T.C. AKDENİZ ÜNİVERSİTESİ

KARBON NANOTÜP TAKVİYELİ KOMPOZİT KABUKLARIN SERBEST TİTREŞİM HESABI

Ali Kemal BALTACIOĞLU

FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA TEZİ

> MAYIS 2018 ANTALYA

T.C. AKDENİZ ÜNİVERSİTESİ

KARBON NANOTÜP TAKVİYELİ KOMPOZİT KABUKLARIN SERBEST TİTREŞİM HESABI

Ali Kemal BALTACIOĞLU

FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA TEZİ

MAYIS 2018

ANTALYA

T.C. AKDENİZ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KARBON NANOTÜP TAKVİYELİ KOMPOZİT KABUKLARIN SERBEST TİTREŞİM HESABI

Ali Kemal BALTACIOĞLU

İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA TEZİ

MAYIS 2018

T.C. AKDENİZ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KARBON NANOTÜP TAKVİYELİ KOMPOZİT KABUKLARIN SERBEST TİTREŞİM HESABI

Ali Kemal BALTACIOĞLU

İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA TEZİ

Bu tez 10/05/20118 tarihinde jüri tarafından Oybirliği ile kabul edilmiştir.

Prof. Dr. Ömer CİVALEK (Danışman)

Doç. Dr. Mustafa Özgür YAYLI

Doç. Dr. Mehmet AVCAR

Dr. Öğr. Üyesi İbrahim AYDOĞDU

Dr. Öğr. Üyesi Bekir AKGÖZ

ÖZET

KARBON NANOTÜP TAKVİYELİ KOMPOZİT KABUKLARIN SERBEST TİTREŞİM HESABI

Ali Kemal BALTACIOĞLU

Doktora Tezi, İnşaat Mühendisliği Anabilim Dalı

Danışman: Prof. Dr. Ömer CİVALEK

Mayıs 2018, 127 sayfa

Bu tezde, çeşitli formlardaki kabuk yapıların serbest titreşim hesabını yaparak, frekans üzerinde etken olan parametreleri belirlemektir. Özellikle konik, silindirik kabuk incelenmiş bazı durumlar için panel çözümleri de yapılmıştır. Kabuklar, uçak-uzay, makine, inşaat mühendislikleri ile pek çok endüstriyel alanda kullanıma sahiptir. Kullanım koşulları gereği serbest titreşim frekans değerlerinin bilinmesi boyutlandırmada önemlidir. Tez kapsamında elde edilen denklemlerin çözümü için sayısal yöntemler ATK (ayrık tekil konvolüsyon yöntemi), diferansiyel kuadratür ile sonlu elemanlar tabanlı ANSYS paket programı kullanılacaktır. Elde edilen denklemler çeşitli geometrik parametrelerin düzenlenmesi ile diğer formlardaki kabuk ya da plak yapılarına indirgenebilmektedir. Böylece silindirik kabuklar, silindirik paneller ve dikdörtgen plaklarda aynı denklemlerin düzenlenmesi ile istenirse çözülebilecektir. Frekans değerlerine üzerinde etken olan parametrelerin bulunması tezin esas amacıdır.

ANAHTAR KELİMELER: Titreşim, konik, silindirik, kabuk, ANSYS, ATK.

JÜRİ: Prof. Dr. Ömer CİVALEK

Doç. Dr. Mustafa Özgür YAYLI Doç. Dr. Mehmet AVCAR Dr. Öğretim Üyesi İbrahim AYDOĞDU Dr. Öğretim Üyesi Bekir AKGÖZ

ABSTRACT

FREE VIBRATION ANALYSIS OF CARBON NANOTUBE REINFORCED COMPOSITE SHELLS

Ali Kemal BALTACIOĞLU

PhD. Thesis in Civil Engineering

Supervisor: Prof. Dr. Ömer CİVALEK

May 2018, 127 pages

In this thesis, the free vibrations of various shaped shell structures are calculated and the effects of parameters on frequency is determined. Especially conical and cylindrical shells are examined and some examples are also solved as panel models. Shells are commonly used in avion-space, civil engineering and many more industries. According to terms of use, the free vibration frequency has a vital importance in sizing elements. The equations which are obtained in this thesis are solved by using Discrete Singular Convolution method (DSC), differential quadrature method and the finite element based computer program ANSYS. The obtained equations can be degraded into other forms shell or plate structures by arranging geometric parameters. By this way cylindrical shells, cylindrical panels and square plates can also be solved by arranging obtained equations if desired. Determining the effective parameters on frequencies is the main aim of this thesis.

KEYWORDS: Vibration, conical, cylindrical, shell, ANSYS, DSC.

COMMITTEE: Prof. Dr. Ömer CİVALEK

Doç. Dr. Mustafa Özgür YAYLI Asst. Prof.Dr. İbrahim AYDOĞDU Asst. Prof. Dr. Mehmet AVCAR Asst. Prof. Dr. Bekir AKGÖZ

ÖNSÖZ

İnşaat mühendisliği disiplininin bir kolu da yapı mühendisliği bilimidir. Yapılar, çeşitli amaçlar için kullanılmak üzere insanlar tarafından oluşturulmuş, kullanım amacına göre küçük veya devasa boyutlara ulaşabilen yani yer kaplayan varlıklardır. Günümüzde teknolojinin gelişmesi ile insanların ihtiyaçları giderek değişkenlik göstermeye başlamıştır. Bu nedenle yapı mühendislerinin de sahip olması gereken yapı bilgisinin de gelişmişlik gösteriyor olması mühimdir. Yapı mühendisleri, kullanım amacına uygun olarak çeşitli boyutlardaki taşıyıcı sistemleri dış zorlamalar altında çözümleyebiliyor olmalıdır.

Kabuk yapılar inşaat, makine, uçak-uzay gibi birçok mühendislik alanında geniş bir kullanıma sahiptir. Spor salonları çatısı, stadyumların tribün üstleri, cami kubbeleri, tüp geçitler, su depoları, araba gövdeleri, borular, uçak kanatları kabuk yapıların kullanıldığı alanlara örnek verilebilir. Bir yapı mühendisi, kabuk yapıların da dış zorlamalar altında statik ve dinamik olarak mekanik çözümlemelerini yapabilmelidir. Bu çözümlemeler tasarımın gerçekleştirilebiliyor olması açısından önem taşır.

Mühendisler, bu yapıların tasarımında malzeme davranışını da iyi modelleyebilen kişilerdir. Bu bağlamda bu tez çalışmasında, karbon nanotüp takviyeli ve fonksiyonel değişimli kabuk yapıların serbest titreşim analizleri yapılmıştır. Elde edilen frekans parametreleri çok yönlü incelenmiş olup kabuk yapıların titreşimine etki eden etmenler belirlenmiştir. Kabuk yapıların tasarımında fonksiyonel değişimli olma ve karbon nanotüp gibi oldukça mukavemetli bir malzeme ile takviyeli olma durumları göz önünde tutularak yapı tasarımı hakkında çeşitli sonuçlara varılarak bu tip yapıların tasarım problemine bir ışık tutulmuştur.

Son olarak, mesleki bilgilerimin gelişmesi açısından oldukça önemli olduğunu düşündüğüm doktora eğitimim boyunca benden yardımlarını esirgemeyen değerli danışman hocam sayın Prof. Dr. Ömer CİVALEK'e teşekkürlerimi sunarım. Tez süresince yardımlarını aldığım Doç.Dr. Hakan ERSOY'a ve İnş. Müh. Hayri Metin Numanoğluna teşekkür ederim. Desteklerini her daim yanımda hissettiğim abime ve tüm aileme içten teşekkür ederim.

ÖZET	ii
ABSTRACT	iii
ÖNSÖZ	iiii
AKADEMİK BEYAN	vii
SİMGELER VE KISALTMALAR	viii
ŞEKİLLER DİZİNİ	ix
ÇİZELGELER DİZİNİ	ix
1. GİRİŞ	1
2. KAYNAK TARAMASI	5
2.1. Bilimde Kabuk ve Literatür	5
3. MATERYAL VE METOT	6
3.1. Temel Denklemler	6
3.1.1. Silindirik kabuk	6
3.1.2. Konik kabuk	7
3.2. Denklemlerin Sayısal Çözümü	14
3.2.1. Ayrık Tekil Konvolüsyon (ATK) yöntemi	14
3.3. Fonksiyonel Derecelendirilmiş Malzeme	23
3.4. Dönen Kabuklar	24
3.5. Birinci Mertebeden Kayma Deformasyonu Teorisine Dayalı Kabuk	
Denklemi	25
3.6. Karbon Nanotüp Takviyeli Kompozitler	27
4. BULGULAR ve TARTIŞMA	
6. SONUÇLAR	121
7. KAYNAKLAR	124
ÖZGEÇMİŞ	

İÇİNDEKİLER

AKADEMİK BEYAN

Doktora Tezi olarak sunduğum "Karbon nanotüp takviyeli kompozit kabukların serbest titreşim hesabı" adlı bu çalışmanın, akademik kurallar ve etik değerlere uygun olarak bulunduğunu belirtir, bu tez çalışmasında bana ait olmayan tüm bilgilerin kaynağını gösterdiğimi beyan ederim.

25 /05/2018

Ali Kemal BALTACIOĞLU

SİMGELER VE KISALTMALAR

<u>Simgeler</u>

<i>u</i> , <i>v</i> , <i>w</i>	: Sırasıyla x, y ve z- doğrultusundaki deplasmanlar
ν	: Poisson oranı
$\sigma_x, \sigma_y, \sigma_z$: İlgili doğrultudaki normal gerilmeler
$\tau_{xy}, \tau_{yz}, \tau_{xz}$: İlgili doğrultudaki kayma gerilmeleri
G	: Kayma modülü
Ε	: Elastisite modülü
Ω	: kabuk için boyutsuz frekans
р	: FGM indeksi
ω	: Doğal frekans
$ au_{kl}$: Gerilme tansörü
ρ	: Kütle yoğunluğu
<i>u</i> _l	: Yer değiştirme vektörü
\mathcal{E}_{kl}	: Şekil değiştirme
$\mu_{,} \lambda$: Lame sabitleri
u, v, w	: Orta düzlemdeki bir noktanın yer değiştirmeleri
$\sigma_{_{ij}}$: ij yönündeki normal ve kayma gerilmesi bileşeni
${\gamma}_{ij}$: ij yönündeki açısal şekil değiştirme
U	: Şekil değiştirme enerjisi

Bu tezde sayıların ondalık kısmı nokta (.) ile ayrılmıştır.

<u>Kısaltmalar</u>

АТК	: Ayrık Tekil Konvolüsyon
CNTR	: Carbon Nanotube Reinforced (Karbon Nanotüp Takviyeli)
ТК	: Tekil Konvolüsyon
DQ	: Diferansiyel quadrature
FDM	: Fonksiyonel değişimli malzeme
BBBB	: Dört noktadan sabit mesnetli plak
AAAA	: Dört noktadan ankastre mesnetli plak
BABA	: Farklı iki noktadan hem sabit hem ankastre mesnetli plak

ŞEKİLLER DİZİNİ

Şekil 1.1. Uçak motoru gösterimi	2
Şekil 1.2. Günlük hayatta karşımıza çıkan kabuk formlu yapılar	3
Şekil 1.3. Karbon nanotüplerin tüp sayısına göre çeşitleri a) Tek duvarlı karbon nanotüpler (kuark.org) b) Çok duvarlı karbon nanotüpler (understandingnano.com)	5
Şekil 4.1. Tabakalı izotropik konik kabuk	. 30
Şekil 4.2. Dairesel silindirik panel	. 31
Şekil 4.3. Dairesel silindirik kabuk	. 31
Şekil 4.4. En genel durumda tabakalı konik kabuk ve elemanları	32
Şekil 4.5. Konik panel	32
Şekil 4.6. Dairesel silindirik kabuk için mod şekilleri ve frekanslar	34
Şekil 4.7. Konik kabuğun serbest titreşiminde sınır koşullarının etkisi (h/R ₂ =0.01; α =30; L/R ₂ =0.75)	34
Şekil 4.8. Her iki uç basit mesnetli konik kabuğun frekans değerinde kullanılan teorinin etkisi (α =30; L/R ₂ =0. 5; 0/90)	35
Şekil 4.9. Her iki uç basit mesnetli silindirik kabuğun geometrik büyüklüklere bağlı frekans değerleri	36
Şekil 4.10. Her iki uç basit mesnetli konik kabuğun tabaka sayısına bağlı frekans değerleri (Lsin $\alpha/R2=0.25$; $\alpha=30$)	36
Şekil 4.11. Her iki uç basit mesnetli konik kabuğun (0/90/0/90/0/90) kalınlık ve konik açısına bağlı frekans değerleri (L/R2=0. 5)	37
Şekil 4.12. Kalınlığın ve çapın orantılı artması ile frekans değişimi	. 38
Şekil 4.13. Kabuğun sonlu eleman modeli	. 39
Şekil 4.14. Dairesel silindirik kabuğun (D/L) için frekans değerleri ve mod şekilleri	40
Şekil 4.15. Dairesel silindirik kabuğun (D/2L) için frekans değerleri ve mod şekilleri	42
Şekil 4.16. Dairesel silindirik kabuğun (D/4L) için frekans değerleri ve mod şekilleri	44
Şekil 4.17. Dairesel silindirik kabuğun (D/L) için frekans değerleri ve mod şekilleri	44

Şekil 4.18. Dairesel silindirik kabuğun (h/R) için frekans değerleri ve mod şekilleri 45
Şekil 4.19. Dört tarafı ankastre mesnetlenmiş kare plağın ilk 20 mod şekli 61
Şekil 4.20. Dört tarafı serbest kare plağın ilk 20 mod şekli
Şekil 4.21. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ilk 20 mod şekli 69
Şekil 4.22. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ince kabuk teorisine göre ilk 20 mod şekli
Şekil 4.23. İki tarafı boşta silindirik kabuğun ilk 20 mod şekli
Şekil 4.24. İki tarafı boşta silindirik kabuğun ince kabuk teorisine göre ilk 20 mod şekli
Şekil 4.25. İki tarafı ankastre mesnetlenmiş konik kabuğun ilk 20 mod şekli 85
Şekil 4.26. İki tarafı serbest konik kabuğun ilk 20 mod şekli
Şekil 4.27. Farklı sınır koşulları altında konik kabuğun ilk 10 frekans değeri ve mod şekilleri

ÇİZELGELER DİZİNİ

Çizelge 4.1. Her iki ucu basit mesnetli silindirik kabuğun frekans değerleri)
Çizelge 4.2. FDM kabuk için malzeme parametreleri)
Çizelge 4.3. Farklı tipte FDM içeren kabuk
Çizelge 4.4. Her iki ucu bassit mesnetli dairesel silindirik kabuğun titreşim frekans değerlerinin ($\Omega = 2\pi R\omega \sqrt{\rho h / A_{11}}$) karşılaştırılması (0/90) (R/L=0.1; 2. mod)47
Çizelge 5.5. Her iki ucu basit mesnetli tabakalı konik kabuğun frekans değeri (0/90) konik kabuk ($L/R_2=0.5$; n=1; $\alpha=30^{\circ}$)
Çizelge 4.6. Her iki ucu basit mesnetli FDM içeren kabuk için frekans değeri
Çizelge 4.7. Dairesel silindirik kabuğun ilk beş boyutsuz titreşim frekansı
Çizelge 4.8. İzotrop kabuğun farklı parametrelere bağlı temel frekans değerleri49
Çizelge 4.9. İzotrop kabuğun farklı parametrelere bağlı ilk beş frekansı (a/h=20) 50
Çizelge 4.10. Tabakalı orthotrop kabuğun (90°/0°) titreşim frekansları (a/h=10) 50
Çizelge 4.11. Frekans üzerinde kalınlığın etkisinin incelenmesi (90°/0°) (a/R=2.0) 50
Çizelge 4.12. Üç tabakalı kabuğun titreşim frekansları (0°/90°/0°) (a/R=0.551
Çizelge 4.13. Tabaka sayısının frekans üzerine etkisi (a/h=10)
Çizelge 4.14. Çelik silindire ait frekans değerleri (Hz)
Çizelge 4.15. Silindirik kabuğun mod sayısına(m,n) bağlı frekans (rad/sec) değerleri
Çizelge 4.16. Silindirik kabuğun frekans (rad/sn) değerleri (C-C; h/R=0.01, m=1) 53
Çizelge 4.17. Dairesel silindirik kabuk frekans (rad/sec) değerleri (S-S; m=1)53
Çizelge 4.18. Silindirik S-S panelin boyutsuz frekans $(\Omega = \omega L^2 \sqrt{\rho / E_2 h^2})$ değerleri ([0°/90°/90°/0°]; L _x /R=0.1; L _x / L _y =1)
Çizelge 4.19. boyutsuz frekans $(\Omega = \omega L_x^2 \sqrt{\rho / E_2 h^2})$ değerleri ([0°/90°/90°/0°]; L _x / L _y =1; E ₁ / E ₂ =5; L _x / h=20)
Çizelge 4.20. Boyutsuz Frekans değerleri

Çizelge 4.21. Silindirik panel için boyutsuz frekans ($\Omega = \omega L_x^2 \sqrt{\rho / E_2 h^2}$) değerleri ([0°/90°/90°/0°]; L _x / L _y =1; L _x / h=10; ; L _x / R=0.025))
Çizelge 4.22. Silindirik S-S kabuk frekans $\Omega = \omega L^2 \sqrt{\rho / E_x h^2}$ değerleri
Çizelge 4.23. Tabakalı kompozit silindirik kabuğun ([0°/90°]) boyutsuz frekans ($\Omega = \omega L^2 \sqrt{\rho / E_2 h^2}$) değerleri (L _x /L _y =1; L _x /h=10)
Çizelge 4.24. Tabakalı kompozit silindirik kabuğun ([0°/90°]) boyutsuz frekans $(\Omega = \omega L^2 \sqrt{\rho / E_2 h^2})$ değerleri (L _x /L _y =1; L _x /h=10, 11×11)
Çizelge 4.25. Basıklık oranının frekans üzerine($\Omega = \omega L_x^2 \sqrt{\rho / E_2 h^2}$) etkisi ($L_x/L_y=1$; $L_x/h=100$; $E_1/E_2=15$; $v_{12}=0.25$; 13×13)
Çizelge 4.26. Tabakalı kompozit silindirik kabuk basıklık oranı ve kalınlığın etkisi $(L_x/L_y=1; E_1/E_2=15; v_{12}=0.25; 15\times15; [0^{\circ}/90^{\circ}/0^{\circ}])$
Çizelge 4.27. Analizlerde kullanılan malzeme özellikleri
Çizelge 4.28. Dört tarafı anakastre mesnetlenmiş kare plağın ilk 20 mod için modal analiz değerleri (Hz) (A=B=100cm, h=5cm)
Çizelge 4.29. Dört tarafı anakastre mesnetlenmiş kare plağın ilk 20 mod için modal analiz değerleri (Hz) (A=B=100cm, h=1cm)
Çizelge 4.30. Dört tarafı serbest kare plağın ilk 20 mod için modal analiz değerleri (Hz) (A=B=100cm, h=5cm)
Çizelge 4.31. Dört tarafı serbest kare plağın ilk 20 mod için modal analiz değerleri (Hz) (A=B=100cm, h=1cm)
Çizelge 4.32. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ilk 20 mod için modal analiz değerleri (Hz) (r=40cm, h=1cm, L=120cm70
Çizelge 4.33. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ilk 20 mod için modal analiz değerleri (Hz) (r=40cm, h=0.5cm, L=120cm)
Çizelge 4.34. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ince kabuk teorisine göre ilk 20 mod için modal analiz değerleri (Hz) (r=40cm, h=1cm, L=120cm)
Çizelge 4.35. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ince kabuk teorisine göre ilk 20 mod için modal analiz değerleri (Hz) (r=40cm, h=0.5cm, L=120cm)
Çizelge 4.36. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ilk 20 mod için modal analiz değerleri (Hz) (r=40cm, h=1cm, L=120cm)

Çizelge 4.37. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ilk 20 mod için modal analiz değerleri (Hz) (r=40cm, h=0.5cm, L=120cm)
Çizelge 4.38. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ince kabuk teorisine göre ilk 20 mod için modal analiz değerleri (Hz) (r=40cm, h=1cm, L=120cm)
Çizelge 4.39. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ince kabuk teorisine göre ilk 20 mod için modal analiz değerleri (Hz) (r=40cm, h=0.5cm, L=120cm)
Çizelge 4.40. İki tarafı ankastre mesnetlenmiş konik kabuğun ilk 20 mod için modal analiz değerleri (Hz) (R1=20cm, R2=40cm, h=1cm, L=120cm)
Çizelge 4.41. İki tarafı ankastre mesnetlenmiş konik kabuğun ilk 20 mod için modal analiz değerleri (Hz) (R1=20cm, R2=40cm, h=0.5cm, L=120cm)
Çizelge 4.42. İki tarafı serbest konik kabuğun ilk 20 mod için modal analiz değerleri (Hz) (R1=20cm, R2=40cm, h=1cm, L=120cm)90
Çizelge 4.43. İki tarafı serbest konik kabuğun ilk 20 mod için modal analiz değerleri (Hz) (R1=20cm, R2=40cm, h=0.5cm, L=120cm)90
Çizelge 4.44. Dönen izotrop konik kabuğun boyutsuz frekans değeri. Her iki uç basit mesnet $(\Omega = \omega R_2 \sqrt{\rho(1-\upsilon^2)/E})$ ($\upsilon=0.3$; $\alpha=45^\circ$; L/R ₁ =20; m=1; n=2; h/R ₁ =0.015)
Çizelge 4.45. Dönen izotrop konik kabuğun boyutsuz frekans değeri. Her iki uç basit mesnet ($\Omega = \omega R_2 \sqrt{\rho(1-\upsilon^2)/E}$) ($\upsilon=0.3$; $\alpha=45^\circ$; L/R=20; m=1; n=2)
Çizelge 4.46 Dört kenar ankastre konik panelin Tip-II FGM için frekans $(\Omega_1 = \omega L^2 \sqrt{\rho / Eh^2} / 2\pi)$ değerleri (L/R ₁ =2.5, h/R ₁ =0.025, φ =45, α =120)96
Çizelge 4.47 Dört kenarı basit mesnetli dairesel silindirik panelin frekans $(\Omega = \omega L \sqrt{\rho(1+\upsilon)/E})$ değerleri (L/b=1, υ =0.3, α =30 ⁰)
Çizelge 4.48 Kenarları ankastre izotropik dairesel panellerin boyutsuz frekanslarının ($\Omega = \omega R \sqrt{\rho/E}$) karşılaştırılması (L/R =1.5, h/R =0.01, R=2m, α =90 ⁰ , E=210 GPa, ρ =7800 kg/m ³ , υ =0.3)
Çizelge 4.49 Kenarları basit mesnetli Tip – IV FDM dairesel silindirik panellerin boyutsuz doğal frekanslarının ($\Omega_1 = \omega L^2 \sqrt{\rho / Eh^2}$) karşılaştırılması (L=1 m, L/R =0.5, E _c =151 GPa, υ_c =0.3, ρ_c =3000 kg/m ³ , E _m =70 GPa, υ_m =0.3, ρ_m =2707 kg/m ³)98
Çizelge 4.50 İki kenarından serbest ve iki kenarından ankastre mesnetli karbon nanotüp takviyeli silindirik panellerin boyutsuz frekansları ($\Omega_1 = \omega L^2 \sqrt{\rho / Eh^2}$) (L/R=0.5, h/R=0.05, V _{CNT} =0.11, UD)

Çizelge 4.53 Tip – II FDM (Al/ZrO₂) silindirik panellerin boyutsuz temel frekansları ($\Omega = \omega L^2 \sqrt{\rho / Eh^2}$)(L/b=1, L/R =0.1, h/R=0.01)......101

Çizelge 4.54 Kenarları ankastre Tip – II FDM (Si₃N₄/SUS3O4) silindirik panellerin ilk dört mod boyutsuz frekansları ($\Omega = \omega L^2 \sqrt{\rho h / D}$)(p=0.2, L/R=0.1, L/h=10) 102

Çizelge 4.56 Kenarları ankastre Tip – II FDM silindirik panellerin boyutsuz frekanslarının ($\Omega = \omega L^2 \sqrt{\rho / Eh^2}$) karşılaştırılması (L/b=1, L/R =0.1, h/R=0.002)..... 104

Çizelge 4.57 Kenarları ankastre Tip – II FDM (Si₃N₄/SUS3O4) silindirik panellerin boyutsuz frekanslarının ($\Omega = \omega L^2 \sqrt{\rho h / D}$) karşılaştırılması (h/L=0.1)...... 105

Çizelge 4.58 Kenarları basit mesnetli CNT takviyeli dairesel silindirik panellerin boyutsuz frekans ($\Omega = \omega L^2 \sqrt{\rho / Eh^2}$) değerleri (R/h=20, L/b=1, L/ R= 1, V_{CN}=0.17) 106

Çizelge 4.59 Kenarları ankastre mesnetli dairesel silindirik panellerin boyutsuz frekans ($\Omega = \omega L^2 \sqrt{\rho / Eh^2}$)değerleri (L/R =1, h/R =0.05, L/b=1; FG-X) 107

Çizelge 4.67 İki kenarı basit ve iki kenarı ankastre mesnetli tabakalı içi boş dairesel plakların (0/90/0/90) boyutsuz temel frekans ($\Omega = \omega R_i^2 \sqrt{\rho / E_2 h^2}$) değerleri (R_1/R_2 =0.4, E₂=10 GPa, G₁₂=G₁₃=6 GPa, G₂₃=5 GPa, v₁₂=0.25, ρ=1500 kg/m³)......115

Çizelge 4.68 Kenarları ankastre mesnetli tabakalı içi boş dairesel plakların (0/90/0/90) boyutsuz temel frekans ($\Omega = \omega R_i^2 \sqrt{\rho / E_2 h^2}$) değerleri ($R_1/R_2 = 0.2$, E₂=10 GPa, G₁₂=G₁₃=6 GPa, G₂₃=5 GPa, v₁₂=0.25, ρ =1500 kg/m³)......115

1. GİRİŞ

Gerçek fiziksel sistemler ya da mühendislik problemleri yaygın olarak lineer veya lineer olmayan bir kısmi türevli diferansiyel denklem ile ifade edilirler ve bunların kapalı matematiksel çözümlerini elde etmek bazen zordur. Sonuç olarak bu kısmi türevli sayısal çözümü hemen hemen bütün denklemlerin mühendislik alanında kullanılmaktadır. Bu tarz kapalı matematik çözümün olmadığı uygulamalarda çok yaygın olarak kullanılan sonlu farklar ve sınır elemanlar olup, pek çok mühendislik problemi bu yöntemler ile yeterli sayıda düğüm noktası alındığında kabul edilebilir sonuçlar vermektedir. Bununla birlikte fiziksel manada ancak özel birkaç noktada yeter doğrulukta sonuçların istendiği problemlerde sonlu farklar yine de yüksek sayıda düğüm noktasına ve büyük kapasitede hesaplayıcıya ihtiyaç duyduğundan uygun olmamakta ve özellikle lineer olmayan problemlerde yüksek sayıda iterasyonlar kaçınılmaz olmaktadır. Sonuç olarak hem çözüm için gereken hesap süresi ve hem de bilgisayar bellek ihtiyacı artmaktadır. Modern bilgisayar teknolojisi ile kısmi veya adi diferansiyel denklemler şeklinde tanımlanan pek çok mühendislik ve bilim problemini çözecek birkaç sayısal hesap yöntemi geliştirilmiş olup yaygın olarak kullanılmaktadır.

