supported sandwich beams with foam cores exhibiting non-linear compressive behaviour. *J Sand Struct Mat*, 13(5): 605-636.

- Qin QH, Zhang JX, Wang ZJ, Li HM, Dan GU. 2014 Aug 1. Indentation of sandwich beams with metal foam core. *Transactions of Nonferrous Metals Society of China*, 24(8):2440-6.
- Sha JB ve Yip TH. 2004. In situ surface displacement analysis on sandwich and multilayer beams composed of aluminum foam core and metallic face sheets under bending loading. *Mater Sci Eng*, 386(1): 91-103.
- Shipsha A, Hallström S ve Zenkert D. 2003. Failure mechanisms and modelling of impact damage in sandwich beams-a 2D approach: part I-experimental investigation. *J Sand Struct Mat*; 5(1): 7-31.
- Steeves CA ve Fleck NA. 2004. Material selection in sandwich beam construction. *Scripta Mater*, 50(10): 1335-1339.
- Steeves CA ve Fleck NA. 2004. Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part I: analytical models and minimum weight design. *Int J Mech Sci*, 46(4):561-583.
- Steeves CA ve Fleck NA. 2004. Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part II: experimental investigation and numerical modelling. *Int J Mech Sci*, 46(4): 585-608.
- Soden PD. 1996. Indentation of composite sandwich beams. J Strain Analysis Eng Design, 31(5): 353-360.
- Thomsen OT ve Frostig Y. 1997. Localized bending effects in sandwich panels: photoelastic investigation versus high-order sandwich theory results. *Compos Struct*, 37(1): 97-108.
- Triantafillou TC ve Gibson LJ. 1987. Failure mode maps for foam core sandwich beams. *Mater Sci Eng*, 95: 37-53.
- Triantafillou TC ve Gibson LJ. 1987. Minimum weight design of foam core sandwich panels for a given strength. *Mater Sci Eng*, 95: 55-62.
- Xiao D, Mu L ve Zhao G. 2015. Indentation response of sandwich panels with positive gradient metallic cellular core. *J Sand Struct Mat*; 17(6): 597-612.
- Zenkert D, Shipsha A ve Persson K. 2004. Static indentation and unloading response of sandwich beams. *Compos B Eng*, 35(6): 511-522.
- Zhang J, Qin Q, Ai W, vd. 2016. Indentation of metal foam core sandwich beams: experimental and theoretical investigations. *Exp Mech*, 56(5): 771-784.

ÖZGEÇMİŞ

Umut HEKİM

umut.hekim@hotmail.com

ÖĞRENİM BİLGİLERİ

Yüksek Lisans	Akdeniz Üniversitesi
2015-	Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Antalya
Lisans	Akdeniz Üniversitesi
2010-2014	Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Antalya