Uygarlaşma yönündeki olumlu gelişmeler ve teknolojinin günümüzde geldiği nokta ihtiyaçların farklılaşmasına neden olmuştur. Değişen bu ihtiyaçlara cevap vermek için teorik ve pratik çalışmalar yapan mühendisler de farklı teknikler üzerinde yoğunlaşmışlardır. Mühendislik sistemlerinin analizi en genel anlamda iki aşamayı içermektedir. Mevcut bir fiziksel sistemi ifade eden matematik modelin kurulması ve elde edilen matematik denklemin analitik olarak veya çeşitli yaklaşık sayısal yöntemler kullanılarak çözülmesidir. Bu iki aşamadan birincisi tecrübe, sezgi ve iyi bir matematik altyapı; ikincisi ise modellemede kullanılan sezgi ve bilgiye ilaveten hızlı ve kapsamlı bir hesaplayıcıyı gerektirir.

Yapılan modellemenin gerçek modeli yansıtıp yansıtmaması, gerçek fiziksel olay ile uyumluluk derecesiyle ölçülür. Bu modellerin büyük bir çoğunluğu, sınır değer formundaki diferansiyel denklemlerdir. Bu matematik denklemlerin fiziksel modele en yakın sunuş biçimi ise varyasyonel problemlerdir. Giriş verileri üzerine konulan süreklilik ve türevlenebilirlik koşuları açısından, varyasyonel problem kendi özdeşi olan sınır değer problemiyle karşılaştırıldığında, uygulama alanı daha geniş olan problemler sınıfına hitap eder. Matematik modelleme işleminin, modelin varyasyonel problem olarak ifade edilmesinden sonraki aşaması, hesaplayıcıya tanıtımı, uygun olan ayrık modelin oluşturulmasıdır. Günümüzde, diferansiyel denklemlerle ilgili matematik modellerin ayrık benzeşiklerinin oluşturulması ve elde edilen ayrık problemin bilgisayarda çözümlenmesi açısından en kapsamlı ve bilinen yöntem sonlu elemanlar yöntemidir. Bu yöntemin klasik sonlu farklar yönteminden başlıca ayırt edici özelliği, sonlu elemanlar yöntemi sınır değer problemini değil varyasyonel problemi temel almasıdır.

Daha az düğüm noktası kullanarak daha hassas sonuçlar elde edebilecek sayısal yöntemlerin araştırılması sırasında pek çok sayısal yöntem keşfedilmiştir. Bu tez kapsamında bu metotlardan en güncel olan ayrık tekil konvolüsyon (ATK) yöntemi kullanılacaktır.

Pek çok mühendislik yapısında ve endüstriyel uygulamalarda (petro-kimya, gemi inşaatı, petrol platformları, uçak ve uzay yapıları, roket, ambalaj endüstrisi ve biyomedikal uygulamalar bunlardan bazılarıdır) kabuk formunda elemanlar sistemin geometrisi ve kullanım amacı nedeniyle kullanılır. Örneğin bir otomobilin üst paneli eğriliği düşük basık bir kabuk ya da paneldir.

Şekil 1.1. Uçak motoru gösterimi

Bir uçak gövdesi, ya da motoru yine kabuk formundadır ve Şekil 1.1'de gösterilmiştir. Şekil 1.2.'de görülen meyve suyu veya gazlı içeceklerin raflarda satışa sunulduğu basınçlı metal kaplar yine kabuktur. Çamaşır makinasının tamburu yine dönen bir kabuk olarak tasarlanır.

Kısaca gündelik hayatta pek çok uygulama alanı bulan bu sistemlerin titreşim hesabı boyutlandırma için önemli bir büyüklüktür. Çünkü kullanım ömürleri boyunca dinamik yüklere maruz kalırlar veya serbest titreşirler.

Kullanım ömürleri boyunca titreşim etkisindeki bu sistemlerin frekans değerleri ve bu değere etki eden malzeme ve geometrik parametreler sistematik olarak çıkartılacaktır. Petrol ve doğal gaz iletim hatları, uçak-uzay sanayi, kubbe ve kule, ya da sanayi bacası, pek çok endüstriyel uygulamada kabuklar kullanıldığından sonuçların yaygınlığı ve hitap ettiği kesimin büyüklüğü onlarcadır. Aşağıda günlük hayatta karşılaşacağımız kabuk sistemlerden bazıları verilmiştir.

Şekil 1.2. Günlük hayatta karşımıza çıkan kabuk formlu yapılar

Dizayn esnasında frekans değerine etki eden parametrelerden etken olanlar belirleneceğinden, uygulamada pek çok alana kolaylık sağlayacaktır. Literatürde var olan frekans değerleri ve hesaplanacak değerler etken parametreler özelinde yorumlanıp bir perspektif sunulacaktır.

2. KAYNAK TARAMASI

2.1. Bilimde Kabuk ve Literatür

Kabukların titreşimi hakkında literatürde pek çok sayıda makale bulmak mümkündür. Referanslar kısmında bir biyografi niteliğinde önemli yayınlan verilmiştir. Gerek silindirik kabuklar ve gerekse diğer formdaki kabukların analizleri pek çok araştırmacı tarafından incelenmiştir (Kapania 1989; Noor ve Burton 1990; Noor vd. 1996; Noor vd. 1999; Soldatos 1999; Qatu 1999; Carrera 2002; Qatu 2002; Carrera 2003; Qatu vd. 2010).

Kabukların titreşim analize dair en önemli çalışmalar bazı temel kitaplar ve makaleler yine referanslar kısmında verilmiştir (Love 1888; Reddy 2003; Ye 2003; Shen 2009). Bu çalışmalarda dönen kabuk, çift eğrilikli kabuk, silindirik kabuk, konik kabuklar ve tabakalı kabuklar dikkate alınmıştır. Konik kabukların analizinde yine çeşitli parametrelerin etkisini inceleyen çalışmalar şunlardır: Hua ve Lam (1998), Hua (2000), Lam ve Loy (1995), Civalek 2006, Liew vd. (2005) tarafında yapılmıştır. Konik bir kabuğun titreşimi ve basık bir kabuğun titreşimi analitik yöntemler ile bulunarak mod sayısına bağlı ve bazı geometrik büyüklüklere bağlı sonuçlar verilmiştir (Civalek 2007; Civalek 2008; Wu ve Wu 2005; Irie vd. 1984; Shu 1996). Silindirik ve konik kabuklara ait titreşim analizi sayısal yöntemler ile yapılarak farklı malzeme ve geometrik durumlar için sonuçlar hesaplanmıştır (Zhao ve Liew 2011; Civalek 2007a; Zhang vd. 2014).

Kabukların statik ve dinamik analizleri ile ilgili literatürde detaylı bilgilere ulaşabilecek çalışmalar vardır (Love 1952, Kraus 1967, Sodel 1993, Civalek 1998). Bazı review makalelerde (Liew vd. 1997; Liew vd. 2011; Liew vd. 2015) kabukların titreşimine genel bir bakış yapılmış ve geniş bir literatür sunulmuştur. Bu çalışmalarda yeterli kaynak listelenmiştir.

3.1.1. Silindirik kabuk

Karbon Silindirik bir kabuğun Love teorine dayalı olarak hareket denklemi aşağıda verilmiştir (Tong 1993):

$$L_{11}u + L_{12}v + L_{13}w - \rho h \frac{\partial^2 u}{\partial t^2} = 0,$$

$$L_{21}u + L_{22}v + L_{23}w - \rho h \frac{\partial^2 v}{\partial t^2} = 0,$$
(3.1)

$$L_{31}u + L_{32}v + L_{33}w - \rho h \frac{\partial^2 w}{\partial t^2} = 0.$$

Denklemdeki türev katsayıları

$$L_{11} = A_{11} \frac{\partial^2}{\partial x^2} + \left(\frac{A_{66}}{R^2} + \rho h\omega\right) \frac{\partial^2}{\partial \theta^2}, \qquad (3.2)$$

$$L_{12} = \frac{(A_{12} + A_{66})}{R} \frac{\partial^2}{\partial x \partial \theta} + \frac{(B_{12} + 2B_{66})}{R^2} \frac{\partial^2}{\partial x \partial \theta}$$
(3.3)

$$L_{13} = \frac{A_{12}}{R} \frac{\partial}{\partial x} - \frac{B_{12} + 2B_{66}}{R^2} \frac{\partial^3}{\partial x \partial \theta^2} - B_{11} \frac{\partial^3}{\partial x^3} - \rho h \omega^2 R \frac{\partial}{\partial x}$$
(3.4)

$$L_{21} = \frac{(A_{12} + A_{66})}{R} \frac{\partial^2}{\partial x \partial \theta} + \frac{(B_{12} + 2B_{66})}{R^2} \frac{\partial^2}{\partial x \partial \theta} + \rho h \omega^2 R \frac{\partial^2}{\partial x \partial \theta}$$
(3.5)

$$L_{22} = \left[A_{66} + \frac{3B_{66}}{R} - \frac{2D_{66}}{R^2}\right]\frac{\partial^2}{\partial x^2} + \left[\frac{A_{22}}{R^2} + \frac{2B_{22}}{R^3} + \frac{D_{22}}{R^4}\right]\frac{\partial^2}{\partial \theta^2} + \rho h \omega^2 \qquad (3.6)$$

$$L_{23} = \left(\frac{A_{22}}{R^2} + \frac{B_{22}}{R^3}\right) \frac{\partial}{\partial \theta} - \left(\frac{B_{22}}{R^3} + \frac{D_{22}}{R^4}\right) \frac{\partial^3}{\partial \theta^3} - \left[\frac{(B_{12} + 2B_{66})}{R} + \frac{(D_{12} + 2D_{66})}{R^2}\right] \frac{\partial^3}{\partial x^2 \partial \theta} - 2\rho h \omega \frac{\partial}{\partial t}, \qquad (3.7)$$

$$L_{31} = B_{11} \frac{\partial^3}{\partial x^3} - A_{12} \frac{1}{R} \frac{\partial}{\partial x} + \frac{(B_{12} + 2B_{66})}{R^2} \frac{\partial^3}{\partial x \partial \theta^2}$$
(3.8)

$$L_{32} = -\left[A_{22}\frac{1}{R^{2}} + \frac{B_{22}}{R^{3}} + \rho h \omega^{2}\right] \frac{\partial}{\partial \theta} + \left[\frac{B_{22}}{R^{3}} + \frac{D_{22}}{R^{4}}\right] \frac{\partial^{3}}{\partial \theta^{3}} + \left[\frac{(B_{12} + 2B_{66})}{R} + \frac{(D_{12} + 4D_{66})}{R^{2}}\right] \frac{\partial^{3}}{\partial x^{2} \partial \theta}$$

$$L_{33} = -A_{22}\frac{1}{R^{2}} - D_{11}\frac{\partial^{4}}{\partial x^{4}} - \frac{2D_{12} + 4D_{66}}{R^{2}}\frac{\partial^{4}}{\partial x^{2} \partial \theta^{2}} - \frac{D_{22}}{R^{4}}\frac{\partial^{4}}{\partial \theta^{4}}$$

$$(3.9)$$

$$+\frac{2B_{12}}{R}\frac{\partial^2}{\partial x^2} + \left[\frac{2B_{22}}{R^3} + \rho h\omega^2\right]\frac{\partial^2}{\partial \theta^2} - \rho h\omega^2$$
(3.10)

Burada A_{ij} , B_{ij} ve D_{ij} ifadeleri kabuğa ait rijitlikleri gösterir.

3.1.2. Konik kabuk

Konik bir kabuğa ait parametreler: konik açısı α , kalınlık h, konik yapının boyu L, her iki taraftaki yarıçaplar R_1 ve R_2 dir. Konik kabuk (x,s,z) koordinat takımında verilmiş olup bu yöndeki deplasmanlar u, v, w'dir.

Kabuğun ilgili koordinat yönündeki deplasman değerleri:

$$\begin{cases} \overline{u}(x,s,z) \\ \overline{v}(x,s,z) \\ \overline{w}(x,s,z) \end{cases} = \begin{cases} u(x,s) \\ v(x,s) \\ w(x,s) \end{cases} + z \begin{cases} \varphi_x(x,s) \\ \varphi_s(x,s) \\ 0 \end{cases}$$
(3.11)

burada $(\overline{u}, \overline{v}, \overline{w})$ kabukuğun herhangi bir konumdaki deplasman değerlerini, (u, v, w) ise orta yzüeydeki deplasman değerlerini verir. Şekil değiştirme-deplasman bağıntıları aşağıdaki şekilde elde edilir (Tong 1994):

$$\begin{cases} \varepsilon_{x} \\ \varepsilon_{s} \\ \gamma_{xs} \\ \kappa_{x} \\ \kappa_{x} \\ \varepsilon_{sz} \\ \varepsilon_{sz} \end{cases} = \begin{cases} \frac{\partial u}{\partial x} \\ \frac{1}{R(x)} (u \cdot \sin \alpha + w \cdot \cos \alpha) + \frac{1}{R(x)} \frac{\partial v}{\partial s} \\ \frac{1}{R(x)} \frac{\partial u}{\partial s} - \frac{1}{R(x)} v \cdot \sin \alpha + \frac{\partial v}{\partial x} \\ \frac{\partial \varphi_{x}}{\partial x} \\ \frac{\partial \varphi_{s}}{\partial x} + \frac{1}{R(x)} \varphi_{x} \cdot \sin \alpha \\ \frac{\partial \varphi_{s}}{\partial s} - \frac{1}{R(x)} \varphi_{s} \cdot \sin \alpha + \frac{1}{R(x)} \frac{\partial \varphi_{x}}{\partial s} \\ \frac{\partial \varphi_{s}}{\partial x} - \frac{1}{R(x)} \varphi_{s} \cdot \sin \alpha + \frac{1}{R(x)} \frac{\partial \varphi_{x}}{\partial s} \\ \varphi_{s} - \frac{1}{R(x)} v \cdot \cos \alpha + \frac{1}{R(x)} \frac{\partial w}{\partial s} \end{cases}$$
(3.12)

Kabuk için tüm iç kuvvetlerin şekil değiştirmeler cinsinden ifadesi:

$$\begin{cases} N_{x} \\ N_{s} \\ N_{xs} \\ M_{x} \\ M_{x} \\ M_{s} \\ V_{x} \\ V_{s} \\$$

Denklemdeki rijitlik katsayıları:

$$(A_{ij}) = \sum_{k=1}^{N_L} Q_{ij}^{(k)}(h_k - h_{k-1}), \qquad i, j = 1, 2, 3, \qquad (3.14)$$

$$(D_{ij}) = \frac{1}{3} \sum_{k=1}^{N_L} Q_{ij}^{(k)} (h_k^3 - h_{k-1}^3) \cdot \qquad i, j = 1, 2, 3,$$

$$(3.15)$$

$$(B_{ij}) = \frac{1}{2} \sum_{k=1}^{N_L} Q_{ij}^{(k)} (h_k^2 - h_{k-1}^2), \qquad i, j = 1, 2, 3, \qquad (3.16)$$

$$A_{44} = \frac{5}{4} \sum_{k=1}^{N_L} \int_{h_{k-1}}^{h_k} Q_{44}^{(k)} \left[1 - 4 \left(\frac{z}{h} \right)^2 \right] dz, \qquad (3.17)$$

$$A_{55} = \frac{5}{4} \sum_{k=1}^{N_L} \int_{h_{k-1}}^{h_k} Q_{55}^{(k)} \left[1 - 4 \left(\frac{z}{h} \right)^2 \right] dz \,.$$
(3.18)

Denklemde N_L toplam tabaka sayısıdır. Hareket denklemi temel büyüklükler cinsinden:

$$\frac{\partial N_x}{\partial x} + \frac{1}{R(x)} \frac{\partial N_{xx}}{\partial s} + \frac{\sin \alpha}{R(x)} (N_x - N_s) = \rho h \frac{\partial^2 u}{\partial t^2}$$
(3.19)

$$\frac{\partial N_{xs}}{\partial x} + \frac{1}{R(x)}\frac{\partial N_s}{\partial s} + \frac{\cos\alpha}{R(x)}V_s + 2\frac{\sin\alpha}{R(x)}N_{xs} = \rho h\frac{\partial^2 v}{\partial t^2}$$
(3.20)

$$\frac{\partial V_x}{\partial x} + \frac{\sin \alpha}{R(x)} V_x + \frac{1}{R(x)} \frac{\partial V_s}{\partial s} - \frac{\cos \alpha}{R(x)} N_s = \rho h \frac{\partial^2 w}{\partial t^2}$$
(3.21)

$$\frac{\partial V_x}{\partial x} + \frac{1}{R(x)} \frac{\partial V_s}{\partial s} - \frac{\cos \alpha}{R(x)} N_s + \frac{\sin \alpha}{R(x)} V_x = \frac{\rho h^3}{12} \frac{\partial^2 \varphi_x}{\partial t^2}$$
(3.22)

$$\frac{\partial M_{xs}}{\partial x} + 2M_{xs}\frac{\sin\alpha}{R(x)} + \frac{1}{R(x)}\frac{\partial M_s}{\partial s} - V_s = \frac{\rho h^3}{12}\frac{\partial^2 \varphi_s}{\partial t^2}$$
(3.23)

Denklemde malzeme yoğunluk katsayısı ve çap

$$\rho = \frac{1}{h} \sum_{k=1}^{N_L} \rho_k (h_k - h_{k-1}), R(x) = R_1 + x \sin \alpha .$$
(3.24)

ile tanımlanır. Normal kuvvet, moment ve kesme kuvetleri ilgili gerilmeler cinsinden aşağıdaki şekilde hesaplanır:

Normal kuvvet:

$$\widetilde{N} = \begin{cases} N_x \\ N_s \\ N_{xs} \end{cases} = \int_{-h/2}^{h/2} \begin{cases} \sigma_x \\ \sigma_s \\ \tau_{xs} \end{cases} dz$$
(3.25)

Moment:

$$\widetilde{M} = \begin{cases} M_x \\ M_s \\ M_{xs} \end{cases} = \int_{-h/2}^{h/2} \begin{cases} \sigma_x \\ \sigma_s \\ \tau_{xs} \end{cases} z dz$$
(3.26)

Kesme kuvveti:

$$\widetilde{V} = \begin{cases} V_s \\ V_x \end{cases} = \int_{-h/2}^{h/2} \begin{cases} \tau_{sz} \\ \tau_{xz} \end{cases} dz$$
(3.27)

Bütün bu değerler tek bir matrix formda aşağıdaki gibi tanımlanır:

$$\begin{cases} \widetilde{N} \\ \widetilde{M} \end{cases} = \begin{bmatrix} A & B \\ B & D \end{bmatrix} \begin{cases} \varepsilon \\ \kappa \end{cases}$$
(3.28)

İç kuvvetler hareket denkleminde temel deformasyon büyüklükleri cinsinden yazılırsa, aşağıdaki gibi 5 adet denklem takımı elde edilir:

$$A_{11}\frac{\partial^2 u}{\partial x^2} + \frac{A_{11}}{R(x)}\sin\alpha\frac{\partial u}{\partial x} - \frac{A_{22}}{R^2(x)}\sin^2\alpha + \frac{A_{33}}{R^2(x)}\frac{\partial^2 u}{\partial s^2} + \frac{(A_{12} + A_{33})}{R(x)}\frac{\partial^2 v}{\partial x\partial s}$$
$$-\frac{(A_{22} + A_{33})}{R^2(x)}\sin\alpha\frac{\partial v}{\partial s} + \frac{A_{12}}{R(x)}\cos\alpha\frac{\partial w}{\partial x} - \frac{A_{22}}{R^2(x)}\sin\alpha\cdot\cos\alpha - B_{11}\frac{\partial^2 \varphi_x}{\partial x^2}$$
$$+\frac{B_{11}}{R(x)}\sin\alpha\frac{\partial \varphi_x}{\partial x} - \frac{B_{22}}{R^2(x)}\sin^2\alpha + \frac{B_{33}}{R^2(x)}\frac{\partial^2 \varphi_x}{\partial s^2} + \frac{(B_{12} + B_{33})}{R(x)}\frac{\partial^2 \varphi_x}{\partial x\partial s}$$

$$+\frac{(B_{12}+B_{33})}{R(x)}\frac{\partial^{2}\varphi_{s}}{\partial x\partial s} - \frac{(B_{22}+B_{33})}{R^{2}(x)}\frac{\partial\varphi_{s}}{\partial s}\sin\alpha = \rho h\frac{\partial^{2}u}{\partial t^{2}}$$

$$\frac{(A_{12}+A_{33})}{R(x)}\frac{\partial^{2}u}{\partial x\partial s} + \frac{(A_{22}+A_{33})}{R^{2}(x)}\sin\alpha\frac{\partial u}{\partial s} + A_{33}\frac{\partial^{2}v}{\partial x^{2}} + A_{33}\frac{\sin\alpha}{R(x)}\frac{\partial v}{\partial s}$$

$$-\frac{A_{33}}{R^{2}(x)}\sin^{2}\alpha + \frac{A_{22}}{R^{2}(x)}\frac{\partial^{2}v}{\partial s^{2}} - \frac{A_{44}}{R^{2}(x)}\cos^{2}\alpha + \frac{(A_{22}+A_{44})}{R^{2}(x)}\cos\alpha\frac{\partial w}{\partial s}$$

$$+\frac{(B_{12}+B_{33})}{R(x)}\frac{\partial^{2}\varphi_{x}}{\partial x\partial s} + \frac{(B_{22}+B_{33})}{R^{2}(x)}\sin\alpha\frac{\partial\varphi_{x}}{\partial s} + B_{33}\frac{\partial^{2}\varphi_{s}}{\partial x^{2}} + B_{33}\frac{\sin\alpha}{R(x)}\frac{\partial\varphi_{s}}{\partial x}$$
(3.29)

$$-\frac{B_{33}}{R^2(x)}\sin^2\alpha + \frac{B_{22}}{R^2(x)}\frac{\partial^2\varphi_s}{\partial s^2} + A_{44}\frac{\cos\alpha}{R(x)} = \rho h\frac{\partial^2 v}{\partial t^2}$$
(3.30)

$$-\frac{A_{12}}{R(x)}\cos\alpha\frac{\partial u}{\partial x} - \frac{A_{22}}{R^2(x)}\sin\alpha\cdot\cos\alpha - \frac{(A_{22} + A_{44})}{R^2(x)}\cdot\cos\alpha\frac{\partial v}{\partial s} + A_{55}\frac{\partial^2 w}{\partial x^2}$$

$$\frac{A_{55}}{R(x)}\sin\alpha \cdot \frac{\partial w}{\partial s} + \frac{A_{44}}{R^2(x)}\frac{\partial^2 w}{\partial s^2} - \frac{A_{22}}{R^2(x)}\cos^2\alpha + A_{55}\frac{\partial \varphi_x}{\partial x} - \frac{B_{12}}{R(x)}\cos\alpha \cdot \frac{\partial \varphi_x}{\partial x} + \frac{A_{55}}{R(x)}\sin\alpha - \frac{B_{22}}{R^2(x)}\sin\alpha \cdot \cos\alpha + \frac{A_{44}}{R(x)}\cdot \frac{\partial \varphi_s}{\partial s} - \frac{B_{22}}{R^2(x)}\cdot\cos\alpha \frac{\partial \varphi_s}{\partial s} = \rho h \frac{\partial^2 w}{\partial t^2}$$
(3.31)

$$B_{11}\frac{\partial^{2} u}{\partial x^{2}} + \frac{B_{11}}{R(x)}\sin\alpha\frac{\partial u}{\partial x} - \frac{B_{22}}{R^{2}(x)}\sin^{2}\alpha + \frac{B_{33}}{R^{2}(x)}\frac{\partial^{2} u}{\partial s^{2}} + \frac{(B_{12} + B_{33})}{R(x)}\frac{\partial^{2} v}{\partial x\partial s}$$

$$-\frac{(B_{22} + B_{33})}{R^{2}(x)}\sin\alpha\frac{\partial v}{\partial s} - A_{55}\frac{\partial w}{\partial x} + B_{12}\frac{\cos\alpha}{R(x)}\frac{\partial w}{\partial x} - \frac{B_{22}}{R^{2}(x)}\sin\alpha\cos\alpha$$

$$+ D_{11}\frac{\partial^{2} \varphi_{x}}{\partial x^{2}} + D_{11}\frac{\sin\alpha}{R(x)}\frac{\partial \varphi_{x}}{\partial x} - \frac{D_{22}}{R^{2}(x)}\sin^{2}\alpha + \frac{D_{33}}{R^{2}(x)}\frac{\partial^{2} \varphi_{x}}{\partial s^{2}} - A_{55}$$

$$+ \frac{(D_{12} + D_{33})}{R(x)}\frac{\partial^{2} \varphi_{s}}{\partial x\partial s} - \frac{(D_{22} + D_{33})}{R^{2}(x)}\frac{\partial \varphi_{s}}{\partial s}\sin\alpha = \rho h\frac{\partial^{2} \varphi_{x}}{\partial t^{2}}$$
(3.32)

$$\frac{(B_{12} + B_{33})}{R(x)} \frac{\partial^2 u}{\partial x \partial s} + \frac{(B_{22} + B_{33})}{R^2(x)} \frac{\partial u}{\partial s} \sin \alpha + B_{33} \frac{\partial^2 v}{\partial x^2} + B_{33} \frac{\sin \alpha}{R(x)} \frac{\partial v}{\partial x}$$

$$-B_{33} \frac{\sin^2 \alpha}{R^2(x)} + \frac{B_{22}}{R^2(x)} \frac{\partial^2 v}{\partial s^2} + \frac{A_{44}}{R(x)} \cos \alpha - \frac{A_{44}}{R(x)} \frac{\partial w}{\partial s} + \frac{B_{22}}{R^2(x)} \cos \alpha \frac{\partial w}{\partial s}$$

$$+ \frac{(D_{12} + D_{33})}{R(x)} \frac{\partial^2 \varphi_x}{\partial x \partial s} + \frac{(D_{22} + D_{33})}{R^2(x)} \sin \alpha \frac{\partial \varphi_x}{\partial s} - D_{33} \frac{\partial^2 \varphi_s}{\partial x^2}$$

$$+ D_{33} \frac{\sin \alpha}{R(x)} \frac{\partial \varphi_s}{\partial x} - \frac{D_{33}}{R^2(x)} \sin^2 \alpha + \frac{D_{22}}{R^2(x)} \frac{\partial^2 \varphi_s}{\partial s^2} - A_{44} = \rho h \frac{\partial^2 \varphi_s}{\partial t^2}$$
(3.33)

Serbest tireşimde modal analiz için, her bir deplasman ifadesini aşağıdaki formda alırsak:

$$u(x,s,t) = U(x,s) \cdot e^{i\omega\omega}$$

$$v(x,s,t) = V(x,s) \cdot e^{i\omega\omega}$$

$$w(x,s,t) = W(x,s) \cdot e^{i\omega\omega}$$

$$\varphi_x(x,s,t) = \Psi_x(x,s) \cdot e^{i\omega\omega}$$

$$\varphi_s(x,s,t) = \Psi_s(x,s) \cdot e^{i\omega\omega}$$
(3.34)

Denklem (3.34) iafdeleri Denklemler (3.29-3.33)'de yazılırsa, zaman değişkeni denklemlerde artık gözükmez ve temel denklemlerimiz matris formda elde edilir.

$$\begin{bmatrix} \ell_{11} & \ell_{12} & \ell_{13} & \ell_{14} & \ell_{15} \\ \ell_{21} & \ell_{22} & \ell_{23} & \ell_{24} & \ell_{25} \\ \ell_{31} & \ell_{32} & \ell_{33} & \ell_{34} & \ell_{35} \\ \ell_{41} & \ell_{42} & \ell_{43} & \ell_{44} & \ell_{45} \\ \ell_{51} & \ell_{52} & \ell_{53} & \ell_{54} & \ell_{55} \end{bmatrix} \cdot \begin{pmatrix} U \\ V \\ W \\ \Psi_x \\ \Psi_s \end{pmatrix} = \rho h \omega^2 \cdot \begin{cases} 1 \\ 1 \\ \frac{1}{h^2} \\ \frac{1}{12} \\ \frac{h^2}{12} \end{cases}$$
(3.35)

Bu denklemdeki türev ifadeleri

$$l_{11} = A_{11} \frac{\partial^2 U}{\partial x^2} + \frac{A_{11}}{R(x)} \sin \alpha \frac{\partial U}{\partial x} - \frac{A_{22}}{R^2(x)} \sin^2 \alpha + \frac{A_{33}}{R^2(x)} \frac{\partial^2 U}{\partial s^2}$$
(3.36)

$$l_{12} = \frac{(A_{12} + A_{33})}{R(x)} \sin \alpha \frac{\partial^2 V}{\partial x \partial s} - \frac{(A_{22} + A_{33})}{R^2(x)} \sin \alpha \frac{\partial V}{\partial s}$$
(3.37)

$$l_{13} = \frac{A_{12}}{R(x)} \cos \alpha \frac{\partial w}{\partial x} - \frac{A_{22}}{R^2(x)} \sin \alpha \cdot \cos \alpha$$
(3.38)

$$l_{14} = B_{11} \frac{\partial^2 \Psi_x}{\partial x^2} + \frac{B_{11}}{R(x)} \sin \alpha \frac{\partial \Psi_x}{\partial x} - \frac{B_{22}}{R^2(x)} \sin^2 \alpha + \frac{B_{33}}{R^2(x)} \frac{\partial^2 \Psi_x}{\partial s^2}$$
(3.39)

$$l_{15} = \frac{(B_{12} + B_{33})}{R(x)} \frac{\partial^2 \Psi_s}{\partial x \partial s} - \frac{(B_{22} + B_{33})}{R^2(x)} \frac{\partial \Psi_s}{\partial s} \sin \alpha$$
(3.40)

$$l_{21} = \frac{(A_{12} + A_{33})}{R(x)} \frac{\partial^2 U}{\partial x \partial s} + \frac{(A_{22} + A_{33})}{R^2(x)} \sin \alpha \frac{\partial U}{\partial s}$$
(3.41)

$$l_{22} = A_{33} \frac{\partial^2 V}{\partial x^2} + A_{33} \frac{\sin \alpha}{R(x)} \frac{\partial V}{\partial s} - \frac{A_{33}}{R^2(x)} \sin^2 \alpha + \frac{A_{22}}{R^2(x)} \frac{\partial^2 V}{\partial s^2} - \frac{A_{44}}{R^2(x)} \cos^2 \alpha$$
(3.42)

$$l_{23} = \frac{(A_{22} + A_{44})}{R^2(x)} \cos \alpha \frac{\partial W}{\partial s}$$
(3.43)

$$l_{24} = \frac{(B_{12} + B_{33})}{R(x)} \frac{\partial^2 \Psi_x}{\partial x \partial s} + \frac{(B_{22} + B_{33})}{R^2(x)} \sin \alpha \frac{\partial \Psi_x}{\partial s}$$
(3.44)

$$l_{25} = B_{33} \frac{\partial^2 \Psi_s}{\partial x^2} + B_{33} \frac{\sin \alpha}{R(x)} \frac{\partial \Psi_s}{\partial x} - \frac{B_{33}}{R^2(x)} \sin^2 \alpha + \frac{B_{22}}{R^2(x)} \frac{\partial^2 \Psi_s}{\partial s^2} + A_{44} \frac{\cos \alpha}{R(x)}$$
(3.45)

$$l_{31} = -\frac{A_{12}}{R(x)} \cos \alpha \frac{\partial U}{\partial x} - \frac{A_{22}}{R^2(x)} \sin \alpha \cdot \cos \alpha$$
(3.46)

$$l_{32} = -\frac{(A_{22} + A_{44})}{R^2(x)} \cos \alpha \frac{\partial V}{\partial s}$$
(3.47)

$$l_{33} = A_{55} \frac{\partial^2 W}{\partial x^2} + \frac{A_{55}}{R(x)} \sin \alpha \cdot \frac{\partial W}{\partial s} + \frac{A_{44}}{R^2(x)} \frac{\partial^2 W}{\partial s^2} - \frac{A_{22}}{R^2(x)} \cos^2 \alpha$$
(3.48)

$$l_{34} = A_{55} \frac{\partial \Psi_x}{\partial x} - \frac{B_{12}}{R(x)} \cos \alpha \cdot \frac{\partial \Psi_x}{\partial x} + \frac{A_{55}}{R(x)} \sin \alpha - \frac{B_{22}}{R^2(x)} \sin \alpha \cdot \cos \alpha$$
(3.49)

$$l_{35} = \frac{A_{44}}{R(x)} \cdot \frac{\partial \Psi_s}{\partial s} - \frac{B_{22}}{R^2(x)} \cdot \cos \alpha \frac{\partial \Psi_s}{\partial s}$$
(3.50)

$$l_{41} = B_{11} \frac{\partial^2 U}{\partial x^2} + \frac{B_{11}}{R(x)} \sin \alpha \frac{\partial U}{\partial x} - \frac{B_{22}}{R^2(x)} \sin^2 \alpha + \frac{B_{33}}{R^2(x)} \frac{\partial^2 U}{\partial s^2}$$
(3.51)

$$l_{42} = \frac{(B_{12} + B_{33})}{R(x)} \frac{\partial^2 V}{\partial x \partial s} - \frac{(B_{22} + B_{33})}{R^2(x)} \sin \alpha \frac{\partial V}{\partial s}$$
(3.52)

$$l_{43} = -A_{55} \frac{\partial W}{\partial x} + B_{12} \frac{\cos \alpha}{R(x)} \frac{\partial W}{\partial x} - \frac{B_{22}}{R^2(x)} \sin \alpha \cos \alpha$$
(3.53)

$$l_{44} = D_{11} \frac{\partial^2 \Psi_x}{\partial x^2} + D_{11} \frac{\sin \alpha}{R(x)} \frac{\partial \Psi_x}{\partial x} - \frac{D_{22}}{R^2(x)} \sin^2 \alpha + \frac{D_{33}}{R^2(x)} \frac{\partial^2 \Psi_x}{\partial s^2} - A_{55}$$
(3.54)

$$l_{45} = \frac{(D_{12} + D_{33})}{R(x)} \frac{\partial^2 \Psi_s}{\partial x \partial s} - \frac{(D_{22} + D_{33})}{R^2(x)} \frac{\partial \Psi_s}{\partial s} \sin \alpha$$
(3.55)

$$l_{51} = \frac{(B_{12} + B_{33})}{R(x)} \frac{\partial^2 U}{\partial x \partial s} + \frac{(B_{22} + B_{33})}{R^2(x)} \frac{\partial U}{\partial s} \sin \alpha$$
(3.56)

$$l_{52} = B_{33} \frac{\partial^2 V}{\partial x^2} + B_{33} \frac{\sin \alpha}{R(x)} \frac{\partial V}{\partial x} - B_{33} \frac{\sin^2 \alpha}{R^2(x)} + \frac{B_{22}}{R^2(x)} \frac{\partial^2 V}{\partial s^2} + \frac{A_{44}}{R(x)} \cos \alpha$$
(3.57)

$$I_{53} = -\frac{A_{44}}{R(x)}\frac{\partial W}{\partial s} + \frac{B_{22}}{R^2(x)}\cos\alpha\frac{\partial W}{\partial s}$$
(3.58)

$$l_{54} = \frac{(D_{12} + D_{33})}{R(x)} \frac{\partial^2 \Psi_x}{\partial x \partial s} + \frac{(D_{22} + D_{33})}{R^2(x)} \sin \alpha \frac{\partial \Psi_x}{\partial s}$$
(3.59)

$$l_{55} = D_{33} \frac{\partial^2 \Psi_s}{\partial x^2} + D_{33} \frac{\sin \alpha}{R(x)} \frac{\partial \Psi_s}{\partial x} - \frac{D_{33}}{R^2(x)} \sin^2 \alpha + \frac{D_{22}}{R^2(x)} \frac{\partial^2 \Psi_s}{\partial s^2} - A_{44}$$
(3.60)

3.2. Denklemlerin Sayısal Çözümü

3.2.1. Ayrık Tekil Konvolüsyon (ATK) yöntemi

Daha Ayrık tekil konvolüsyon (ATK) yöntemi ilk olarak Wei (2001) tarafından ortaya atılmıştır. Wei'nin de belirttiği gibi (Wei 2001a) çeşitli fen bilimleri ve mühendislik problemlerinde görülen tekil konvolüsyonlar (TK),Hilbert, Abel and Radon dönüşümleri gibi, matematik dönüşümlerinin özel bir sınıfını oluşturur. Gerçektende çoğu pratik uygulamada bu dönüşümlerin kullanılması gerekir. Mesela son bir kaç yılda gelişme gösteren matematiğin yeni dalı Wavelet (dalgacık) bu metodun esasını teşkil eder (Wei 2001).

Wei ve arkadaşları Ayrık Tekil Konvolüsyon algoritmasını ilk olarak katı ve akışkanlar mekaniği problemlerinin çözümünde uyguladı (Wei 2001). ATK algoritmasını kullanarak yüksek frekanslı titreşime sahip plakları ve düzensiz iç destekli plak titreşimlerini analiz etti. Yakın zamanda, Ayrık Tekil Konvolüsyon algoritmasının ve Genelleştirilmiş Diferansiyel Quadrature yönteminin dikdörtgen plakların titreşim hesabında karşılaştırılması Ng ve diğerleri tarafından (Ng vd 2004), tabakalı konik kabukların ve elastik temel üzerindeki plakların serbest titreşimlerinin sayısal çözümleri ise Civalek (Civalek 2006) tarafından sunulmuştur. Bu çalışmalar ATK algoritmasının özellikle dikdörtgen plakların yüksek frekanslı titreşimleri olmak üzere plakların titreşim analizde son derece işe yaradığını açıkça belirtmektedir. Bundan başka, ATK algoritmasının mekanikte uygulanan türevsel eşitliklerin çözümünde esneklik sağlayan evrensel yöntemlere sahip olduğu ortaya çıkmaktadır.

Diğer sayısal yöntemlerde olduğu ayrık tekil konvolüsyon yöntemi (ATK) de mevcut bir türev denklemi yani sürekli bir sisteme ait denklemi yaklaşım veya test fonksiyonu (sonlu elemanlarda şekil fonksiyonu) olarak kerneller kullanarak ayrıştırır. Kernel olarak Shannon kernel, Shannon delta kernel, Dirichlet kernel, de la Vallee kernel vb. kullanılır. Eşitlikteki T test fonksiyonundaki elaman değerleridir.

Tekil konvolisyon

$$F(t) = (T * \eta)(t) = \int_{-\infty}^{\infty} T(t - x)\eta(x)dx,$$
 (3.61)

olarak ifade edilebilir (Wei 2001). T(t - x) tekil kernel olarak ifade edilir.

Örneğin:

$$T(x) = \delta^{(n)}(x); \quad (n = 0, 1, 2, ...,).$$
 (3.62)

Buradaki ayrık kernel of delta tiptir. Kernel $T(x) = \delta(x)$ eşitliği yüzeysel ve eğrisel interpolasyon için önemlidir, ve $T(x) = \delta^{(n)}(x)$ eşitliği n>1 için türevsel eşitliklerin sayısal çözümünde gereklidir. Yeterli düzgün yaklaşımla, ayrık tekil konvolüsyon yönteminin dikkate alınması son derece etkili olur (Wei 2001).

$$F_{\alpha}(t) = \sum_{k} T_{\alpha}(t - x_{k}) f(x_{k}), \qquad (3.63)$$

Yakın geçmişte, bazı yeni kernellerin kullanımı (Wei 2002) mekanik ve uygulamalı matematik problemlerinin çözümünde önerilmiştir. Shannon kernel:

$$\delta_{\Delta,\sigma}(x - x_k) = \frac{\sin[(\pi/\Delta)(x - x_k)]}{(\pi/\Delta)(x - x_k)} \exp\left[-\frac{(x - x_k)^2}{2\sigma^2}\right]; \ \sigma > 0.$$
(3.64)

şeklinde düzenlenmiştir (Wei 2001). Burada $\Delta = \pi/(N-1)$ her bir düğüm arası aralık ve N düğüm nokta sayısı. Burada σ parametresi Gauss zarfı (Gaussian envelope) genişliği olarak bilinir ve $\sigma = rh$ ile hesaplanır. Burada r hesaplamanın başında seçilecek bir parametredir. Denklem (3.60) tekil konvolüsyon kernellerinin (delta type) ayrık yaklaşımlar sağlaması için kullanılabilir. Örneğin bir fonksiyon için herhangi bir mertebeden türev

$$f^{(n)}(x) \approx \sum_{k=-M}^{M} \delta_{\Delta}(x - x_k) f(x_k)$$
(3.65)

 $\delta_{\Delta}(x-x_k) = \Delta \delta_{\alpha}(x-x_k)$ olarak belirtilmiştir ve (*n*) türevin mertebesini göstermektedir. (2*M*+1) *x* çevresinde konumlanan ve genellikle toplam değerinden daha küçük toplam hesap genişliğidir. ATK yönteminde herhangi bir *f*(*x*) fonksiyonunun *x_i* noktası için *x* koordinat yönündeki türevi aşağıdaki toplam ile verilir.

$$\frac{d^{n} f(x)}{d x^{n}} \bigg|_{x = x_{i}} = f^{(n)}(x) \approx \sum_{k = -M}^{M} \delta^{(n)}_{\Delta\sigma}(x_{i} - x_{k}) f(x_{k}); \quad (n = 0, 1, 2, ...,)$$
(3.66)

Denklemde *n*'inci x değişkenine gore *n*'inci mertebeden türev olarak tanımlanır. Örneğin ATK kernellerinin $x=x_i$ deki ikinci mertebeden türevi aşağıdaki gibidir.

$$\delta_{\Delta\sigma}^{(2)}(x-x_j) = \frac{d^2}{dx^2} \left[\left. \delta_{\Delta\sigma}(x-x_j) \right] \right|_{x=x_j},\tag{3.67}$$

Ayrık formda denklem (3.63) deki bu türev,

$$f^{(2)}(x) = \frac{d^2 f}{d x^2} \bigg|_{x = x_i} \approx \sum_{k = -M}^{M} \delta^{(2)}_{\Delta,\sigma}(k\Delta x_N) f_{i+k,j}.$$
(3.68)

olarak formüle edilebilir. Birinci, ikinci, üçüncü ve dördüncü mertebeden türev katsayılarının hesabı aşağıdaki formüller ile hesaplanır.
$$\delta_{\pi/\Delta,\sigma}^{(1)}(x_m - x_k) = \frac{\cos(\pi/\Delta)(x - x_k)}{(x - x_k)} \exp[-(x - x_k)^2 / 2\sigma^2] - \frac{\sin(\pi/\Delta)(x - x_k)}{\pi (x - x_k)^2 / \Delta} \exp[-(x - x_k)^2 / 2\sigma^2)] - \frac{\sin(\pi/\Delta)(x - x_k)}{(\pi \sigma^2 / \Delta)} \exp[-(x - x_k)^2 / 2\sigma^2)]$$
(3.69)

$$\delta_{\sigma,\Delta}^{(2)}(x-x_k) = -\frac{(\pi/\Delta)\sin(\pi/\Delta)(x-x_k)}{(x-x_k)}\exp[-(x-x_k)^2/2\sigma^2] -2\frac{\cos(\pi/\Delta)(x-x_k)}{(x-x_k)^2}\exp[-(x-x_k)^2/2\sigma^2)]$$

$$-2\frac{\cos(\pi/\Delta)(x-x_k)}{\sigma^2}\exp[-(x-x_k)^2/2\sigma^2] + 2\frac{\sin(\pi/\Delta)(x-x_k)}{\pi(x-x_k)^3/\Delta}\exp[-(x-x_k)^2/2\sigma^2)]$$

$$+\frac{\sin(\pi/\Delta)(x-x_k)}{\pi(x-x_k)\sigma^2/\Delta}\exp[-(x-x_k)^2/2\sigma^2]$$

+
$$\frac{\sin(\pi/\Delta)(x - x_k)}{\pi \sigma^4/\Delta} (x - x_k) \exp[-(x - x_k)^2/2\sigma^2)]$$
 (3.70)

$$\delta_{\pi/\Delta,\sigma}^{(3)}(x_m - x_k) = -\frac{(\pi^2/\Delta^2)\cos(\pi/\Delta)(x - x_k)}{(x - x_k)}\exp[\frac{-(x - x_k)^2}{2\sigma^2}] + 3\frac{(\pi/\Delta)\sin(\pi/\Delta)(x - x_k)}{(x - x_k)^2}\exp[\frac{-(x - x_k)^2}{2\sigma^2}]$$

$$+3\frac{(\pi/\Delta)\sin(\pi/\Delta)(x-x_k)}{\sigma^2}\exp[\frac{-(x-x_k)^2}{2\sigma^2}]+6\frac{\cos(\pi/\Delta)(x-x_k)}{(x-x_k)^3}\exp[\frac{-(x-x_k)^2}{2\sigma^2}]$$

$$+3\frac{\cos(\pi/\Delta)(x-x_k)}{(x-x_k)\sigma^2}\exp[\frac{-(x-x_k)^2}{2\sigma^2}]+3\frac{(x-x_k)\cos(\pi/\Delta)(x-x_k)}{\sigma^4}\exp[\frac{-(x-x_k)^2}{2\sigma^2}]$$

$$-6\frac{\sin(\pi/\Delta)(x-x_k)}{\pi(x-x_k)^4/\Delta}\exp[\frac{-(x-x_k)^2}{2\sigma^2}] - 3\frac{\sin(\pi/\Delta)(x-x_k)}{\pi(x-x_k)^2\sigma^2/\Delta}\exp[\frac{-(x-x_k)^2}{2\sigma^2}]$$

$$-\frac{(x-x_{k})^{2} \sin(\pi/\Delta)(x-x_{k})}{\pi\sigma^{2}/\Delta} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}]$$
(3.71)

$$\delta_{\pi/\Delta\sigma}^{(4)}(x_{m}-x_{k}) = 4\frac{(\pi^{2}/\Delta^{2})\cos(\pi/\Delta)(x-x_{k})}{(x-x_{k})^{2}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] + \frac{(\pi^{3}/\Lambda^{3})\sin(\pi/\Delta)(x-x_{k})}{(x-x_{k})} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] + 4\frac{(\pi^{2}/\Lambda^{2})\cos(\pi/\Delta)(x-x_{k})}{\sigma^{2}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 12\frac{(\pi/\Delta)\sin(\pi/\Delta)(x-x_{k})}{(x-x_{k})^{3}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 6\frac{(\pi/\Delta)\sin(\pi/\Delta)(x-x_{k})}{(x-x_{k})\sigma^{2}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 6\frac{(\pi/\Delta)(x-x_{k})\sin(\pi/\Delta)(x-x_{k})}{(x-x_{k})\sigma^{2}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 24\frac{\cos(\pi/\Delta)(x-x_{k})}{(x-x_{k})^{4}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 12\frac{\cos(\pi/\Delta)(x-x_{k})}{(x-x_{k})^{2}\sigma^{2}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 4\frac{(x-x_{k})^{2}\cos(\pi/\Delta)(x-x_{k})}{\sigma^{6}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] + 24\frac{\sin(\pi/\Delta)(x-x_{k})}{\pi(x-x_{k})\sigma^{4}/\Delta} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] + 12\frac{\sin(\pi/\Delta)(x-x_{k})}{\pi\sigma^{6}(x-x_{k})^{3}/\Delta} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] + 3\frac{\sin(\pi/\Delta)(x-x_{k})}{\pi(x-x_{k})\sigma^{4}/\Delta} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] + \frac{(x-x_{k})^{3}\sin(\pi/\Delta)(x-x_{k})}{(\pi\sigma^{6}/\Delta)} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 2\frac{(x-x_{k})\sin(\pi/\Delta)(x-x_{k})}{\pi\sigma^{6}/\Delta}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 3\frac{(x-x_{k})^{3}}{2\sigma^{2}}] \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 3\frac{(x-x_{k})\sin(\pi/\Delta)(x-x_{k})}{\pi\sigma^{6}/\Delta}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 3\frac{(x-x_{k})\sin(\pi/\Delta)(x-x_{k})}{\pi\sigma^{6}/\Delta}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 3\frac{(x-x_{k})^{3}}{2\sigma^{2}}] - 3\frac{(x-x_{k})^{3}}{2\sigma^{2}}] - 3\frac{(x-x_{k})\sin(\pi/\Delta)(x-x_{k})}{\pi\sigma^{6}/\Delta}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 3\frac{(x-x_{k})\sin(\pi/\Delta)(x-x_{k})}{\pi\sigma^{6}/\Delta}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 3\frac{(x-x_{k})^{3}}{2\sigma^{2}}] - 3\frac{(x-x_{k})^{3}}{2\sigma^{2}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 3\frac{(x-x_{k})^{3}}{2\sigma^{2}}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 3\frac{(x-x_{k})^{3}}{2\sigma^{2}}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 3\frac{(x-x_{k})^{3}}{2\sigma^{2}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 3\frac{(x-x_{k})^{3}}{2\sigma^{2}}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 3\frac{(x-x_{k})^{3}}{2\sigma^{2}}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 3\frac{(x-x_{k})^{3}}{2\sigma^{2}}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 3\frac{(x-x_{k})^{3}}{2\sigma^{2}}} \exp[\frac{-(x-x_{k})^{2}}{2\sigma^{2}}] - 3\frac{(x-x_{k})^{3}}{3$$

 $x = x_k$, için bu türev katsayıları farklı olup, örneğin ikinci mertebeden türev için diyagonel elemanlar

$$\delta_{\pi/\Delta,\sigma}^{(1)}(0) = 0$$

$$\delta_{\pi/\Delta,\sigma}^{(2)}(0) = -\frac{1}{3} \frac{3 + (\frac{\pi^2}{\Delta^2})\sigma^2}{\sigma^2} = -\frac{1}{\sigma^2} - \frac{\pi^2}{3\Delta^2}$$

$$\delta_{\pi/\Delta,\sigma}^{(3)}(0) = 0$$

$$\delta_{\pi/\Delta,\sigma}^{(4)}(0) = \frac{1}{5} \frac{15 + 10(\frac{\pi^2}{\Delta^2})\sigma^2 + (\frac{\pi^4}{\Delta^4})\sigma^4}{\sigma^4}$$
(3.73)

Aşağıdaki Lagrange kernel kullanıldığında

$$\delta_{\Delta,\sigma}(x) = \prod_{i=-M,k\neq i}^{M} \frac{x - x_i}{x_k - x_i}$$
(3.74)

Birinci ve ikinci dereceden türev için sırasıyla bu türev katsayıları

$$\delta_{\Delta,\sigma}^{(1)}(x) = \sum_{i=-M; i \neq k}^{M} \left(\frac{1}{x_k - x_i}\right) \prod_{i=-M,k \neq i}^{i+M} \frac{x - x_i}{x_k - x_i}$$
(3.75)

$$\delta_{\Delta,\sigma}^{(2)}(x) = \sum_{\substack{i,m = -M; i \neq k}}^{M} \left(\frac{1}{(x - x_i)(x - x_m)} \right) \prod_{\substack{i = -M, k \neq i}}^{i+M} \frac{x - x_i}{x_k - x_i}$$
(3.76)

Böylece ATK yöntemi uygulandıktan sonra temel hareket denklemi (3.35) aşağıdaki formda elde edilir:

Yukardaki denklemdeki türev operatörleri:

$$g_{11} = A_{11} \cdot \Xi_x^{(2)} + \frac{A_{11}}{R(x)} \sin \alpha \cdot \Xi_x^{(1)} - \frac{A_{22}}{R^2(x)} \sin^2 \alpha + \frac{A_{33}}{R^2(x)} \cdot \Xi_s^{(2)}$$
(3.78)

$$g_{12} = \frac{(A_{12} + A_{33})}{R(x)} \sin \alpha \cdot \Xi_{xs}^{(2)} \frac{\partial^2 V}{\partial x \partial s} - \frac{(A_{22} + A_{33})}{R^2(x)} \sin \alpha \cdot \Xi_s^{(1)}$$
(3.79)

$$g_{13} = \frac{A_{12}}{R(x)} \cos \alpha \cdot \Xi_x^{(1)} - \frac{A_{22}}{R^2(x)} \sin \alpha \cdot \cos \alpha$$
(3.80)

$$g_{14} = B_{11} \cdot \Xi_x^{(2)} + \frac{B_{11}}{R(x)} \sin \alpha \cdot \Xi_x^{(1)} - \frac{B_{22}}{R^2(x)} \sin^2 \alpha + \frac{B_{33}}{R^2(x)} \cdot \Xi_s^{(2)}$$
(3.81)

$$g_{15} = \frac{(B_{12} + B_{33})}{R(x)} \cdot \Xi_x^{(1)} \cdot \Xi_s^{(1)} - \frac{(B_{22} + B_{33})}{R^2(x)} \cdot \Xi_s^{(1)} \cdot \sin \alpha$$
(3.82)

$$g_{21} = \frac{(A_{12} + A_{33})}{R(x)} \cdot \Xi_x^{(1)} \cdot \Xi_s^{(1)} + \frac{(A_{22} + A_{33})}{R^2(x)} \sin \alpha \cdot \Xi_s^{(1)}$$
(3.83)

$$g_{22} = A_{33} \Xi_x^{(2)} + A_{33} \frac{\sin \alpha}{R(x)} \Xi_s^{(1)} - \frac{A_{33}}{R^2(x)} \sin^2 \alpha + \frac{A_{22}}{R^2(x)} \Xi_s^{(2)} - \frac{A_{44}}{R^2(x)} \cos^2 \alpha$$
(3.84)

$$g_{23} = \frac{(A_{22} + A_{44})}{R^2(x)} \cos \alpha \cdot \Xi_s^{(1)}$$
(3.85)

$$g_{24} = \frac{(B_{12} + B_{33})}{R(x)} \cdot \Xi_x^{(1)} \cdot \Xi_s^{(1)} + \frac{(B_{22} + B_{33})}{R^2(x)} \sin \alpha \cdot \Xi_s^{(1)}$$
(3.86)

$$g_{25} = B_{33} \cdot \Xi_x^{(2)} + B_{33} \frac{\sin \alpha}{R(x)} \cdot \Xi_x^{(1)} - \frac{B_{33}}{R^2(x)} \sin^2 \alpha + \frac{B_{22}}{R^2(x)} \cdot \Xi_x^{(2)} + A_{44} \frac{\cos \alpha}{R(x)}$$
(3.87)

$$g_{31} = -\frac{A_{12}}{R(x)} \cos \alpha \cdot \Xi_x^{(1)} - \frac{A_{22}}{R^2(x)} \sin \alpha \cdot \cos \alpha$$
(3.88)

$$g_{32} = -\frac{(A_{22} + A_{44})}{R^2(x)} \cos \alpha \cdot \Xi_s^{(1)}$$
(3.89)

$$g_{33} = A_{55} \cdot \Xi_x^{(2)} + \frac{A_{55}}{R(x)} \sin \alpha \cdot \Xi_s^{(1)} + \frac{A_{44}}{R^2(x)} \cdot \Xi_s^{(2)} - \frac{A_{22}}{R^2(x)} \cos^2 \alpha$$
(3.90)

$$g_{34} = A_{55} \cdot \Xi_x^{(1)} - \frac{B_{12}}{R(x)} \cos \alpha \cdot \Xi_x^{(1)} + \frac{A_{55}}{R(x)} \sin \alpha - \frac{B_{22}}{R^2(x)} \sin \alpha \cdot \cos \alpha$$
(3.91)

$$g_{35} = \frac{A_{44}}{R(x)} \cdot \Xi_s^{(1)} - \frac{B_{22}}{R^2(x)} \cdot \cos \alpha \cdot \Xi_s^{(1)}$$
(3.92)

$$g_{41} = B_{11} \cdot \Xi_x^{(2)} + \frac{B_{11}}{R(x)} \sin \alpha \cdot \Xi_x^{(1)} - \frac{B_{22}}{R^2(x)} \sin^2 \alpha + \frac{B_{33}}{R^2(x)} \cdot \Xi_s^{(2)}$$
(3.93)

$$g_{42} = \frac{(B_{12} + B_{33})}{R(x)} \cdot \Xi_x^{(1)} \cdot \Xi_s^{(1)} - \frac{(B_{22} + B_{33})}{R^2(x)} \sin \alpha \cdot \Xi_s^{(1)}$$
(3.94)

$$g_{43} = -A_{55} \cdot \Xi_x^{(1)} + B_{12} \frac{\cos \alpha}{R(x)} \cdot \Xi_x^{(1)} - \frac{B_{22}}{R^2(x)} \sin \alpha \cos \alpha$$
(3.95)

$$g_{44} = D_{11} \cdot \Xi_x^{(2)} + D_{11} \frac{\sin \alpha}{R(x)} \cdot \Xi_x^{(1)} - \frac{D_{22}}{R^2(x)} \sin^2 \alpha + \frac{D_{33}}{R^2(x)} \cdot \Xi_s^{(2)} - A_{55}$$
(3.96)

$$g_{45} = \frac{(D_{12} + D_{33})}{R(x)} \cdot \Xi_x^{(1)} \cdot \Xi_s^{(1)} - \frac{(D_{22} + D_{33})}{R^2(x)} \cdot \Xi_s^{(1)} \sin \alpha$$
(3.97)

$$g_{51} = \frac{(B_{12} + B_{33})}{R(x)} \cdot \Xi_x^{(1)} \cdot \Xi_s^{(1)} + \frac{(B_{22} + B_{33})}{R^2(x)} \cdot \Xi_s^{(1)} \sin \alpha$$
(3.98)

$$g_{52} = B_{33} \cdot \Xi_x^{(2)} + B_{33} \frac{\sin \alpha}{R(x)} \cdot \Xi_x^{(1)} - B_{33} \frac{\sin^2 \alpha}{R^2(x)} + \frac{B_{22}}{R^2(x)} \cdot \Xi_s^{(2)} + \frac{A_{44}}{R(x)} \cos \alpha$$
(3.99)

$$g_{53} = -\frac{A_{44}}{R(x)} \cdot \Xi_s^{(1)} + \frac{B_{22}}{R^2(x)} \cos \alpha \cdot \Xi_s^{(1)}$$
(3.100)

$$g_{54} = \frac{(D_{12} + D_{33})}{R(x)} \cdot \Xi_x^{(1)} \cdot \Xi_s^{(1)} + \frac{(D_{22} + D_{33})}{R^2(x)} \sin \alpha \cdot \Xi_s^{(1)}$$
(3.101)

$$g_{55} = D_{33} \cdot \Xi_x^{(1)} + D_{33} \frac{\sin \alpha}{R(x)} \cdot \Xi_x^{(1)} - \frac{D_{33}}{R^2(x)} \sin^2 \alpha + \frac{D_{22}}{R^2(x)} \cdot \Xi_s^{(2)} - A_{44}$$
(3.102)

Yukardaki denklemde yazılan ATK türev ifadeleri aşağdaki formda tanımlıdır:

$$\Xi_x^n() = \frac{\partial^{(n)}()}{\partial x^{(n)}} = \sum_{k=-M}^M \delta_{\Delta,\sigma}^{(n)}(k \cdot \Delta x)()_{i+k,j}$$
(3.103)

$$\Xi_{y}^{n}() = \frac{\partial^{(n)}()}{\partial y^{(n)}} = \sum_{k=-M}^{M} \delta_{\Delta,\sigma}^{(n)}(k \cdot \Delta y)()_{i,j+k}$$
(3.104)

$$\Xi_x^1 \Xi_y^{(n-1)}(\cdot) = \frac{\partial^{(n)}(\cdot)}{\partial x \cdot \partial y^{(n-1)}} = \sum_{k=-M}^M \delta_{\Delta,\sigma}^{(1)}(k \cdot \Delta x)(\cdot)_{i+k,j} \sum_{k=-M}^M \delta_{\Delta,\sigma}^{(n-1)}(k \cdot \Delta y)(\cdot)_{i,k+j}$$
(3.105)

$$\Xi_x^{(n-1)}\Xi_y^1(\cdot) = \frac{\partial^{(n)}(\cdot)}{\partial x^{(n-1)}\partial y} = \sum_{k=-M}^M \delta_{\Delta,\sigma}^{(n-1)}(k \cdot \Delta x)(\cdot)_{i+k,j} \sum_{k=-M}^M \delta_{\Delta,\sigma}^{(1)}(k \cdot \Delta y)(\cdot)_{i,k+j}$$
(3.106)

Çalışmada iki farklı mesnete koşulu kabuki uç noktaları için kullanılmıştır. Bunlar basit mesnete ve ankastre mesnettir. Bu koşullar air denklemler aşağıda verilmiştir.

Basit mesnet (S-S)

$$V=0, W=0, N_{\rm x}=0, M_{\rm x}=0, M_{\rm xs}=0$$
 (3.107)

Ankastre tutulmuş mesnet (C)

$$U=0, V=0, W=0$$
 $M_{xs}=0, \varphi_{x}=0$ (3.108)

Sınır koşullarının denklemlere dahil edilmesinden sonar aşağıdaki formda bir özdeğer problem elde edilir.

$$GX = \Omega BX \tag{3.109}$$

Bu denklemde X deplasman vektörüdür. Boyutsuz frekans değeri ise hem klasik (Ω_c) kabuki hemde birinci mertebe teori (Ω_s) kullanılarak elde edilen için aşağıdaki formda tanımlıdır.

$$\Omega c = R_2 \sqrt{\frac{\rho h}{A_{11}}} \omega_c; \ \Omega s = R_2 \sqrt{\frac{\rho h}{A_{11}}} \omega_s \tag{3.110}$$

3.3. Fonksiyonel Derecelendirilmiş Malzeme

Konik Fonksiyonel Derecelendirilmiş Malzeme (FDM) ilk olarak 1984 yıllarında termal bariyer malzemesi üretmek amacıyla çalışan Japonya bilim adamları tarafından keşfedilmiştir. Araştırmacılar; yaptıkları uzay-aracı projesinde sıcaklık dayanımı gerektiren ilgili bölgeye/yüzeye ısıl dayanımı yüksek olan seramik ve tokluk gerektiren bölgeye/yüzeye ise mekanik ya da mukavemet özellikleri yüksek olan metal fazlarını kullanmışlardır.

Fonksiyonel Derecelendirilmiş Malzeme en basit tanımıyla: malzemeyi oluşturan bileşenlerin hacimsel oranlarının bir yüzeyden diğer bir yüzeye fonksiyonel/ dereceli olarak değiştirilmesiyle elde edilirler. Böylece bütün yapının malzeme özellikleri de değişim doğrultusu boyunca dereceli olarak değiştirilmiş olur.

Fonksiyonel değişim fiziksel parametrelere bağlı olarak aşağıdaki formül ile tanımlanır.

$$p = p_0 \left[1 + p_{-1} / T + p_1 T + p_2 T^2 + p_3 T^3 \right]$$
(3.111)

Burada p_i değerleri Kelvin olarak her bir malzemenin sıcaklık değerine bağlı özellikleridir:

$$p = \sum_{j=1}^{k} p_{j} V_{f}$$
(3.112)

burada p_j ve V_f malzeme özelliği ve hacim fraksiyonudur (malzeme j için). Hacim fraksiyon toplamı ise

$$\sum_{k=1}^{l} V_{fl} = 1$$
(3.113)

ile tanımlanır ve toplamı 1 dir.

4.1. Üstel –kuvvet-fonksiyonu şeklinde değişim

Uniform kabuki kalınlığı için, hacim fraksiyonu

$$V_f = \left(\frac{z}{h} + \frac{1}{2}\right)^N \tag{3.114}$$

Böylece malzeme sabitleri aşağıdaki formüller ile tanımlanır:

$$E(z) = (E_1 - E_2) \left(\frac{z}{h} + \frac{1}{2}\right)^N + E_2$$
(3.115)

$$v(z) = (v_1 - v_2) \left(\frac{z}{h} + \frac{1}{2}\right)^N + v_2$$
(3.116)

$$\rho(z) = (\rho_1 - \rho_2) \left(\frac{z}{h} + \frac{1}{2}\right)^N + \rho_2$$
(3.117)

3.4. Dönen Kabuklar

Dönen kabuk için temel denklemler aşağıda verilmiştir.

$$L_{x}(u,v,w) - \rho_{t} \frac{\partial^{2} u}{\partial t^{2}} = 0,$$

$$L_{\theta}(u,v,w) - \rho_{t} \frac{\partial^{2} v}{\partial t^{2}} = 0,$$

$$L_{z}(u,v,w) - \rho_{t} \frac{\partial^{2} w}{\partial t^{2}} = 0.$$
(3.118)

Bu denklemdeki türev katsayıları

$$L_{x} = \frac{\partial N_{x}}{\partial x} + \frac{\sin \alpha}{R(x)} (N_{x} - N_{\theta}) + \frac{1}{R(x)} \frac{\partial N_{x\theta}}{\partial \theta} + \rho h \lambda^{2} \left[\frac{\partial^{2} u}{\partial \theta^{2}} - r \cos \alpha \frac{\partial w}{\partial x} \right] + 2\rho h \lambda \sin \alpha \frac{\partial v}{\partial t}$$
(3.119)

$$L_{\theta} = \frac{\partial N_{x\theta}}{\partial x} + \frac{1}{R(x)} \frac{\partial N_{\theta}}{\partial \theta} + \frac{2\sin\alpha}{R(x)} N_{x\theta} + \frac{\cos\alpha}{R(x)} \frac{\partial M_{x\theta}}{\partial x} + \frac{\cos\alpha}{R^2(x)} \frac{\partial M_{\theta}}{\partial \theta} + \rho h \lambda^2 \left[R(x) \frac{\partial^2 u}{\partial x \partial \theta} + R(x) \sin\alpha \frac{\partial v}{\partial x} + \sin\alpha \frac{\partial u}{\partial \theta} \right] - 2\rho h \lambda \left[\sin\alpha \frac{\partial u}{\partial t} + \cos\alpha \frac{\partial w}{\partial t} \right]$$
(3.120)

$$L_{z} = \frac{\partial^{2} M_{x}}{\partial x^{2}} + \frac{2}{R(x)} \frac{\partial^{2} M_{x\theta}}{\partial x \partial \theta} + \frac{1}{R^{2}(x)} \frac{\partial^{2} M_{\theta}}{\partial \theta^{2}} + \frac{2 \sin \alpha}{R(x)} \frac{\partial M_{x}}{\partial x} - \frac{\sin \alpha}{R(x)} \frac{\partial M_{\theta}}{\partial x} + \frac{\cos \alpha}{R(x)} N_{\theta} + \rho h \lambda^{2} \left[R(x) \frac{\partial^{2} w}{\partial \theta^{2}} - R(x) \cos \alpha \frac{\partial u}{\partial x} + w \cos^{2} \alpha + u \sin \alpha \cos \alpha \right] + 2\rho h \lambda \left[\cos \alpha \frac{\partial v}{\partial t} \right]$$
(3.121)

3.5. Birinci Mertebeden Kayma Deformasyonu Teorisine Dayalı Kabuk Denklemi

Kayma deformasyonları dikkate alınınca denklem:

$$\begin{bmatrix} L_{11} & L_{12} & L_{13} & L_{14} & L_{15} \\ L_{21} & L_{22} & L_{23} & L_{24} & L_{25} \\ L_{31} & L_{32} & L_{33} & L_{34} & L_{35} \\ L_{41} & L_{42} & L_{43} & L_{44} & L_{45} \\ L_{51} & L_{52} & L_{53} & L_{54} & L_{55} \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ \phi_x \\ \phi_y \end{bmatrix} - \rho A \omega^2 \begin{cases} 1 \\ 1 \\ 1 \\ 1 \end{cases} = 0$$
(3.122)

Olarak ifade edilir. Bu denklemdeki türev katsayıları aşağıda listelenmiştir.

$$\begin{split} L_{11} &= A_{66} \frac{\partial^2 u}{\partial y^2} + \frac{2}{R} B_{66} \frac{\partial^2 u}{\partial y^2} + \frac{1}{R^2} D_{66} \frac{\partial^2 u}{\partial y^2} - \frac{1}{R^2} A_{55} u + A_{12} \frac{\partial^2 u}{\partial x^2} \\ L_{12} &= A_{12} \frac{\partial^2 v}{\partial x \partial y} + A_{66} \frac{\partial^2 v}{\partial x \partial y} - \frac{1}{R^2} \frac{\partial^2 v}{\partial x \partial y} \\ L_{13} &= \frac{A_{11}}{R} \frac{\partial^2 w}{\partial x \partial y} + \frac{A_{55}}{R} \frac{\partial^2 w}{\partial x \partial y} \\ L_{14} &= -\frac{A_{55}}{R} \phi_x + B_{11} \frac{\partial^2 \phi_x}{\partial x^2} + B_{66} \frac{\partial^2 \phi_x}{\partial y^2} + \frac{1}{R} D_{66} \frac{\partial^2 \phi_x}{\partial y^2} \\ L_{15} &= B_{12} \frac{\partial^2 \phi_y}{\partial x \partial y} + B_{66} \frac{\partial^2 \psi}{\partial x \partial y} - \frac{1}{R} D_{66} \frac{\partial^2 \phi_y}{\partial x \partial y} \\ \frac{L_{21} = L_{12}}{L_{22}} \\ L_{22} &= A_{66} \frac{\partial^2 v}{\partial x \partial y} - \frac{2}{R} B_{66} \frac{\partial^2 v}{\partial x \partial y} + \frac{1}{R^2} D_{66} \frac{\partial^2 \phi_x}{\partial x \partial y} \\ L_{24} &= B_{12} \frac{\partial^2 \phi_x}{\partial x \partial y} + B_{66} \frac{\partial^2 \phi_x}{\partial x \partial y} - \frac{D_{66}}{R} \frac{\partial^2 \phi_x}{\partial x \partial y} \\ L_{24} &= B_{12} \frac{\partial^2 \phi_x}{\partial x \partial y} + B_{66} \frac{\partial^2 \phi_x}{\partial x \partial y} - \frac{D_{66}}{R} \frac{\partial^2 \phi_x}{\partial x \partial y} \\ L_{25} &= B_{66} \frac{\partial^2 \phi_y}{\partial x \partial y} - \frac{D_{66}}{R} \frac{\partial^2 \phi_y}{\partial x \partial y} \\ L_{25} &= L_{13} \\ L_{31} &= L_{13} \\ L_{32} &= L_{33} \end{split}$$

25

$$L_{33} = -\frac{A_{11}}{R^2} w + A_{55} \frac{\partial^2 w}{\partial x^2} + A_{44} \frac{\partial^2 w}{\partial y^2}$$
$$L_{34} = A_{55} \frac{\partial \phi_x}{\partial x} - B_{11} \frac{1}{R} \frac{\partial \phi_x}{\partial x}$$
$$L_{35} = A_{44} \frac{\partial \phi_y}{\partial y} - B_{12} \frac{1}{R} \frac{\partial \phi_y}{\partial y}$$

 $L_{41} = L_{14}$ $L_{42} = L_{24}$ $L_{43} = L_{34}$

$$L_{44} = -A_{55}\phi_{x} + D_{11}\frac{\partial^{2}\phi_{x}}{\partial x^{2}} + D_{66}\frac{\partial^{2}\phi_{x}}{\partial y^{2}}$$

$$L_{45} = -(D_{12} + D_{66})\frac{\partial^{2}\phi_{y}}{\partial x\partial y}$$

$$L_{51} = L_{15}$$

$$L_{52} = L_{25}$$

$$L_{53} = L_{35}$$

$$L_{54} = L_{45}$$

$$L_{55} = -A_{44}\phi_{y} + D_{66}\frac{\partial^{2}\phi_{y}}{\partial x^{2}} + D_{22}\frac{\partial^{2}\phi_{y}}{\partial y^{2}}$$
(3.123)

Bu denklemlerin sayısal çözümünden önce modal analiz için yine aşağıdaki deplasman ve dönme fonksiyonları kullanılır.

$$u = U\cos(m\alpha)\sin(n\beta)e^{i\omega t}$$
$$v = V\sin(m\alpha)\cos(n\beta)e^{i\omega t}$$
$$w = W\sin(m\alpha)\cos(n\beta)e^{i\omega t}$$
(3.124)

 $\phi_x = \psi_x \cos(m\alpha) \sin(n\beta) e^{i\omega t}$ $\phi_y = \psi_y \sin(m\alpha) \cos(n\beta) e^{i\omega t}$

3.6. Karbon Nanotüp Takviyeli (CNTR) Kompozitler

Kalınlık boyunca karbon nanotüp değişimi beş farklı fonksiyon ile ifade edilir

UD:
$$V_{CN} = V_{CN}^*$$
 (3.125)

FG-V:
$$V_{CN} = \left(2\frac{z}{h} + 1\right)V_{CN}^*$$
 (3.126)

FG-A:
$$V_{CN} = \left(-2\frac{z}{h}+1\right)V_{CN}^{*}$$
 (3.127)

FG-O:
$$V_{CN} = \left(-2\frac{|z|}{h}+1\right)V_{CN}^*$$
 (3.128)

FG-X:
$$V_{CN} = \left(2\frac{|z|}{h}\right)V_{CN}^*$$
 (3.129)

Burada $V_{\rm CN}$ hacim fraksiyonu ve $V_{\rm CN}^{*}$,

$$V_{CN}^{*} = \frac{m_{cn}}{m_{cn} + (\rho_{CN} / \rho_{M}) - (\rho_{CN} / \rho_{M})m_{cn}}$$
(3.130)

ile tanımlanır. Yine denklemde m_{cn} karbon nanotüpün kütle fraksiyonudur.

Eğer denklemleri diferansiyel quadrature yöntemiyle çözer isek:

$${}^{DQ}L_{11} \cdot U + {}^{DQ}L_{12} \cdot V + {}^{DQ}L_{13} \cdot W + {}^{DQ}L_{14} \cdot \Phi_x + {}^{DQ}L_{15} \cdot \Phi_y - \rho h \cdot \omega^2 = 0$$
(3.131)

$${}^{DQ}L_{21} \cdot U + {}^{DQ}L_{22} \cdot V + {}^{DQ}L_{23} \cdot W + {}^{DQ}L_{24} \cdot \Phi_x + {}^{DQ}L_{25} \cdot \Phi_y - \rho h \cdot \omega^2 = 0$$
(3.132)

$${}^{DQ}L_{31} \cdot U + {}^{DQ}L_{32} \cdot V + {}^{DQ}L_{33} \cdot W + {}^{DQ}L_{34} \cdot \Phi_x + {}^{DQ}L_{35} \cdot \Phi_y - \rho h \cdot \omega^2 = 0$$
(3.133)

$${}^{DQ}L_{41} \cdot U + {}^{DQ}L_{42} \cdot V + {}^{DQ}L_{43} \cdot W + {}^{DQ}L_{44} \cdot \Phi_x + {}^{DQ}L_{45} \cdot \Phi_y - \rho h^3 \cdot \omega^2 / 12 = 0$$
(3.134)

$${}^{DQ}L_{51} \cdot U + {}^{DQ}L_{52} \cdot V + {}^{DQ}L_{53} \cdot W + {}^{DQ}L_{54} \cdot \Phi_x + {}^{DQ}L_{55} \cdot \Phi_y - \rho h^3 \cdot \omega^2 / 12 = 0$$
(3.135)

Bu denklemdeki diferansiyel quadrature operatörler:

$$\Xi_x^n(*) = \frac{\partial^{(n)}(*)}{\partial x^{(n)}} = \sum_{k=1}^N C_{i+k,j}^{(n)}(i)(*)_{i+k,j}$$
(3.136)

$$\Xi_s^n(*) = \frac{\partial^{(n)}(*)}{\partial s^{(n)}} = \sum_{k=1}^N C_{i,j+k}^{(n)}(j)(*)_{i,j+k}$$
(3.137)

$$\Xi_x^1 \Xi_s^{(n-1)}(*) = \frac{\partial^{(n)}(*)}{\partial x \cdot \partial s^{(n-1)}} = \sum_{k=1}^N C_{i+k,j}(i) \sum_{k=1}^N C_{i,k+j}(j)(*)_{i,k+j}$$
(3.138)

$$\Xi_x^{(n-1)}\Xi_s^1(*) = \frac{\partial^{(n)}(*)}{\partial x^{(n-1)}\partial s} = \sum_{k=1}^N C_{i,k+j}^{(n-1)}(j) \sum_{k=1}^N C_{i+k,j}^{(1)}(i)(*)_{i,k+j}$$
(3.139)

Şeklinde tanım lıdır. Örneğin Love kabuk teoeri ile DQ çözümü:

$$G_{111}U_{k} + G_{112}\sum_{k=1}^{N} C_{ik}^{(1)}U_{k} + G_{113}\sum_{k=1}^{N} C_{ik}^{(2)}U_{k} + G_{121}V_{k}$$

$$+G_{122}\sum_{k=1}^{N}C_{ik}^{(1)}V_{k}+G_{131}W_{k}+G_{132}\sum_{k=1}^{N}C_{ik}^{(1)}WV_{k}=-\rho h\omega^{2}U_{k}$$
(3.140)

$$G_{211}U_{k} + G_{212}\sum_{k=1}^{N} C_{ik}^{(1)}U_{k} + G_{221}V_{k} + G_{122}\sum_{k=1}^{N} C_{ik}^{(1)}V_{k} + G_{223}\sum_{k=1}^{N} C_{ik}^{(2)}V_{k}$$

$$+G_{231}W_{k}+G_{232}\sum_{k=1}^{N}C_{ik}^{(1)}W_{k}+G_{233}\sum_{k=1}^{N}C_{ik}^{(2)}W_{k}=-\rho h\omega^{2}V_{k}$$
(3.141)

$$G_{311}U_{k} + G_{312}\sum_{k=1}^{N}C_{ik}^{(1)}U_{k} + G_{321}V_{k} + G_{322}\sum_{k=1}^{N}C_{ik}^{(1)}V_{k} + G_{323}\sum_{k=1}^{N}C_{ik}^{(2)}V_{k}$$

$$+ G_{331}W_{i,j} + G_{332}\sum_{k=1}^{N} C_{ik}^{(1)}W_k + G_{333}\sum_{k=1}^{N} C_{ik}^{(2)}W_k + G_{334}\sum_{k=1}^{N} C_{ik}^{(3)}W_k$$

$$+G_{335}\sum_{k=1}^{N}C_{ik}^{(4)}W_{k} = -\rho h_{\omega}^{2}W_{k}$$
(3.142)

olacaktır.

4. BULGULAR VE TARTIŞMA

Bu bölümde yukarda verilmiş olan denklemler ve ANSYS programı kullanılarak elde edilen sonuçlar sunulmuştur. Çözülen kabuk sistemler Şekiller 4.1-4.5'de verilmiştir.

Şekil 4.1. Tabakalı izotropik konik kabuk

Şekil 4.2. Dairesel silindirik panel

Şekil 4.3. Dairesel silindirik kabuk

Şekil 4.4. En genel durumda tabakalı konik kabuk ve elemanları

Şekil 4.5. Konik panel

Aşağıda test amacıyla kullanılan kabuğa ait data verilmektedir.

E=68.2 GPa ; ρ =2700 kg/m³ , v=0.33, L=1.7272 m, R=0.0762 m, h=0.00147 m. Elde edilen frekans değerleri ve mod şekilleri aşağıda özetlenmiştir. Serbest cisim hareketi yada burulma hareketi esnasında oluşan modlar çıkartılmış ancak mod sayıları korunmuştur. Bu nedenle bazı modlar gözükmektedir. Sonuçlar literatür sonuçları uyum içindedir. ATK yöntemiyle elde edilen karşılaştrıma için ilk 3 frekans hesaplanmış ve elde edilen sonuçlar : 1. Mod 192.459, 2. Mod: 281.009 ve 3. Mod: 310.587 olarak elde edilmiştir. 15 düğüm noktası kullanılan analizde sonuçlar ANSYS sonuçları ile uyum içindedir. Aradaki fark kullanılan teorilerin farklılığından kaynaklanmaktadır.

Şekil 4.6. Dairesel silindirik kabuk için mod şekilleri ve frekanslar

Mod 9-) 493.30 Hz.

Mod 11-) 526.79 Hz.

Mod 13-) 541.02 Hz.

Mod 15-) 631.21 Hz.

Mod 17-) 707.24 Hz.

Mod 19-) 766.86 Hz.

Şekil 4.6'nın devamı

Şekil 4.7. Konik kabuğun serbest titreşiminde sınır koşullarının etkisi (h/R₂=0.01; α =30; L/R₂=0.75)

Şekil 4.8. Her iki uç basit mesnetli konik kabuğun frekans değerinde kullanılan teorinin etkisi (α =30; L/R₂=0. 5; 0/90)

Şekil 4.9. Her iki uç basit mesnetli silindirik kabuğun geometrik büyüklüklere bağlı frekans değerleri

Şekil 4.10. Her iki uç basit mesnetli konik kabuğun tabaka sayısına bağlı frekans değerleri (Lsin $\alpha/R2=0.25$; $\alpha=30$)

Şekil 4.11. Her iki uç basit mesnetli konik kabuğun (0/90/0/90/0/90) kalınlık ve konik açısına bağlı frekans değerleri (L/R2=0. 5)

Cizelge 4.1.	Her iki ucu	ı basit mesnetli	silindirik	kabuğun	frekans	değerleri
, 0				<u> </u>		0

1- 194.76
2- 194.79
3- 286.10
4- 286.68
5- 313.65
6- 313.79
7- 475.38
8- 475.83
9- 493.30
10- 493.43
11- 526.79
12- 527.25
13- 541.02
14- 541.64

Şekil 4.12. Kalınlığın ve çapın orantılı artması ile frekans değişimi

Çapın uzunluğa oranına bağlı değişimi görmek için farklı boyutlar için dairesel silindirik kabuk için analizler yapılmış ve sonuçlar Şekil 14-16 da sunulmuştur. Bu analizler için aşağıdaki malzeme ve geometrik büyüklükler kullanılmıştır.

E: 68.2 GPa ρ: 2700 kg/m³ υ:0.33 L : 1.7272 m (Boy) D: 1.5240 m (Çap) h: 0.0147 m (kalınlık)

Şekil 4.13. Kabuğun sonlu eleman modeli

Elde edilen frekanslar ve ilk 20 mod aşağıda verilmiştir.

253 Hz. Mod 7-8

321 Hz. Mod 9-10

339 Hz. Mod 11-12

339 Hz. Mod 13-14

365 Hz. Mod 15-16

380 Hz. Mod 17-18

387 Hz. Mod 19-20

Şekil 4.14' ün devamı

D/2L için elde edilen frekans değerleri ve mod şekilleri aşağıda Şekil 4.15'te sunulmuştur.

175 Hz. Mod 9-10

188 Hz. Mod 11-12

209 Hz. Mod 13-14

223 Hz. Mod 15-16

240 Hz. Mod 17-18

247 Hz. Mod 19-20

Şekil 4.15'in devamı

D/24L için elde edilen frekans değerleri ve mod şekilleri aşağıda Şekil 4.16'da sunulmuştur.

Şekil 4.16. Dairesel silindirik kabuğun (D/4L) için frekans değerleri ve mod şekilleri

131 Hz. Mod 15-16

139 Hz. Mod 17-18

150 Hz. Mod 19-20

Şekil 4.16' nın devamı

Şekil 4.17. Dairesel silindirik kabuğun (D/L) için frekans değerleri ve mod şekilleri

Benzer analizler kalınlık ve çap oranı için yapılmıştır. Kullanılan parametreler aşağıda verilmiştir. Elde edilen değerler için değişimi gösteren Şekil 4.18'de özetlenmiştir.

 $\begin{array}{l} E{=}68.2 \ \text{GPa} \\ \rho{=}2700 \ \text{kg/m}^3 \\ \upsilon{=}0.33 \\ L{=}1.7272 \ \text{m} \\ R{=}0.0762 \ \text{m} \\ h{=}0.00147 \ \text{m} \end{array}$

Şekil 4.18. Dairesel silindirik kabuğun (h/R) için frekans değerleri ve mod şekilleri

Çizelge 4.2. FDM kabuk için malzeme parametreleri

MALZEME	MALZEME	İlgili katsayılar					
TÜRÜ	SABİTLERİ	P ₀	P-1	P ₁	P ₂	P ₃	
I nolu malzeme	υ	0.3262	0	-2.002×10 ⁻⁴	-3.797×10 ⁻⁷	0	
(Paslanmaz çelik)	ρ (kg/m ³)	8166	0	0	0	0	
	E (N/m ²)	201.04×10 ⁹	0	3.079×10 ⁻⁴	-6.534×10 ⁻⁷	0	
II nolu malzeme	υ	0.2882	0	1.133×10 ⁻⁴	0	0	
(Zirconia)	ρ (kg/m ³)	5700	0	0	0	0	
	E (N/m ²)	244.27×10 ⁹	0	-0.1371×10 ⁻⁴	1.133×10 ⁻⁴	-3.681×10 ⁻¹⁰	
III nolu malzeme	υ	0.310	0	0	0	0	
(Nikel)	ρ (kg/m ³)	8900	0	0	0	0	
	E (N/m ²)	223.95×10 ⁹	0	2.794×10 ⁻⁴	-3.998×10 ⁻⁹	0	

6 FARKLI TİP	İÇ YÜZEY	DIŞ YÜZEY
TİP A	Nikel	paslanmaz çelik
TİPB	paslanmaz çelik	Nikel
TİP C	paslanmaz çelik	Zirconia
TİP D	Zirconia	paslanmaz çelik
TİP E	Nikel	Zirconia
TİP F	Zirconia	Nikel

Çizelge 4.3.	Farklı tipte	FDM içeren	kabuk
, 0	1	,	

ATK ile bulunan sonuçlarının yaklaşımı ve elde edilen sonuçların doğruluğunu test etmek için literatürde çözümü bilinen ve güvenilir olan örneklere ait sonuçlar hesaplanacak ve karşılaştırılacaktır. Bu amaçla iki ucu basit mesnetli silindirik kabuk titreşimi farklı kalınlıklar için hesaplanmış ve hesaplarda üç farklı düğüm noktası ATK için kullanılmıştır. Hem klasik kabuk teoerisi hemde üç boyutlu elastisite teorisi ile yapılan çözümler karşılaştırma amacıyla tabloda listelenmiştir. Görüleceği üzere 15 düğüm noktası yeter doğrulukta sonuç için uygundur.

Çizelge 4.4. Her iki ucu basit mesnetli dairesel silindirik kabuğun titreşim frekans değerlerinin ($\Omega = 2\pi R \omega \sqrt{\rho h / A_{11}}$) karşılaştırılması (0/90) (R/L=0.1; 2. mod)

	Referans	çalışmalar	Bu tez-ATK			
h/R	Ref. 660	Ref.661				
	(klasik kabuk	(3-D Elastisite	<i>N</i> =13	<i>N</i> =15	<i>N</i> =17	
	teorisi)	çözümü)				
0.02	0.1108	0.1105	0.1106	0.1106	0.1106	
0.05	0.1653	0.1635	0.1639	0.1641	0.1641	

Çizelge 5.5.	Her i	iki uc	u basit	mesnetli	tabakalı	konik	kabuğun	frekans	değeri	(0/90)
konik kabuk	(L/R_2)	=0.5;	n=1;α	$=30^{0}$)						

h/R ₂	Klasik kabuk teorisi	Birinci mertebe kayma	Bu tez-ATK
		deformasyon teorisi	(N=17)
0.01	0.17699	0.1768	0.1767
0.04	0.2620	0.2495	0.2494
0.06	0.3061	0.2862	0.2860
0.08	0.3484	0.3193	0.3190
0.1	0.3863	0.3469	0.3463

Çizelge 4.6. Her iki ucu basit mesnetli FDM içeren kabuk için frekans değeri

		6 farklı FDM içeren kabuk							
р	n								
		Tip	Tip	Tip	Tip	Tip	Tip		
		А	В	С	D	E	F		
0.3	1	13.3895	13.0387	14.2828	13.7341	14.0703	13.1821		
	2	4.5301	4.4160	4.8351	4.6601	4.7640	4.4671		
	3	4.2120	6.9392	4.4830	4.3073	4.4150	4.1261		
10	1	12.9504	13.4834	13.6185	14.4623	13.003	14.3708		
	2	4.3896	4.5681	4.6082	4.9076	4.4001	4.8742		
	3	4.0715	4.2369	4.2411	4.5783	4.0458	4.5425		
15	1	12.9334	13.5051	13.5960	14.5004	12.9682	14.4361		
	2	4.3831	4.5755	4.6020	4.9185	4.3904	4.8951		
	3	4.0654	4.2451	4.2431	4.5813	4.0431	4.5562		

	ATK Sonuçları					
Mod	11×11	15×15	17×17			
1	9.5778	9.5783	9.5783			
2	12.3842	12.3854	12.3854			
3	19.6575	19.6580	19.6580			
4	21.4030	21.4033	21.4037			
5	24.12878	24.1283	24.1285			

Çizelge 4.7. Dairesel silindirik kabuğun ilk beş boyutsuz titreşim frekansı

Tabakalı kabuk için malzeme özellikleri; E₁/E₂=25; G₁₂/E₂=0.5; G₂₃/E₂=0.2; G₁₃=G₁₂; υ =0.25

Çizelge 4.8. İzotrop kabuğun farklı parametrelere bağlı temel frekans değerleri

a/h	a/R	ATK Sonuçları			
<i>u</i> 11	u/IX	13×13	15×15	17×17	
10	0.5	6.0911	6.0914	6.0914	
	1	7.1016	7.1018	7.1018	
	2	9.5950	9.5953	9.5953	
20	0.5	7.5698	7.5601	7.5602	
	1	11.0311	11.0313	11.0315	
	2	14.6534	14.6535	14.6537	

a/R	Mod sayısı							
	1	2	3	4	5			
0.5	7.5602	14.0378	16.4091	23.7136	28.1513			
1.0	11.0315	14.4503	21.1811	24.3642	27.8498			
1.5	12.9936	15.8312	23.1245	26.2001	30.0012			
2.0	14.6537	17.9483	26.6903	28.3594	33.4687			

Çizelge 4.9. İzotrop kabuğun farklı parametrelere bağlı ilk beş frekansı (a/h=20)

Çizelge 4.10. Tabakalı orthotrop kabuğun (90°/0°) titreşim frekansları (a/h=10)

a/R	Mod sayısı				
	1	2	3	4	
0.5	9.4579	20.6683	22.1493	29.9612	
1.0	10.6583	21.6993	24.0812	30.3674	
1.5	11.7702	22.0004	26.3078	30.8874	
2.0	13.7654	23.0048	29.5683	31.1887	

Çizelge 4.11. Frekans üzerinde kalınlığın etkisinin incelenmesi (90°/0°) (a/R=2.0)

a/h	Mod sayısı				
	1	2	3	4	
10	13.7654	23.0048	29.5683	31.1887	
15	19.2008	24.9112	35.4123	39.4006	
20	24.8083	26.1875	42.5943	49.2876	

a/h	Mod sayısı				
	1	2	3	4	
10	12.4483	18.6673	30.7965	31.2881	
20	15.5487	21.6387	37.0193	46.3023	

Çizelge 4.12. Üç tabakalı kabuğun titreşim frekansları (0°/90°/0°) (a/R=0.5)

Çizelge 4.13. Tabaka sayısının frekans üzerine etkisi (a/h=10)

a/R	90°/0°		0°/90°/0°			
	1. mod	2. mod	3. mod	1. mod	2. mod	3. mod
1	10.66328	21.60734	24.04331	13.18553	18.52994	30.58007
2	13.7784	21.09345	29.56812	15.24540	18.00124	29.54773

Örnek 1

İzotrop çelik bir silindirin titreşimi

Et kalınlığı= h= 0.35294 in, R=1.17650 in, İçyarıçap= 1 inch, H/L=0.1

Çizelge 4.14. Çelik silindire ait frekans değerleri (Hz)

Mod sayısı	Hamidzadeh ve Jazar [662]	Bu çalışma ATK			
		11×11	13×13	15×15	
1	24713	24700	24703	24703	
2	33859	33845	33842	33842	
3	182490	182431	182402	182402	
4	331850	331823	331815	331815	
5	362130	362124	362110	362108	

Bundan sonraki çizelgeler için data

R=0.1 m; h=0.02 m; h=0.22m; E₁=206.9 GPa; E₂=18.62 GPa; G₁₂=4.48 GPa; G₁₃=4.48 GPa; G₂₃=2.24 GPa; v_{12} =0.28; ρ =2048 kg/m³

n	m	Bu çalışma ATK			
11		11×11	13×13	15×15	
0	1	21106.125	21108.963	21108.963	
	2	30077.993	30078.224	30078.224	
	3	30432.868	30433.002	30433.002	
1	1	13978.869	13979.008	13979.008	
	2	23200.807	23201.706	23201.706	
	3	27963.005	27963.1209	27963.1209	
2	1	9036.6712	9036.7893	9036.7893	
	2	26896.8713	26897.3281	26897.3281	
	3	23578.005	23578.1345	23578.1345	
3	1	6512.0586	6512.4321	6512.4321	
	2	13045.7638	13046.0071	13046.0071	
	3	1986.0579	1987.1261	1987.1261	

Çizelge 4.15. Silindirik kabuğun mod sayısına(m,n) bağlı frekans (rad/sec) değerleri

Bundan sonraki çizelgeler için data:

R=0.21 m; L=1.20 m; h=0.00192m; $v_{12}=v_{13}=v_{23}=0.25$; $\rho=1524.47$ kg/m³; E1=207.348 GPa; E₂= E₃=5.1837 GPa; G₁₂= G₁₃=G₂₃=3.11026 GPa
	n=1	n=2	n=3	n=4	n=5	n=6	n=7	n=8
$[0_2/90_2/\pm 45_2]_s$	7063.32	3594.2348	2108.345	1715.48	2187.64	3026.49	4098.32	5359.21
$[0_2/\pm 45_2/90_2]_s$	7060.46	3590.3845	2004.031	1496.72	1503.48	1999.36	2614.32	3401.43
$[\pm 45_2/0_2/90_2]_s$	7053.33	3591.403	2073.46	1671.42	1918.25	2660.13	3894.12	4618.05
2 2 210								

Çizelge 4.16. Silindirik kabuğun frekans (rad/sn) değerleri (C-C; h/R=0.01, m=1)

17 nolu Çizelge için data:

R=0.21 m; L=1.20 m; h=0.0016m; υ_{12} = υ_{13} = υ_{23} =0.256; ρ =2527 kg/m³ ; E1=224 GPa; E₂= E₃=12.7 GPa; G₁₂= G₁₃= 4.42 GPa; G₂₃=2.48 GPa

Çizelge 4.17. Dairesel silindirik kabuk frekans (rad/sec) değerleri (S-S; m=1)

n	[0°/30°/90°/60°]	[0°/30°/90°/60° /90°/30°/0°]	[0°/30°/90°/60° /0°/30°/90°/60°]
1	3469	4178	3479
2	1508	1729	1526
3	840	920	939
4	779	779	1023
5	1053	2003	1478
6	1489	1402	2081
7	2013	1924	2805
8	2628	2523	3643

18 nolu Çizelge için data:

R=0.21 m; L=1.20 m; h=0.0016m; v_{12} = v_{13} = v_{23} =0.256; ρ =2527 kg/m³; E1=224 GPa; E₂= E₃=12.7 GPa; G₁₂= G₁₃= 4.42 GPa; G₂₃=2.48 GPa

Çizelge	4.18.	Silindirik	S-S	panelin	boyutsuz	frekans	$(\Omega = \omega L^2 $	ρ/E_2h^2)	değerleri
([0°/90°	/90°/0	°]; L _x /R=0.	1; L	$_{x}/L_{y}=1)$					

R/h	Bu tez - ATK				
	17×17	15×15	13×13	11×11	
100	17.7248	17.7248	17.7248	17.7109	
50	11.3812	11.3812	11.3812	11.3783	
20	8.7013	8.7013	8.7013	8.7096	
10	7.9186	7.9186	7.9186	7.9225	
5	6.8932	6.8932	6.8932	6.8976	

Çizelge 4.19. boyutsuz frekans $(\Omega = \omega L_x^2 \sqrt{\rho / E_2 h^2})$ değerleri ([0°/90°/90°/0°]; $L_x/L_y=1; E_1/E_2=5; L_x/h=20$)

L _v / R	Bu tez - ATK				
-x	19×19	17×17	15×15	13×13	
0.005	8.1052	8.1052	8.1052	8.1076	
0.010	8.1248	8.1248	8.1248	8.1283	
0.020	8.1409	8.1409	8.1409	8.1481	
0.025	8.1603	8.1603	8.1603	8.1694	
0.050	8.2749	8.2749	8.2749	8.2706	
0.1	8.7049	8.7049	8.7049	8.7087	

I / h	L / D		Bu çalışmada ATK				
L _x / n	$L_{\rm x}/~{\rm K}$	19×19	17×17	15×15			
100	0.005	8.3048	8.3049	8.3049			
	0.1	17.6348	17.6348	17.6348			
50	0.05	8.2762	8.2763	8.2763			
20	0.1	11.3275	11.3275	11.3275			
20	0.05	8.1042	8.1042	8.1042			
20	0.1	8.6941	8.6943	8.6943			
10	0.05	7.7546	7.7546	7.7546			
10	0.1	7.9202	7.9203	7.9203			
5	0.05	6.8543	6.8543	6.8543			
_	0.1	6.8974	6.8975	6.8975			

Çizelge 4.20. Boyutsuz Frekans değerleri

Çizelge 4.21. Silindirik panel için boyutsuz frekans ($\Omega = \omega L_x^2 \sqrt{\rho/E_2 h^2}$) değerleri ([0°/90°/90°/0°]; L_x/ L_y=1; L_x/ h=10; ; L_x/ R=0.025)

E_1/E_2	Bu çalışmada ATK				
	15×15	13×13	11×11		
5	7.7643	7.7643	7.7639		
15	10.9325	10.9325	10.9308		
25	12.9974	12.9974	12.9900		
50	15.8311	15.8311	15.8297		

4.22 nolu Çizelge için data: R_x/ L_x =2; L_x/ L_y =1; h/ L_x =0.001; v=0.3; ρ =1500 kg/m³; E₁=138 GPa; E₂=8.96 GPa; G=7.1 GPa; $\Omega = \omega L^2 \sqrt{\rho / E_x h^2}$

Mod sayısı	[0°/45°/0°]	[45°/45°/45°/45°]	[90°/45°/45°/90°]
1	20.6831	18.1303	13.9783
2	26.4312	20.0546	14.0032
3	28.3885	24.9319	20.0345
4	30.9643	26.8305	21.0285
5	33.0375	28.01254	24.4035
6	34.9632	30.1376	24.8963
7	38.6306	32.9635	26.8205
8	40.0013	34.6351	27.8832

Çizelge 4.22. Silindirik S-S kabuk frekans $\Omega = \omega L^2 \sqrt{\rho / E_x h^2}$ değerleri

4.23-4.26 nolu çizelgeler için data:

 $E_1/E_2=25; G_{12}/E_2=0.5; G_{13}/E_2=0.5; G_{23}/E_2=0.2; \upsilon_{12}=0.25$

Çizelge 4.23. Tabakalı kompozit silindirik kabuğun ([0°/90°]) boyutsuz frekans $(\Omega = \omega L^2 \sqrt{\rho / E_2 h^2})$ değerleri (L_x/L_y=1; L_x/h=10)

R/L _x	Bu tez - ATK değerleri				
	11×11	13×13	15×15		
1		10.5348	10.5348		
2		9.3543	9.3543		
5		9.0178	9.0178		
10		8.9473	8.9473		
plak		8.9078	8.9078		

R/L _x	Bu tez - ATK değerleri					
	[0°/90°]	[0°/90°/0°]	[0°/90°/90°//0°]			
1	40.9382	62.0318	60.7891			
2	31.0378	36.5035	36.7342			
3	24.3784	26.8543	27.0841			
4	19.3806	22.0408	20.2897			
5	15.7830	19.7836	19.8845			
10	11.3097	16.3125	16.4283			

Çizelge 4.24. Tabakalı kompozit silindirik kabuğun ([0°/90°]) boyutsuz frekans $(\Omega = \omega L^2 \sqrt{\rho / E_2 h^2})$ değerleri (L_x/L_y=1; L_x/h=10, 11×11)

Çizelge 4.25. Basıklık oranının frekans üzerine($\Omega = \omega L_x^2 \sqrt{\rho/E_2 h^2}$) etkisi (L_x/L_y=1; L_x/h=100; E₁/ E₂=15; v₁₂=0.25; 13×13)

L _x /R	Bu tez - ATK değerleri					
	[0°/90°/90°/0°]	[90°/0°/0°/90°]	[0°/90°]	[90°/0°]		
0	12.8232	12.1832	8.5475	8.5475		
0.1	13.9374	13.9403	10.7946	10.7801		
0.2	18.0319	18.0526	15.7803	15.7664		
0.5	34.9632	28.1103	27.6349	27.0340		
0.8	47.8936	33.8176	34.002	33.7908		
1	51.0376	38.0241	38.7146	38.0016		

L _x /R	L _x /h=100	L _x /h=20	L _x /h=10	L _x /h=5
0	12.1832	11.8885	10.9511	8.7641
0.1	13.9374	11.9372	10.9538	8.7603
0.2	18.0319	12.0674	10.9836	8.7495
0.4	29.0478	12.7905	11.0463	8.7038
0.6	41.0601	13.8046	11.2033	8.6284
1	51.0376	16.4501	11.5832	8.4206

Çizelge 4.26. Tabakalı kompozit silindirik kabuk basıklık oranı ve kalınlığın etkisi $(L_x/L_y=1; E_1/E_2=15; v_{12}=0.25; 15\times15; [0^{\circ}/90^{\circ}/0^{\circ}])$

Çizelge 4.27. Analizlerde kullanılan malzeme özellikleri

Malzeme	Elastisite	Kayma	Hacimsel	Yoğunluk	Poisson
	Modülü (Pa)	Modülü (Pa)	Modülü (Pa)	(kg/m^3)	oranı
1)Yapısal Çelik	2×10 ¹¹	7.6923×10 ¹¹	1.6667×10 ¹¹	7850	
2)Paslanmaz	1.93×10^{11}	7.3664×10^{10}	1.693×10^{11}	7750	1
Çelik					
3)Bakır	1.1×10^{11}	4.1045×10^{10}	1.1458×10^{11}	8300	4
Alaşım					
4)Titanyum	9.6×10^{10}	3.5294×10^{10}	1.1429×10^{11}	4620	6
Alaşım					
5)Alüminyum	7.1×10^{10}	2.6692×10^{10}	6.9608×10^{10}	2770	3
Alaşım					

Şekil 4.19. Dört tarafı ankastre mesnetlenmiş kare plağın ilk 20 mod şekli

Şekil 4.19'un devamı

Mod 17

Mod 19

Şekil 4.19'un devamı

					Mod	Numarası				
Malzeme	1	2	3	4	5	6	7	8	9	10
1	435.85	872.7	872.7	1264.2	1527.2	1537.00	1884.60	1884.60	2381.60	2381.6
2	433.14	867.04	867.04	1255.60	1516.80	1526.60	1871.20	1871.20	2364.60	2364.60
3	321.52	643.09	643.09	930.30	1123.80	1131.30	1385.00	1385.00	1750.20	1750.20
4	408.02	815.67	815.67	1179.00	1424.40	1434.00	1753.90	1753.90	2216.60	2216.60
5	444.40	889.12	889.12	1286.70	1554.30	1564.60	1916.20	1916.20	2421.40	2421.40
	11	12	13	14	15	16	17	18	19	20
1	2458.4	2693.3	2711.7	3000.8	3000.8	3230.9	3230.9	3399	3404.5	3567.4
2	2440	2673.1	2691.6	2969.8	2969.8	3205.5	3205.5	3373.2	3378.8	3514
3	1803.7	1975.9	1990.3	2174.7	2174.7	2366.7	2366.7	2493.3	2497.7	2536
4	2282	2499.9	2518.9	2731.7	2731.7	2991.6	2991.6	3153.1	3154.7	3160.6
5	2496.6	2735	2754.6	3020.1	3020.1	3277.3	3277.3	3451.2	3457.1	3539.4

Çizelge 4.28. Dört tarafı anakastre mesnetlenmiş kare plağın ilk 20 mod için modal analiz değerleri (Hz) (A=B=100cm, h=5cm)

Çizelge 4.29. Dört tarafı anakastre mesnetlenmiş kare plağın ilk 20 mod için modal analiz değerleri (Hz) (A=B=100cm. h=1cm)

					Mod N	umarası				
Malzeme	1	2	3	4	5	6	7	8	9	10
1	89.401	182.51	182.51	270.02	327.69	329.62	413.86	413.86	526.92	526.92
2	88.88	181.45	181.45	268.41	325.82	327.72	411.37	411.37	523.95	523.95
3	66.066	134.89	134.89	199.47	242.30	243.69	305.66	305.66	389.80	389.80
4	83.93	171.40	171.40	253.40	307.99	309.73	388.30	388.30	495.70	495.70
5	91.272	186.34	186.34	275.58	334.68	336.61	422.32	422.32	538.32	538.32
	11	12	13	14	15	16	17	18	19	20
1	526.92	558.49	611.12	614.99	763.86	763.86	779.51	780.4	869.39	869.39
2	554.98	607.48	611.27	758.92	758.92	775.23	776.11	864.25	864.25	977.99
3	412.02	451.5	454.2	563.16	563.16	577.14	577.78	642.55	642.55	724.83
4	523.13	573.77	577.08	714.86	714.86	734.49	735.28	816.91	816.91	919.33
5	569.42	623.74	627.53	778.42	778.42	796.83	797.72	887.55	887.55	1002.3

Şekil 4.20. Dört tarafı serbest kare plağın ilk 20 mod şekli

Şekil 4.20'nin devamı

Şekil 4.20'nin devamı

Çizelge 4.30. Dört tarafı s	serbest kare plağın	ilk 20 mod için	modal analiz	değerleri (Hz)
(A=B=100cm. h=5cm)				

Malzeme	Mod Numarası											
	1	2	3	4	5	6	7	8	9	10		
				1.98E-	5.78E-	7.68E-						
1	0	0	0	04	04	04	160.1	236.23	292.16	410.95		
					4.73E-	7.10E-						
2	0	0	0	0	04	04	157.74	233	290.35	405.62		
			2.56E-	3.62E-	6.28E-	7.12E-						
3	0	0	04	04	04	04	113.91	168.8	215.24	294.48		
				1.98E-	6.06E-	7.75E-						
4	0	0	0	04	04	04	141.69	210.42	272.53	367.6		
				3.37E-	6.83E-	8.58E-						
5	0	0	0	04	04	04	158.95	235.29	297.72	410.19		
	11	12	13	14	15	16	17	18	19	20		
1	410.95	724.78	724.78	741.14	808.82	904.19	1210.2	1210.2	1361.6	1424.2		
2	405.62	718.26	718.26	731.81	798.22	896.04	1195.9	1195.9	1347.8	1412.4		
3	294.48	527.96	527.96	531.99	579.29	658.56	871.27	871.27	986.99	1040.5		
4	367.6	664.73	664.73	664.77	722.93	829.02	1090.4	1090.4	1239.3	1312.1		
5	410.19	732.32	732.32	740.66	806.99	913.52	1212.1	1212.1	1370.8	1442.2		

	Mod Numarası										
Malzeme	1	2	3	4	5	6	7	8	9	10	
1	6.43E- 04	1.17E- 03	1.28E- 03	2.96E- 03	3.07E- 03	3.15E- 03	32.627	47.624	58.979	84.28	
2	0	0	0	1.67E- 03	1.77E- 03	2.00E- 03	32.149	46.975	58.621	83.197	
3	0	0	0	1.52E- 03	2.31E- 03	2.36E- 03	23.222	34.035	43.473	60.425	
4	0	0	6.03E- 04	2.18E- 03	2.26E- 03	2.66E- 03	28.889	42.429	55.057	75.447	
5	3.83E- 04	8.14E- 04	1.04E- 03	3.35E- 03	3.81E- 03	4.24E- 03	32.4	47.439	60.122	84.155	
	11	12	13	14	15	16	17	18	19	20	
1	84.28	148.46	148.46	154.02	167.84	187.25	255.18	255.18	284.86	297.98	
2	83.197	147.16	147.16	152.11	165.68	185.62	252.22	252.22	282.09	295.64	
3	60.425	108.25	108.25	110.66	120.32	136.54	183.94	183.94	206.87	218.09	
4	75.447	136.37	136.37	138.34	150.23	172	230.34	230.34	260.03	275.29	
5	84.155	150.11	150.11	154.03	167.58	189.35	255.81	255.81	287.17	302.14	

Çizelge 4.31. Dört tarafı serbest kare plağın ilk 20 mod için modal analiz değerleri (Hz) (A=B=100cm. h=1cm)

Şekil 4.21. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ilk 20 mod şekli

Şekil 4.21'in devamı

Mod 17

Mod 19

Mod 20

Şekil 4.21'in devamı

					Mod N	umarası				
Malzeme	1	2	3	4	5	6	7	8	9	10
1	247.21	247.21	254.81	254.81	297.31	297.31	337.49	337.49	384.92	384.92
2	244.85	244.85	254.97	251.97	294.77	294.77	333.28	333.28	381.8	381.8
3	179.72	179.72	184.00	184.00	217.04	217.04	242.37	242.37	281.51	281.51
4	226.1	226.1	230.66	230.66	273.64	273.64	302.94	302.94	355.28	355.28
5	249.39	249.39	255.78	255.78	300.86	300.86	337.39	337.39	390.04	390.04
	11	12	13	14	15	16	17	18	19	20
1	420.17	420.17	432.29	432.29	469.59	469.59	499.67	499.67	516.96	516.96
2	416.08	416.08	427.61	427.61	465.41	465.41	495.76	495.76	510.06	510.06
3	305.25	305.25	312.61	312.61	342.33	342.33	365.89	365.89	369.9	369.9
4	383.92	383.92	392.22	392.22	431.35	431.35	461.45	461.45	462.12	462.12
5	423.66	423.66	434.4	434.4	474.69	474.69	506.78	506.78	515.42	515.42

Çizelge 4.32. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ilk 20 mod için modal analiz değerleri (Hz) (r=40cm. h=1cm. L=120cm)

Çizelge 4.33. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ilk 20 mod için modal analiz değerleri (Hz) (r=40cm. h=0.5cm. L=120cm)

					Mod N	umarası				
Malzeme	1	2	3	4	5	6	7	8	9	10
1	182.33	182.33	185.88	185.88	211.01	211.01	231.46	231.46	262.03	262.03
2	180.58	180.58	183.85	183.85	209.18	209.18	228.68	228.68	259.89	259.89
3	132.52	132.52	134.36	134.36	153.95	153.95	166.51	166.51	191.60	191.60
4	166.68	166.68	168.50	168.50	194.05	194.05	208.30	208.30	241.81	241.81
5	183.90	183.90	186.73	186.73	213.44	213.44	231.70	231.70	265.48	265.48
	11	12	13	14	15	16	17	18	19	20
1	314.6	314.6	327.99	327.99	330.09	330.09	330.53	330.53	340.35	340.35
2	311.38	311.38	324.37	324.37	326.29	326.29	327.54	327.54	337.09	337.09
-					225		2 4 4 0 4		0.15.10	0.15.10
3	228.07	228.07	236.95	236.96	237	237	241.84	241.84	247.43	247.43
4	206.52	206.52	205.05	205.05	207.12	207.12	205 50	205 50	211.24	211.24
4	286.53	286.53	295.95	295.95	297.12	297.12	305.58	305.58	311.34	311.34
~	216 72	21672	220.25	220.25	220.06	220.06	224.01	224.01	242.25	242.25
5	316.72	316.72	329.35	329.35	330.06	330.06	334.91	334.91	343.35	343.35

Şekil 4.22. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ince kabuk teorisine göre ilk 20 mod şekli

Mod 8

Mod 11

Şekil 4.22'nin devamı

Mod 17

Mod 19

		Mod Numarası 2 3 4 5 6 7 8 9 10 34 392.34 429.59 429.59 529.49 529.49 594.23 594.23 676.1 676.1 06 388.06 425.75 425.75 522.73 522.73 589.33 589.33 669.44 669.44 56 283.66 313.11 313.11 379.83 379.83 434.33 434.33 490.96 490.96 88 355.88 394.47 394.47 474.54 474.54 547.98 547.98 617.42 617.42 17 394.17 434.20 528.89 528.89 601.88 601.88 681.47 681.47 10 12 13 14 15 16 17 10 10 10										
Malzeme	1	2	3	4	5	6	7	8	9	10		
1	392.34	392.34	429.59	429.59	529.49	529.49	594.23	594.23	676.1	676.1		
2	388.06	388.06	425.75	425.75	522.73	522.73	589.33	589.33	669.44	669.44		
3	283.66	283.66	313.11	313.11	379.83	379.83	434.33	434.33	490.96	490.96		
4	355.88	355.88	394.47	394.47	474.54	474.54	547.98	547.98	617.42	617.42		
5	394.17	394.17	434.20	434.20	528.89	528.89	601.88	601.88	681.47	681.47		
	11	12	13	14	15	16	17	18	19	20		
1	676.1	754.8	754.8	757.52	757.52	835.57	835.57	865.85	865.85	956.65		
2	669.44	746.34	746.34	750.91	750.91	828.81	828.81	853.91	853.91	948.76		
3	490.96	544.96	544.96	552.64	552.64	611.14	611.14	618.43	618.43	699.27		
4	617.42	683.19	683.19	696.66	696.66	770.78	770.78	771.31	771.31	882.35		
5	681.47	757.57	757.57	766.18	766.18	846.75	846.75	862.1	862.1	968.99		

Çizelge 4.34. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ince kabuk teorisine göre ilk 20 mod için modal analiz değerleri (Hz) (r=40cm. h=1cm. L=120cm)

Çizelge 4.35. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ince kabuk teorisine göre ilk 20 mod için modal analiz değerleri (Hz) (r=40cm. h=0.5cm. L=120cm)

					Mod N	umarası				
Malzeme	1	2	3	4	5	6	7	8	9	10
1	374.70	374.70	380.41	380.41	506.53	506.53	525.28	525.28	627.92	627.92
2	370.48	370.48	376.90	376.90	502.31	502.31	518.51	518.51	621.50	621.50
3	270.50	270.50	276.93	276.93	370.11	370.11	376.60	376.60	455.27	455.27
4	339.11	339.11	348.68	348.68	466.87	466.87	470.34	470.34	572.06	572.06
5	376.04	376.04	384.15	384.15	512.93	512.93	524.46	524.46	632.18	632.18
	11	12	13	14	15	16	17	18	19	20
1	667.42	667.42	705.4	705.4	734.79	734.79	819.5	819.5	864.77	864.77
2	621.5	661.42	661.42	699.69	699.69	726.37	726.37	812.66	812.66	852.81
3	486.4	486.4	515.92	515.92	529.97	529.97	598.78	598.78	617.56	617.56
4	572.06	612.82	612.82	651.13	651.13	664.01	664.01	755.38	755.38	769.63
5	674.52	674.52	714.83	714.83	736.92	736.92	829.82	829.82	860.92	860.92

Şekil 4.23. İki tarafı boşta silindirik kabuğun ilk 20 mod şekli

Şekil 4.23'ün devamı

Mod 19

Mod 20

Şekil 4.23'ün devamı

					Mod N	umarası				
Malzeme	1	2	3	4	5	6	7	8	9	10
				1.46E-	1.54E-	1.94E-				
1	0	0	0	03	03	03	20.098	20.098	23.558	23.558
						2.55E-				
2	0	0	0	0	0	03	19.933	19.933	23.308	23.308
				8.08E-	1.14E-	2.05E-				
3	0	0	0	04	03	03	14.692	14.692	17.052	17.052
					1.30E-	2.54E-				
4	0	0	0	0	03	03	18.535	18.535	21.404	21.404
	9.66E-	1.31E-	2.03E-	2.16E-	2.66E-	2.71E-				
5	04	03	03	03	03	03	20.359	20.359	23.689	23.689
	11	12	13	14	15	16	17	18	19	20
1	56.871	56.871	61.94	61.94	109.17	109.17	114.86	114.86	176.97	176.97
2	56.405	56.405	61.344	61.344	108.28	108.28	113.81	113.81	175.52	175.52
3	41.574	41.574	45.016	45.016	79.805	79.805	83.636	83.636	129.37	129.37
4	52.451	52.451	56.623	56.623	100.69	100.69	105.31	105.31	163.22	163.22
5	57.611	57.611	62.473	62.473	110.59	110.59	116.01	116.01	179.28	179.28

Çizelge 4.36. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ilk 20 mod için modal analiz değerleri (Hz) (r=40cm. h=1cm. L=120cm)

Çizelge 4.37. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ilk 20 mod için modal analiz değerleri (Hz) (r=40cm. h=0.5cm. L=120cm)

	Mod Numarası											
Malzeme	1	2	3	4	5	6	7	8	9	10		
				2.05E-	2.94E-	4.99E-						
1	0	0	0	03	03	03	10.12	10.12	11.858	11.858		
			1.15E-	1.98E-	4.24E-	4.54E-						
2	0	0	03	03	03	03	10.038	10.038	11.734	11.734		
						1.57E-						
3	0	0	0	0	0	03	7.4	7.4	8.5872	8.5872		
		2.24E-	2.72E-	3.48E-	4.76E-	6.73E-						
4	0	03	03	03	03	03	9.3374	9.3374	10.782	10.782		
		3.27E-	2.79E-	3.14E-	4.01E-	5.35E-						
5	0	04	03	03	03	03	10.254	10.254	11.928	11.928		
	11	12	13	14	15	16	17	18	19	20		
1	28.641	28.641	31.194	31.194	54.991	54.991	57.866	57.866	89.171	89.171		
2	28.408	28.408	30.898	30.898	54.544	54.544	57.344	57.344	88.448	88.448		
3	20.943	20.943	22.683	22.683	40.212	40.212	42.161	42.161	65.212	65.212		
4	26.426	26.426	28.541	28.541	50.742	50.742	53.104	53.104	82.294	82.294		
5	29.019	29.019	31.475	31.475	55.719	55.719	58.474	58.474	90.358	90.358		

Şekil 4.24. İki tarafı boşta silindirik kabuğun ince kabuk teorisine göre ilk 20 mod şekli

Şekil 4.24'ün devamı

Mod 15

Mod 14

Mod 16

Mod 17

Mod 19

Şekil 4.24'ün devamı

	Mod Numarası									
Malzeme	1	2	3	4	5	6	7	8	9	10
				1.46E-	1.54E-	1.94E-				
1	0	0	0	03	03	03	20.098	20.098	23.558	23.558
						2.55E-				
2	0	0	0	0	0	03	19.933	19.933	23.308	23.308
				8.08E-	1.14E-	2.05E-				
3	0	0	0	04	03	03	14.692	14.692	17.052	17.052
					1.30E-	2.54E-				
4	0	0	0	0	03	03	18.535	18.535	21.404	21.404
	9.66E-	1.31E-	2.03E-	2.16E-	2.66E-	2.71E-				
5	04	03	03	03	03	03	20.359	20.359	23.689	23.689
	11	12	13	14	15	16	17	18	19	20
1	56.871	56.871	61.94	61.94	109.17	109.17	114.86	114.86	176.97	176.97
2	56.405	56.405	61.344	61.344	108.28	108.28	113.81	113.81	175.52	175.52
3	41.574	41.574	45.016	45.016	79.805	79.805	83.636	83.636	129.37	129.37
4	52.451	52.451	56.623	56.623	100.69	100.69	105.31	105.31	163.22	163.22
5	57.611	57.611	62.473	62.473	110.59	110.59	116.01	116.01	179.28	179.28

Çizelge 4.38. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ince kabuk teorisine göre ilk 20 mod için modal analiz değerleri (Hz) (r=40cm. h=1cm. L=120cm)

Çizelge 4.39. İki tarafı ankastre mesnetlenmiş silindirik kabuğun ince kabuk teorisine göre ilk 20 mod için modal analiz değerleri (Hz) (r=40cm. h=0.5cm. L=120cm)

	Mod Numarası									
Malzeme	1	2	3	4	5	6	7	8	9	10
				2.05E-	2.94E-	4.99E-				
1	0	0	0	03	03	03	10.12	10.12	11.858	11.858
			1.15E-	1.98E-	4.24E-	4.54E-				
2	0	0	03	03	03	03	10.038	10.038	11.734	11.734
						1.57E-				
3	0	0	0	0	0	03	7.4	7.4	8.5872	8.5872
		2.24E-	2.72E-	3.48E-	4.76E-	6.73E-				
4	0	03	03	03	03	03	9.3374	9.3374	10.782	10.782
		3.27E-	2.79E-	3.14E-	4.01E-	5.35E-				
5	0	04	03	03	03	03	10.254	10.254	11.928	11.928
	11	12	13	14	15	16	17	18	19	20
1	28.641	28.641	31.194	31.194	54.991	54.991	57.866	57.866	89.171	89.171
2	28.408	28.408	30.898	30.898	54.544	54.544	57.344	57.344	88.448	88.448
3	20.943	20.943	22.683	22.683	40.212	40.212	42.161	42.161	65.212	65.212
4	26.426	26.426	28.541	28.541	50.742	50.742	53.104	53.104	82.294	82.294
5	29.019	29.019	31.475	31.475	55.719	55.719	58.474	58.474	90.358	90.358

Şekil 4.25. İki tarafı ankastre mesnetlenmiş konik kabuğun ilk 20 mod şekli

Şekil 4.25'in devamı

	Mod Numarası									
Malzeme	1	2	3	4	5	6	7	8	9	10
1	371.63	371.63	444.93	444.93	494.58	494.58	602.65	602.65	669.77	669.77
2	367.73	367.73	440.92	440.92	488.35	488.35	597.52	597.52	663.31	663.31
3	269.13	269.13	324.19	324.19	355.01	355.01	440.04	440.04	486.74	486.74
4	337.90	337.90	408.35	408.35	443.65	443.65	554.94	554.94	612.28	612.28
5	373.83	373.83	449.61	449.61	494.26	494.26	609.94	609.94	675.49	675.49
	11	12	13	14	15	16	17	18	19	20
1	703.7	703.72	813.31	813.34	817.67	817.71	866.98	866.98	955.68	955.72
2	695.8	695.82	806.71	806.73	810.49	810.53	854.88	854.88	946.05	946.09
3	508.05	508.06	594.9	594.92	596.37	596.4	618.83	618.83	693.29	693.32
4	612.31	636.88	636.89	751.03	751.06	751.65	751.69	771.01	771.01	871.35
5	706.26	706.28	824.2	824.22	826.87	826.91	862.8	862.8	962.58	962.62

Çizelge 4.40. İki tarafı ankastre mesnetlenmiş konik kabuğun ilk 20 mod için modal analiz değerleri (Hz) (R1=20cm. R2=40cm. h=1cm. L=120cm)

Çizelge 4.41. İki tarafı ankastre mesnetlenmiş konik kabuğun ilk 20 mod için modal analiz değerleri (Hz) (R1=20cm. R2=40cm. h=0.5cm. L=120cm)

	Mod Numarası									
Malzeme	1	2	3	4	5	6	7	8	9	10
1	285.71	285.71	311.48	311.48	351.07	351.07	456.08	456.08	483.22	483.22
2	282.93	283.93	307.88	307.88	347.95	347.95	452.23	452.23	477.04	477.04
3	207.53	207.53	224.52	224.52	255.94	255.94	333.12	333.12	346.35	346.35
4	260.96	260.96	281.17	281.17	322.48	322.48	420.19	420.19	432.39	432.39
5	288.05	288.05	312.25	312.25	354.91	354.91	461.69	461.19	482.41	482.41
	11	12	13	14	15	16	17	18	19	20
1	509.38	509.41	515.28	515.34	598.16	598.26	621.13	621.25	648.83	648.83
2	503.84	503.87	510.36	510.42	593.4	593.5	615.63	615.76	641.05	641.06
3	368.26	368.29	374.6	374.64	437.88	437.96	452.92	453.01	466.88	466.88
4	461.95	461.99	471.3	471.35	553.13	553.22	570.82	570.93	584.15	584.15
5	511.77	511.8	519.83	519.89	606.51	606.61	628.01	628.13	649.61	649.61

Mod 8

Şekil 4.26. İki tarafı serbest konik kabuğun ilk 20 mod şekli

Mod 19

Mod 20

Şekil 4.26'nın devamı

	Mod Numarası									
Malzeme	1	2	3	4	5	6	7	8	9	10
					5.30E-	7.07E-				
1	0	0	0	0	04	04	53.11	53.115	116.61	116.64
				4.90E-	8.38E-	1.07E-				
2	0	0	0	04	04	03	52.632	52.637	115.54	115.56
		1.61E-	3.97E-	5.43E-	6.84E-	8.61E-				
3	0	04	04	04	04	04	38.698	38.702	84.893	84.909
					3.17E-	9.40E-				
4	0	0	0	0	04	04	48.74	48.744	106.87	106.89
						5.48E-				
5	0	0	0	0	0	04	53.67	53.675	117.76	117.79
	11	12	13	14	15	16	17	18	19	20
1	143.09	143.1	257.46	257.48	295.53	295.56	402.58	402.61	441.62	441.65
2	141.81	141.82	255.11	255.12	292.91	292.93	398.87	398.9	437.67	437.7
3	104.28	104.28	187.45	187.47	215.43	215.44	293.04	293.07	321.83	321.85
4	131.34	131.35	235.98	236	271.37	271.38	368.87	368.89	405.36	405.38
5	144.62	144.63	260.04	260.05	298.75	298.77	406.53	406.57	446.34	446.36

Çizelge 4.42. İki tarafı serbest konik kabuğun ilk 20 mod için modal analiz değerleri (Hz) (R1=20cm. R2=40cm. h=1cm. L=120cm)

Çizelge 4.43. İki tarafı serbest konik kabuğun ilk 20 mod için modal analiz değerleri (Hz) (R1=20cm. R2=40cm. h=0.5cm. L=120cm)

					Mod N	umarası				
Malzeme	1	2	3	4	5	6	7	8	9	10
					1.13E-	2.05E-				
1	0	0	0	0	03	03	27.01	27.01	59.826	59.861
				4.95E-	9.61E-	2.07E-				
2	0	0	0	04	04	03	26.77	26.77	59.283	59.317
				4.47E-	1.07E-	1.19E-				
3	0	0	0	04	03	03	19.689	19.689	43.576	43.602
			6.06E-	1.51E-	1.81E-	2.31E-				
4	0	0	04	03	03	03	24.805	24.805	54.877	54.909
					1.27E-	1.80E-				
5	0	0	0	0	03	03	27.304	27.304	60.441	60.476
	11	12	13	14	15	16	17	18	19	20
1	74.11	74.113	135.61	135.61	161.07	161.11	209.91	209.92	259.38	259.43
2	73.468	73.471	134.42	134.42	159.67	159.71	208.07	208.08	257.06	257.11
3	54.073	54.074	98.899	98.903	117.51	117.54	153.09	153.09	189.02	189.06
4	68.153	68.154	124.62	124.63	148.1	148.14	192.91	192.91	238.07	238.12
5	74.967	74.97	137.13	137.14	162.92	162.97	212.27	212.28	262.15	262.2

Son olarak Şekil 4.27'de farklı sınır koşulları için konik kabuğa ait mod şekilleri ve frekans değerleri sunulmuştur. Kullanılan parametreler: E=211 GPa; v= 0.3; ρ = 7800 kg/m^3 ; $R_2=1 \text{ m}$; $h/R_2=0.01$; $\phi=45^\circ$; $Lsin(\phi)/R_2=0.5$.

Mode 3-4. 355 Hz. Mode 1-2. 343 Hz. Mode 5-6. 358 Hz. Mode 7-8. 394 Hz.

CC için mod şekilleri ve frekanslar:

Mode 9-10. 397 Hz.

Şekil 4.27. Farklı sınır koşulları altında konik kabuğun ilk 10 frekans değeri ve mod şekilleri

FC sınır koşulu için için mod şekilleri ve frekanslar:

Mode 1-2. 241 Hz.

Mode 3-4. 246 Hz.

Mode 5-6 . 277 Hz.

Mode 7-8. 316 Hz.

Mode 9-10. 328 Hz.

Şekil 4.27'nin devamı

SS için mod şekilleri ve frekanslar:

Mode 1-2. 318 Hz.

Mode 3-4. 330 Hz.

Mode 5-6. 334 Hz.

Mode 7-8. 370 Hz.

Mode 9-10. 374 Hz.

SC için mod şekilleri ve frekanslar:

Mode 1-2. 334 Hz.

Mode 3-4. 345 Hz.

Mode 5-6. 352 Hz.

Mode 7-8. 387 Hz.

Mode 9-10. 391 Hz.

Şekil 4.27'nin devamı

λ(rps)	Bu tez – ATK sonuçları								
	9×9	11×11	15×15	17×17	19×19				
0	0.49128	0.49132	0.49134	0.49134	0.49134				
1	0.47939	0.47941	0.47942	0.47942	0.47942				
2	0.49736	0.49739	0.49743	0.49744	0.49744				
5	0.55721	0.55725	0.55728	0.55730	0.55730				
8	0.69110	0.69115	0.69118	0.69121	0.69121				
10	0.79541	0.79547	0.79553	0.79558	0.79558				

Çizelge 4.44. Dönen izotrop konik kabuğun boyutsuz frekans değeri. Her iki uç basit mesnet $(\Omega = \omega R_2 \sqrt{\rho(1-\upsilon^2)/E})$ ($\upsilon=0.3$; $\alpha=45^\circ$; L/R₁=20; m=1; n=2; h/R₁=0.015)

Çizelge 4.45. Dönen izotrop konik kabuğun boyutsuz frekans değeri. Her iki uç basit mesnet ($\Omega = \omega R_2 \sqrt{\rho (1 - \upsilon^2)/E}$) ($\upsilon = 0.3$; $\alpha = 45^\circ$; L/R=20; m=1; n=2)

	ATK yöntemi (15*15)								
h/R	$\lambda(rps)$								
	2	4	6	8	10				
0.025	0.55973	0.67892	0.83154	1.0040	1.18864				
0.050	0.55975	0.67895	0.83160	1.0043	1.18865				
0.075	0.55980	0.67901	0.83184	1.0045	1.18867				
0.010	0.55986	0.67910	0.83205	1.0047	1.18869				

	Referans çalışmalar	Bu çalışma-FSDT					
			(N _s	=9)			
			p=10 - Ti-64	$Al-4V/Al_2O_3$			
Mod	Zhao ve Liew (2011)	N _x =13	N _x =15	N _x =17	N _x =19		
1	4.5618	4.5620	4.5620	4.5620	4.5620		
2	4.6887	4.6891	4.6891	4.6891	4.6891		
3	5.8063	5.8072	5.8072	5.8072	5.8072		
4	6.1414	6.1428	6.1425	6.1424	6.1425		
			p=10 - Ti-64	Al-4V/Al ₂ O ₃			
Mod	Zhao ve Liew (2011)	Nx=13	Nx=15	Nx=17	Nx=19		
1	3.4356	3.4359	3.4359	3.4359	3.4359		
2	3.5181	3.5186	3.5186	3.5186	3.5186		
3	4.3747	4.3755	4.3753	4.3753	4.3753		
4	4.6963	4.6973	4.6974	4.6972	4.6972		
			p=10 - Ti-64	Al-4V/Al ₂ O ₃			
Mod	Zhao ve Liew (2011)	Nx=13	Nx=15	Nx=17	Nx=19		
1	3.2521	3.2527	3.2527	3.2527	3.2527		
2	3.3248	3.3252	3.3252	3.3252	3.3252		
3	4.1425	4.1430	4.1430	4.1430	4.1430		
4	4.4596	4.4608	4.4605	4.4605	4.4605		

Çizelge 4.46 Dört kenar ankastre konik panelin Tip-II FGM için frekans $(\Omega_1 = \omega L^2 \sqrt{\rho / Eh^2} / 2\pi)$ değerleri (L/R₁=2.5. h/R₁=0.025. φ =45. α =120)

h/L	Referans	Bu çalışma ATK (N _x =17) (Love kabuki teorisi)				
	Flügge kabuk teorisi(Soldatos ve Hadjigeorgiou 1990)	3-D teori (Soldatos ve Hadjigeorgiou 1990)	Zhao vd. (2003)	N _s = 7	N _s =9	N _s = 11
0.1	0.7207	0.7001	0.7144	0.7138	0.7138	0.7138
0.15	-		-	1.0378	1.0376	1.0376
0.2	1.3448	1.2033	1.3330	1.3318	1.3315	1.3315
0.3	1.9803	1.5947	1.9552	1.9546	1.9544	1.9543

Çizelge 4.47 Dört kenarı basit mesnetli dairesel silindirik panelin frekans $(\Omega = \omega L \sqrt{\rho(1+v)/E})$ değerleri (L/b=1. v=0.3. α =30⁰)

Çizelge 4.48 Kenarları ankastre izotropik dairesel panellerin boyutsuz frekanslarının $(\Omega = \omega R \sqrt{\rho/E})$ karşılaştırılması (L/R =1.5. h/R =0.01. R=2m. α =90⁰. E=210 GPa. ρ =7800 kg/m³. υ =0.3)

Refe	erans çalışma	ATK Sonuçları – FSDT (N _s =11)					
Mod	Ye vd. (2014)	N _x =13	N _x =15	N _x =17	N _x =19		
1	0.26105	0.2593	0.2593	0.2593	0.2593		
2	0.26541	0.2618	0.2617	0.2617	0.2617		
3	0.39134	0.3877	0.3875	0.3875	0.3875		
4	0.40213	0.3997	0.3994	0.3994	0.3994		
5	0.41515	0.4110	0.4109	0.4108	0.4108		

Çizelge 4.49 Kenarları basit mesnetli Tip – IV FDM dairesel silindirik panellerin boyutsuz doğal frekanslarının ($\Omega_1 = \omega L^2 \sqrt{\rho / Eh^2}$) karşılaştırılması (L=1 m. L/R =0.5. E_c=151 GPa. υ_c =0.3. ρ_c =3000 kg/m³. E_m=70 GPa. υ_m =0.3. ρ_m =2707 kg/m³)

Refe	Referans çalışma		ATK Sonuçları – FSDT (N _x =15)						
р	Su vd. (2014)	$N_s=5$	$N_s=7$	$N_s=9$	$N_s=11$				
1		-	-	-	-				
0	6.1552	6.1496	6.1385	6.1384	6.1384				
-									
0.5	5.5522	5.5398	5.5281	5.5279	5.5279				
2	5.0812	5.0467	4,9973	4,9973	4.9973				
5	4.9032	4.9035	4.8867	4.8865	4.8865				
_									
10	4.7700	4.7701	4.7519	4.7518	4.7518				

Çizelge 4.50 İki kenarından serbest ve iki kenarından ankastre mesnetli karbon nanotüp takviyeli silindirik panellerin boyutsuz frekansları ($\Omega_1 = \omega L^2 \sqrt{\rho / Eh^2}$; L/R=0.5. h/R=0.05. V_{CNT}=0.11. UD)

Refe	erans çalışma	ATK Sonuçları – FSDT (N _s =9)				
Modes	Lei vd. (2015)	N _x =13	N _x =15	N _x =17	N _x =19	
1	42.4617	41.5863	41.5863	41.5863	41.5863	
2	28.5687	27.9307	27.9305	27.9305	27.9305	
3	77.2751	75.1987	75.1982	75.1982	75.1982	
4	88.8374	86.4941	86.4937	86.4937	86.4937	
5	110.1171	108.0564	108.0543	108.0364	108.0364	

Çizelge 4.51 Kenarları basit mesnetli tabakalı dairesel silindirik panellerin boyutsuz temel frekanslarının ($\Omega_1 = \omega L^2 \sqrt{\rho / Eh^2}$) karşılaştırılması (R/L=100; E₁/E₂=25; G₁₂/E₂=0.5. v =0.25)

		HDQ Sonuçları – FSDT (N _s =11)							
L/h	Tabakalanma düzeni	Reddy ve Liu (1985)	N _x =11	N _x =13	N _x =15	N _x =17			
10	0/90	8.8974	8.9041	8.9036	8.9035	8.9035			
	0/90/0	12.163	12.1714	12.1710	12.1704	12.1704			
	0/90/90/0	12.227	12.2476	12.2476	12.2476	12.2476			
100	0/90	9.7108	9.7264	9.7255	9.7253	9.7253			
	0/90/0	15.198	15.2014	15.2005	15.2002	15.2002			
	0/90/90/0	15.199	15.2103	15.2034	15.2018	15.2018			

Çizelge 4.52 Kenarları basit mesnetli Tip – II FDM (Al/ZrO₂) dairesel silindirik panellerin ilk beş mod boyutsuz frekanslarının $(\Omega_1 = \omega L^2 \sqrt{\rho / Eh^2})$ karşılaştırılması (p= 5)

			ATK S	onuçları-FSD	T (N _s =9)	
h/R	Mod	N _x =9	N _x =11	N _x =13	N _x =15	N _x =17
	1	6.3786	6.3783	6.3781	6.3781	6.3781
	2	15.2644	15.2642	15.2639	15.2639	15.2639
0.0100	3	15.1820	15.1818	15.1816	15.1814	15.1814
	4	20.6995	20.6987	20.6985	20.6983	20.6983
	1	6.6193	6.6191	6.6189	6.6189	6.6189
0.0050	2	16.1027	16.1023	16.1021	16.1021	16.1021
	3	16.2846	16.2842	16.2841	16.2840	16.2840
	4	25.4008	25.4001	25.3997	25.3997	25.3997
	1	6.9388	6.9385	6.9385	6.9385	6.9385
0.0025	2	16.3509	16.5302	16.5301	16.5301	16.5301
	3	16.8950	16.8939	16.8936	16.8936	16.8936
	4	25.8324	25.8315	25.8312	25.8312	25.8312
	1	7.1042	7.1036	7.1036	7.1036	7.1036
0.0020	2	16.6410	16.6404	16.6402	16.6402	16.6402
	3	17.0068	17.0056	17.0054	17.0054	17.0054
	4	26.3601	26.3582	26.3579	26.3579	26.3579

	ATK Sonuçları-FSDT							
	BBBB Mesnetli							
p	11×7	13×9	15×9	17×9				
0	7.9685	7.9513	7.9513	7.9513				
0.2	7.5581	7.5408	7.5408	7.5408				
1	6.8209	6.8072	6.8072	6.8072				
2	6.6574	6.6413	6.6413	6.6413				
10	5.2316	5.2177	5.2177	5.2177				
		AAAA	Mesnetli					
р	11×7	13×9	15×9	17×9				
0	13.8003	13.6882	13.6881	13.6881				
0.2	13.1054	12.9916	12.9914	12.9914				
1	11.8826	11.7687	11.7685	11.7685				
2	11.6278	11.5035	11.5033	11.5033				
10	10.7419	10.6310	10.6308	10.6308				

Çizelge 4.53 Tip – II FDM (Al/ZrO₂) silindirik panellerin boyutsuz temel frekansları $(\Omega = \omega L^2 \sqrt{\rho / Eh^2})(L/b=1. L/R = 0.1. h/R=0.01)$

	L/b=1					
Mod	11×9	13×9	15×9	15×11		
1	57.8805	57.8791	57.8791	57.8791		
2	112.7178	112.7174	112.7174	112.7174		
3	113.0754	113.0314	113.0313	113.0313		
4	159.9137	159.8560	159.8557	159.8557		
		L/	′b=2			
Mod	11×9	13×9	15×9	15×11		
1	138.9401	138.9365	138.9365	138.9365		
2	177.0310	177.0284	177.0284	177.0284		
3	239.9004	239.8943	239.8941	239.8941		
4	309.9782	309.9767	309.9763	309.9763		

Çizelge 4.54 Kenarları ankastre Tip – II FDM (Si₃N₄/SUS3O4) silindirik panellerin ilk dört mod boyutsuz frekansları ($\Omega = \omega L^2 \sqrt{\rho h / D}$)(p=0.2. L/R=0.1. L/h=10)

Çizelge 4.55 Kenarları ankastre mesnetli Tip – III FDM dairesel panellerin (R/L=0.5; R=1m; h/R=0.1m) frekans değerleri (Hz)

$(E_c=168 \text{ GPa. } \upsilon_c=0.3. \rho_c=5700 \text{ kg/m}^3. E_m=70 \text{ GPa. } \upsilon_m=0.3. \rho_m=2707 \text{ kg/m}^3.$	$/m^3$)
---	----------

	ATK Sonuçları-FSDT						
φ	Üstel İndeks	13×9	15×9	15×11			
	р						
	0.5	889.1360	889.1352	889.1352			
	1	891.7551	891.7547	891.7547			
60	2	889.6844	889.6843	889.6843			
	5	887.9362	887.9358	887.9358			
	20	875.3643	875.3640	875.3640			
	0.5	494.8342	494.8341	494.8341			
	1	490.7506	490.7504	490.7504			
120	2	492.8349	492.8347	492.8347			
	5	495.1237	495.1236	495.1236			
	20	487.0684	487.0683	487.0683			

			р				
Mod	$N_x imes N_s$	0	0.5	1	10		
1	11×7	16.2469	14.4903	13.9496	12.6341		
	13×7	16.2448	14.4897	13.9490	12.6335		
	13×9	16.2448	14.4897	13.9490	12.6335		
	15×9	16.2448	14.4897	13.9490	12.6335		
2	11×7	30.7850	27.6941	26.4115	24.1576		
	13×7	30.7846	27.6934	26.4113	24.1573		
	13×9	30.7846	27.6934	26.4113	24.1571		
	15×9	30.7846	27.6934	26.4113	24.1571		
3	11×7	31.4027	28.2704	26.9625	24.5314		
	13×7	31.4011	28.2697	26.9510	24.5308		
	13×9	31.4008	28.2693	26.9508	24.5303		
	15×9	31.4008	28.2692	26.9508	24.5301		
4	11×7	45.2641	40.7110	38.8043	35.3912		
	13×7	45.2630	40.7098	38.8035	35.3901		
	13×9	45.2625	40.7095	38.8028	35.3897		
	15×9	45.2622	40.7095	38.8026	35.3894		

Çizelge 4.56 Kenarları ankastre Tip – II FDM silindirik panellerin boyutsuz frekanslarının ($\Omega = \omega L^2 \sqrt{\rho / Eh^2}$) karşılaştırılması (L/b=1. L/R =0.1. h/R=0.002)

		ATK (N _x =15)				
р	R/L	FSDT	FSDT	FSDT	Love Kabuk	
		(N _s =7)	(N _s =9)	(N _s =11)	Teorisi	
					(N _s =11)	
0	0.5	133.7932	133.7806	133.7805	137.1162	
	1	95.8923	95.8912	95.8912	98.0341	
	10	72.3690	72.3683	72.3683	75.0038	
	50	72.1467	72.1467	72.1467	74.9886	
0.5	0.5	110.8863	110.8836	110.8836	114.2834	
	1	80.2079	80.2024	80.2024	85.1632	
	10	59.8648	59.8637	59.8637	63.0187	
	50	59.4896	59.4891	59.4891	62.9980	
1	0.5	97.0103	97.0089	97.0089	99.1283	
	1	71.8139	71.8128	71.8128	74.8610	
	10	52.9920	52.9913	52.9913	56.9302	
	50	52.3078	52.3077	52.3077	56.1864	
10	0.5	72.0345	72.0322	72.0321	75.1058	
	1	52.1091	52.1083	52.1083	55.8147	
	10	39.8155	39.8152	39.8152	43.5580	
	50	39.6984	39.6984	39.6984	43.0138	

Çizelge 4.57 Kenarları ankastre Tip – II FDM (Si₃N₄/SUS3O4) silindirik panellerin boyutsuz frekanslarının ($\Omega = \omega L^2 \sqrt{\rho h/D}$) karşılaştırılması (h/L=0.1)

		Bu tez – ATK Sonuçları				
CNT Konfigürasyonu ve hacim fraksiyonu	Mod	13×9	15×9	15×11	17×9	
	1	41.4558	41.4556	41.4556	41.4556	
	2	42.2837	42.2837	42.2834	42.2834	
FG-X	3	60.2379	60.2375	60.2371	60.2371	
	1	39.3605	39.3603	39.3603	39.3603	
	2	40.0186	40.0185	40.0185	40.0185	
UD	3	56.7047	56.7044	56.7042	56.7042	
	1	37.8142	37.8140	37.8140	37.8140	
	2	39.1263	39.1260	39.1259	39.1258	
FG-A	3	56.0017	56.0013	56.0013	56.0013	
	1	36.0790	36.0788	36.0788	36.0787	
FGO	2	36.4014	36.4012	36.4012	36.4012	
	3	54.8578	54.8571	54.8570	54.8569	

Çizelge 4.58 Kenarları basit mesnetli CNT takviyeli dairesel silindirik panellerin boyutsuz frekans ($\Omega = \omega L^2 \sqrt{\rho / Eh^2}$) değerleri (R/h=20. L/b=1. L/ R= 1. V_{CN}=0.17)

		Bu tez – A	ATK sonuçl	arı (N _x =15)	
V _{CN}	Mod	Mirzaei			
		ve Kiani	N _s =7	N _s =9	$N_s=11$
		(2016)			
0.12	1	32.3134	32.3075	32.3075	32.3075
	2	32.6868	32.6719	32.6719	32.6719
	3	45.4421	45.4388	45.4386	45.4386
	4	57.5570	57.5307	57.5302	57.5302
0.17	1	41.3499	41.3487	41.3487	41.3487
	2	42.0579	42.0491	42.0491	42.0491
	3	59.0921	59.0784	59.0783	59.0783
	4	73.7120	73.7001	73.6894	73.6894
0.28	1	45.7199	45.7186	45.7186	45.7186
	2	46.8451	46.8450	46.8448	46.8448
	3	65.6277	65.6255	65.6253	65.6253
	4	81.0748	81.0596	81.0592	81.0592

Çizelge 4.59 Kenarları ankastre mesnetli dairesel silindirik panellerin boyutsuz frekans $(\Omega = \omega L^2 \sqrt{\rho / Eh^2})$ değerleri (L/R =1. h/R =0.05. L/b=1; FG-X)

Çizelge 4.60 Kenarları ankastre mesnetli dairesel silindirik panellerin ilk beş mod boyutsuz frekans ($\Omega = \omega L^2 \sqrt{\rho / Eh^2}$) değerleri (L/R =1. h/R =0.05. L/b=1; V_{CN}=0.28. N_x=15. N_s=9)

Bu tez – ATK sonuçları (FSDT)						
Mod	FG-X	FG-A	FG-V	UD		
1	45.7186	41.8684	41.5102	42.7413		
2	46.8448	42.2691	42.2688	42.9986		
3	65.6253	60.1493	60.1469	59.7035		
4	81.0592	75.2186	75.2073	76.4287		
5	82.5865	76.4597	76.4514	77.4402		
	Bu te	z – HDQ sonuçlar	rı (FSDT)			
Mod	FG-X	FG-A	FG-V	UD		
1	45.7253	41.8693	41.5108	42.7418		
2	46.8461	42.2706	42.2697	42.9994		
3	65.6270	60.1502	60.1477	59.7048		
4	81.0601	75.2198	75.2089	76.4301		
5	82.5874	76.4610	76.4525	77.4426		

		Bu tez – HDQ sonuçları				
Mod	Sınır Şart	FG-O	FG-V	UD	FG-X	
1	SSSS	24.1503	26.9017	27.0411	29.5538	
	CCCC	35.6629	37.2184	39.1085	41.3487	
	SCSF	15.8783	19.4056	19.9188	22.7843	
2	SSSS	28.3158	30.4815	30.6984	32.8793	
	CCCC	35.9622	38.0793	39.5162	42.0491	
	SCSF	22.2096	24.6781	25.0541	27.4115	
3	SSSS	39.5271	42.4512	41.9976	44.8039	
	CCCC	52.7593	55.2318	55.9603	59.0783	
	SCSF	29.6175	32.4866	32.5514	35.1986	
4	SSSS	54.4835	58.0526	62.8543	65.8691	
	CCCC	64.2289	66.9287	69.9821	73.6894	
	SCSF	46.7931	50.4803	50.2775	53.4592	

Çizelge 4.61 Farklı sınır şartlara sahip dairesel silindirik panellerin boyutsuz frekans $(\Omega = \omega L^2 \sqrt{\rho / Eh^2})$ değerleri(L/R =1. h/R =0.05. L/b=1; V_{CN}=0.28. N_x=15. N_s=9)

Çizelge 4.62 İzotropik içi boş dairesel plakların boyutsuz temel frekanslarının $(\varOmega=\omega R_2^2 \sqrt{\rho h/D}$) karşılaştırılması (h/R2 =0.1)

R ₁ /R ₂	Referans s	sonuçları	Bu çalışma – ATK Sonuçları (RSD Kernel)			
	Lin ve Teng (1988)	Han ve Liew (1994)	7×7	9×7	9×9	11×11
0.1	24.480	24.629	24.6158	24.6145	24.6139	24.6137
0.3	38.621	39.398	39.3815	39.3804	39.3801	39.3801
0.5	67.934	70.277	70.2721	70.2714	70.2714	70.2715
R ₁ /R ₂	Referans sonuçları		Bu çalışma – ATK Sonuçları (RSD Kerr			O Kernel)
	Lin ve Teng (1988)	Han ve Liew (1994)	7×7	9×7	9×9	11×11
0.1	24.480	24.629	24.6162	24.6142	24.6142	24.6143
0.3	38.621	39.398	39.3824	39.3811	39.3810	39.3810
0.5	67.934	70.277	70.2726	70.2723	70.2723	70.2723

Çizelge 4.63 Kenarları ankastre mesnetli tabakalı içi boş dairesel plakların (0/90) boyutsuz frekans ($\Omega = \omega R_i \sqrt{\rho h / A_{11}}$) değerlerinin karşılaştırılması ($R_1/R_2=0.5$. $h/R_1=$ 0.05; $R_i=R_2-R_1$)

	Referans çalışma	Bu çalışma – ATK Sonuçları (LDS Kernel)			
Mod	Viswanathan vd. (2009)	9×7	9×9	11×9	
1	0.33597	0.33590	0.33593	0.33593	
2	0.33917	0.33931	0.33924	0.33924	
3	0.34644	0.34660	0.34658	0.34658	

Çizelge 4.64 Kenarları ankastre mesnetli tabakalı içi boş dairesel plakların (0/90/0/90) boyutsuz frekans ($\Omega = \omega R \sqrt{\rho / E_2 h^2}$) değerlerinin karşılaştırılması (h/ R =0.2)

	Referans çalışma	Bu çalışma – ATK Sonuçları (LDS Kernel)				
Mod	Wang vd. (2016)	9×9	11×11	13×11		
1	6.873	6.8538	6.8538	6.8538		
2	10.545	10.5374	10.5376	10.5376		
3	14.764	14.7483	14.7481	14.7482		
4	14.839	14.8208	14.8204	14.8204		
5	17.063	17.0020	17.0015	17.0016		

	Referans sonuçları	Bu çalışma – ATK Sonuçları (RSD Kernel)			
Koni açısı α	Jin vd. (2014)	7×7	9×9	13×9	
15	0.3182	0.3193	0.3186	0.3186	
45	0.4575	0.4588	0.4581	0.4580	
60	0.4898	0.4912	0.4903	0.4903	
75	0.4994	0.5001	0.4995	0.4992	

Çizelge 4.65 Kenarları ankastre mesnetli tabakalı konik kabukların (0/90/0) boyutsuz temel frekans ($\Omega = \omega R_1 \sqrt{\rho h / A_{11}}$) değerlerinin karşılaştırılması

Çizelge 4.66 Kenarları basit mesnetli tabakalı içi boş dairesel plakların (0/90/0) boyutsuz frekans ($\Omega = \omega R_i \sqrt{\rho h / A_{11}}$) değerleri (h/R₁ = 0.05)

		Bu çalışma – ATK Sonuçları (RSD Kernel)				
Mod	R1/R2	N=9	N=11	N=13	N=15	
1		0.18047	0.18047	0.18047	0.18047*	
2		0.18566	0.18563	0.18563	0.18563	
3	0.5	0.19645	0.19642	0.19642	0.19642	
4		0.21511	0.21507	0.21507	0.21509	
5		0.24308	0.24304	0.24304	0.24304	
Mod	R1/R2	N=9	N=11	N=13	N=15	
1		0.56951	0.56951	0.56951	0.56951**	
2		0.57138	0.57138	0.57138	0.57138	
3	0.8	0.57467	0.57463	0.57463	0.57464	
4		0.57910	0.57903	0.57903	0.57903	
5		0.58556	0.58548	0.58547	0.58547	

Çizelge 4.67 İki kenarı basit ve iki kenarı ankastre mesnetli tabakalı içi boş dairesel plakların (0/90/0/90) boyutsuz temel frekans ($\Omega = \omega R_i^2 \sqrt{\rho / E_2 h^2}$) değerleri ($R_1/R_2 = 0.4$. E₂=10 GPa. G₁₂=G₁₃=6 GPa. G₂₃=5 GPa. v₁₂=0.25. ρ =1500 kg/m³)

	Bu çalışma – ATK sonuçları					
h/R ₁	9×9	11×11	13×13	15×15		
0.01	24.9806	24.9803	24.9803	24.9803		
0.05	16.7618	16.7615	16.7615	16.7615		
0.1	10.3428	10.3428	10.3428	10.3428		
0.15	7.9641	7.9639	7.9639	7.9639		
0.2	5.8167	5.8167	5.8167	5.8167		

Çizelge 4.68 Kenarları ankastre mesnetli tabakalı içi boş dairesel plakların (0/90/0/90) boyutsuz temel frekans ($\Omega = \omega R_i^2 \sqrt{\rho / E_2 h^2}$) değerleri (R₁/R₂ =0.2. E₂=10 GPa. G₁₂=G₁₃=6 GPa. G₂₃=5 GPa. v₁₂=0.25. ρ =1500 kg/m³)

	Bu çalışma – ATK sonuçları					
h/R ₁	9×9	11×11	13×13	15×15		
0.01	37.53854	37.53854	37.53854	37.53854		
0.05	24.98933	24.98932	24.98932	24.98932		
0.1	15.16917	15.16917	15.16917	15.16917		
0.15	10.41070	10.41066	10.41066	10.41066		
0.2	8.10786	8.10785	8.10785	8.10785		

Çizelge 4.69 Kenarları ankastre mesnetli tabakalı içi boş dairesel plakların (0/90/0/90) boyutsuz temel frekans ($\Omega = \omega R_i^2 \sqrt{\rho / E_2 h^2}$) değerleri ($R_1/R_2=1/3$. h/ R_1 =0.1. E₁=150 GPa. E₂=10 GPa. G₁₂=G₁₃=6 GPa. G₂₃=5 GPa. v₁₂=0.25. ρ =1500 kg/m³)

Mod	DSC-RSD kernel			DS	C-LDS kern	el
	9×9	11×9	11×11	9×9	11×9	11×11
1	0.41607	0.41607	0.41607	0.41610	0.41610	0.41610
2	0.41648	0.41648	0.41648	0.41650	0.41650	0.41650
3	0.42689	0.42689	0.42689	0.42687	0.42687	0.42687
4	0.46921	0.46921	0.46921	0.46923	0.46924	0.46924
5	0.54943	0.54943	0.54943	0.54940	0.54942	0.54942

Çizelge 4.70 İki kenarı basit iki kenarı ankastre mesnetli tabakalı içi boş dairesel plakların (0/90/0/90) boyutsuz temel frekans ($\Omega = \omega R_i \sqrt{\rho h / A_{11}}$) değerleri (h/R₁=0.2. E₁=400 GPa. E₂=10 GPa. G₁₂=G₁₃=6 GPa. G₂₃=5 GPa. v₁₂=0.25. ρ =1500 kg/m³)

	Referans çalışma	Bu çalışma – ATK sonuçları			
R_1/R_2	Wang vd. (2016)	9×9	11×9	11×11	
0.2	6.97945	6.98035	6.98035	6.98035	
0.4	5.81407	5.81673	5.81671	5.81671	
0.6	-	3.99014	3.99012	3.99012	
0.8	2.12450	2.13081	2.13079	2.13079	

T 1 1		Bu çalışma – ATK sonuçları				
l abaka sirasi	Mod	9×9	13×11	13×13	15×15	
	1	0.33598	0.33598	0.33599	0.33597	
Cam/epoksi	2	0.33928	0.33928	0.33928	0.33928	
0/90	3	0.34670	0.34667	0.34667	0.34667	
	4	0.36015	0.36011	0.36011	0.36011	
	5	0.38318	0.38315	0.38315	0.38315	
	1	0.27648	0.27648	0.27648	0.27648	
Cam/epoksi	2	0.27899	0.27897	0.27897	0.27897	
0/90/0/90	3	0.28496	0.28493	0.28493	0.28493	
Grafit/Epoksi	4	0.29709	0.29706	0.29706	0.29706	
	5	0.31811	0.31808	0.31808	0.31808	

Çizelge 4.71 İki kenarı ankastre mesnetli tabakalı içi boş dairesel plakların (0/90/0/90) ilk beş mod boyutsuz frekans ($\Omega = \omega R_i \sqrt{\rho h / A_{11}}$) değerleri ($R_1 / R_2 = 0.5$. h/ $R_1 = 0.05$)

Çizelge 4.72 Tabakalı içi boş dairesel plakların (0/90/0) frekans) değerleri (h/R₂ =0.2. $R_1/R_2=0.5$. $E_1=400$ GPa. $E_2=10$ GPa. $G_{12}=G_{13}=6$ GPa. $G_{23}=5$ GPa. $v_{12}=0.25$. $\rho=1500$ kg/m³)

	Bu çalışma – ATK sonuçları					
Mod	9×7	9×9	11×9	11×11		
1	5.15278	5.15274	5.15274	5.15274		
2	5.19105	5.19102	5.19102	5.19103		
3	5.40390	5.40386	5.40386	5.40386		
4	5.88149	5.88147	5.88147	5.88147		
5	6.19276	6.19273	6.19273	6.19274		

Çizelge 4.73 Tabakalı içi boş dairesel plakların (0/90/0) ilk beş mod boyutsuz frekans $(\Omega = \omega R^2 \sqrt{\rho / E_2 h^2})$ değerleri (h/R₂ =0.2. E₁=400 GPa. E₂=10 GPa. G₁₂=G₁₃=6 GPa. G₂₃=5 GPa. v₁₂=0.25. ρ =1500 kg/m³)

	ATK Sonuçları					
Mod	11×11 13×13		9×9	11×11		
1	6.8698	6.8698	3.1612	3.1612		
2	10.5371	10.5371	8.5081	8.5081		
3	14.7483	14.7483	8.6543	8.6543		
4	14.8116	14.8116	12.1207	12.1207		
5	17.0014	17.0014	14.8419	14.8419		

Çizelge 4.74 Kenarları ankastre mesnetli Tip-IV (a=0/b=-0.5/c=2/p) FDM içi boş dairesel plakların frekans değerleri (Hz) (R₁/R₂=0.25. h/R₁=0.20. E_m =70 GPa. ρ_m =2707 kg/m³. v=0.3. E_c =168 GPa. ρ_c =5700 kg/m³)

	Referans Çalışma	Bu çalışma – ATK sonuçları (LDS Kernel)			
р	Su vd. (2014)	11×7	11×7 11×9		
0.5	246.54	245.8694	245.8692	245.8692	
5	236.14	234.9039	234.9035	234.9035	
20	244.28	242.0371	242.0367	242.0367	

Çizelge 4.75 Tabakalı içi boş dairesel plakların (0/90/0/90) ilk beş mod boyutsuz frekans ($\Omega = \omega R_1 \sqrt{\rho h / A_{11}}$) değerleri (R₂/ R₁=3. h/R₁=0.1. E₁=150 GPa. E₂=10 GPa. G₁₂=G₁₃=6 GPa. G₂₃=5 GPa. v₁₂=0.25. ρ =1500 kg/m³)

		Bu çalışma – ATK sonuçları			
Mod	Sınır Şart	11×11	13×13	15×15	
1		0.21684	0.21684	0.21684	
2		0.21853	0.21853	0.21853	
3	BBBB	0.23917	0.23917	0.23917	
4		0.30476	0.30476	0.30476	
5		0.41075	0.41072	0.41072	
1		0.41607	0.41607	0.41607	
2		0.41648	0.41648	0.41648	
3	AAAA	0.42689	0.42689	0.42689	
4		0.46921	0.46920	0.46920	
5		0.54943	0.54940	0.54941	

Çizelge 4.76 Kenarları basit mesnetli Tip-III (a=0/b=-0.5/c=2/p) FDM içi boş dairesel plakların frekans değerleri (Hz) (R₁/R₂=0.25. E_m =70 GPa. ρ_m =2707 kg/m³. v=0.3. E_c =168 GPa. ρ_c =5700 kg/m³)

р	h/R ₂ =0.005			h/R ₂ =0.05		
	9×9	11×9	11×11	9×9	11×9	11×11
0.5	11.9865	11.9865	11.9865	118.0315	118.0315	118.0315
5	11.8541	11.8543	11.8543	116.8803	116.8802	116.8802
20	12.4175	12.4178	12.4178	121.9315	121.9314	121.9314

Çizelge 4.77 Kenarları ankastre mesnetli dört parametreli Tip-III (a=1/b/c/p) FDM tabakalı içi boş dairesel plakların (0/90/0/90) ilk beş mod boyutsuz frekans $(\Omega = \omega R_2^2 \sqrt{\rho h/D})$ değerleri (R₁/R₂ =0.5. h/R₂=0.05. *E_m*=70 GPa. ρ_m =2707 kg/m³. υ =0.3. *E_c*=380 GPa. ρ_m =3800 kg/m³)

Bu çalışma – ATK sonuçları					
р	9×9	11×11	13×13	15×15	
0	93.5080	93.5078	93.5078	93.5078	
0.5	91.7535	91.7533	91.7533	91.7533	
1	89.1082	89.1082	89.1082	89.1082	
5	92.9308	92.9306	92.9306	92.9306	
10	92.0356	92.0354	92.0354	92.0354	
20	91.6373	91.6371	91.6371	91.6371	

Çizelge 4.78 İki kenarı ankastre mesnetli iki kenarı serbest Tip-II FDM içi boş dairesel plakların boyutsuz frekans ($\Omega = \omega R_2^2 \sqrt{\rho h/D}$) değerleri R₂/R₁ =0.25. h/R₂=0.5. *E_m*=70 GPa. ρ_m =3800 kg/m³. v=0.3. *E_c*=380 GPa)

Bu çalışma –	Üstel İndeks			
ATK sonuçları	p=1	p=3	p=5	
9×7	2.3791	2.5868	2.9363	
9×9	2.3785	2.5871	2.9365	
11×11	2.3785	2.5871	2.9365	
13×11	2.3785	2.5871	2.9365	

Çizelge 4.79 Kenarları ankastre mesnetli Tip-III (a=1/b=0/c=0/p) FDM içi boş dairesel plakların boyutsuz temel frekans ($\Omega = \omega R_2^2 \sqrt{\rho h/D}$) değerleri (R₂/R₁ =0.25. h/R₂=0.5. *E_m*=70 GPa. ρ_m =3800 kg/m³. v=0.3. *E_c*=380 GPa)

	Üstel İndeks			
Mod	p=1	p=3	p=5	
1	8.3291	10.0065	10.2781	
2	9.6785	11.0561	12.3476	
3	13.7463	16.0183	18.1984	
4	14.8610	17.1059	18.6332	
5	15.5461	17.8963	19.6738	

Çizelge 4.80 Kenarları basit mesnetli Tip-I FDM içi boş dairesel plakların boyutsuz frekans ($\Omega = \omega R_2^2 \sqrt{\rho h/D}$) değerleri (h/R₂=0.05)

	Bu çalışma – ATK sonuçları					
р	$R_1/R_2=0.3$		$R_1/R_2=0.5$			
	9×9	11×9	11×11	9×9	11×9	11×11
0	42.4505	42.4503	42.4503	79.3005	79.3005	79.3005
0.5	35.96.19	35.96.17	35.96.17	67.1327	67.1327	67.1327
1	32.4011	32.4008	32.4009	60.4710	60.4710	60.4710
5	28.0859	28.0855	28.0856	52.1038	52.1038	52.1038

Çizelge 4.81 Kenarları basit mesnetli CNT takviyeli içi boş dairesel plakların boyutsuz temel frekans ($\Omega = \omega R_1^2 \sqrt{\rho / Eh^2}$) değerleri (h/R₁ =0.05. L/R₁=2;V_{CN}=0.17)

	Bu çalışma – ATK sonuçları		
CNT takviyesi tipi	7×7	9×9	11×11
FGO	8.4380	8.4378	8.4378
FGA	9.0211	9.0213	9.0213
UD	9.0882	9.0881	9.0881
FGX	9.7199	9.7196	9.7196

Çizelge 4.82 Kenarları basit mesnetli CNT takviyeli içi boş dairesel plakların boyutsuz temel frekans ($\Omega = \omega R_1^2 \sqrt{\rho / Eh^2}$) değerleri (h/R₁ =0.025. L/R₁=1;V_{CN}=0.17)

	Bu çalışma – ATK sonuçları		
CNT takviyesi tipi	7×7	9×9	11×11
FGO	18.0316	18.0314	18.0314
FGA	18.9680	18.9682	18.9682
UD	19.7491	19.7493	19.7493
FGX	23.6002	23.6005	23.6005

6. SONUÇLAR

Tezde elde edilen bulgular bu bölümde özetlenecektir. Gerek kiriş ve plakların ve gerekse kabukların tireşim analizleri 1890 lı yıllardan beri yaklaşık 125 yıldır araştırmacıların üzerinde yoğun olarak çalıştığı bir konudur. Pek çok modern yada stratejik yapınım (gemi, uçak, tank, otomobil, iletim hatları, türbinler, nükleer santraller, yada günlük yaşamdaki pek cihaz) bir yada bir den fazla parçası kabuki davranışı şeklinde modellenmektedir. Çalışma daha once öneri formunda da belirtildiği üzere. literatürdeki sonuçlara ek olarak çıkarım yapmanın güç olduğu durumlarda analizler yaparak genel bir sonuca ulaşmayı ve parametrelerin titreşim üzerinde etkisini incelemeyi hedeflemiştir.

Bu amaçla elde edilen bulgular aşağıda özet halinde sunulmuştur:

Mod sayısı arttıkça frekans değeri önce azalmakta (n=3 e kadar) daha sonraki değerler için önemli mikatarda artmaktadır.

Analiz için kullanılan teoeriler sonuçları etkilemektedir. Birinci mertebe etkilere dayalı kabuk denklemleri ile elde edilen frekanslar her zaman klasik teoriye gore daha küçüktür. Yüksek mertebeden teorilerde ise ksımen daha küçük değerleri elde edilir.

Kalınlık/Çap oranı arttıkça frekans artmaktadır. Ancak diğer parametreler de etkilidir ve bu artış miktarı azalabilir yada hızlanabilir.

Uzunluk/ çap oranı arttıkça frekans değeri artmaktadır.

Simetrik tabaka diziliminde (0/90/...) tabaka sayısı arttıkça frekans değeri artmakatdır. Ancak belirli bir tabakadan sonra bu artış önemli değildir. Yani 10 lamelden sonra elde edilen frekanslar artık 12, yada daha fazla lamel alınınca neredeyse değişmemektedir.

Çap/kalınlık oranı yinde titreşim üzerinde etken bir orandır. Bu oran arttıkça frekanslar önemli oranda ve katlı olarak artmaktadır.

Konik kabukta koniklik açısı arttıkça yine frekanslar ciddi miktarlarda artmaktadır. Bu durumda kabuğu tabakalı olarak dizyn etmek daha uygun bir çözümdür.

Kalınlığın çap oranına bağlı değişimi yada artışının frekansı arttırdığı tespit edilmiştir. Ancak bu çalışmada acaba her ikisi aynı miktarda artınca (yani h/R oranı sabir olacak şekilde) frekans nasıl etkilenir diye irdelenmiş ve frekansların gittikçe ve önemli miktarda azaldığı (h/R. 2h/2R. 3h/3R....gibi) görülmektedir.

Bu çok önemli bir bulgudur. Çapın artması gereken durumlarda mühendisler kalınlığıda bir miktar daha arttırarak frekansları düşürebilirler.

Benzer olarak konik kabuki içinde kalınlık ile büyük tarafın çap oranı (R_2) arttıkça frekans artmaktadır.

Fonksiyonel tabakalı malzeme içeren kabuklarda yukardaki bulgular aynen geçerlidir. Ancak FDM katsayının (seramik-metal geçişi) yani üstel indeksin artması frekansı azaltmaktadır.

Kabuk boyunun çapa oranı arttıkça frekans armakta, ancak bu artış kabuki boyu/ kalınlık oranının fazla olması durumunda daha da fazladır.

Kabuk boyu/Çap oranı arttıkça frekans önemli oaranda artmaktadır, ancak bu artış yüksek modlarda aynı oranda değildir. Yüksek modlarda daha küçük artışlara neden olmaktadır.

Uznunluk/kalınlık oranıa artınca frekans armaktadır. Ancak yüksek modlarda bu artış daha fazladır.

Tabaka dizilişi, seçilen açılardan bağımsız olarak frekans üzerinde daha etkindir.

Orta katmandaki tabakanın açısı büyükse frekans kısmen daha büyüktür. Ancak genel bir çıkarım zordur.

Uzunluk /Kalınlık oranının artması diğer paremetrelerin frekans üzerindeki etkisini de değiştirmekte yani etki etmektedir.

Malzemenin her iki yönündeki elastisite modulleri oranı arttıkça frekans değeri artmaktadır.

Simetrik Çapraz tabaka diziliminde (0/90/... yada 90/0) R/ L arttıkça tabaka sayısının etkisi azalmaktadır. Yine çapraz dizilimde açı sırası değişmesi frekansı önemli oranda değiştirmez (0/90/90/0 ile 90/0/0/90 gibi).

Sınır koşulları frekans üzerinde etkilidir. En büyük frekans her iki uç tutulmuş kabukta elde edilir.

Dönen kabukta dönme etkisi frekansı arttırmaktadır. Ancak kalınlık/çap oranı arttıkça bu etkinin frekans üzerinde etkisi azalmaktadır.

Her bir parametrenin değişimi diğer başka parametlerinde değişimine bağlı etki miktarını değiştirmekte (azaltma yâda arttırma). Ancak çok genel ve kesin bir kanıya varmak için çok daha detaylı ve yıllarca süren araştırmalar gerekmektedir.

Fonksiyonel değişim veya karbon nanotüp takviyesi dizayn parametrelerinde önemli iyleşmeler sağlayabilecektir.

Bu tez çalışmasında konik ve dairesel silindirik kabuklar ile dairesel plakların serbest titreşim analizleri yapılmıştır. Elastik cisimler mekaniğinde çeşitli kabuk teorileri mevcuttur. İnce kabuk teorisi, eğilmesiz kabuk teorisi, kesme etkisini de hesaba katan yüksek mertebeden kabuk teorileri bunlara örnektir. Yine kabuk yapılar örnek verilmesi gerekirse Flügge. Donnell. Sanders gibi bilim adamlarının adıyla anılan yaklaşımlarıyla da ele alınmıştır. Karbon nanotüp takviyeli konik ve dairesel kabukların titreşim analizi çeşitli kabuk yaklaşımları altında da gerçekleştirilip bir kıyaslama yapılabilir. Bu kıyaslama altında, sonuçların farklılığına etmen olan etkenlerin ne olduğu ve nasıl bir etki gösterdiği incelenebilir.

Kabukların geometrileri çeşitlidir. Konik ve dairesel silindirik kabukların yanı sıra paraboloit, hiperboloit veya eliptik kabuklar buna örnek verilebilir. Bu tip kabukların da takviyeli veya fonksiyonel dereceli malzemeden modellenmesi çözümleri için de serbest titreşim analizleri de yapılabilir.

Son yıllarda tek boyutlu taşıyıcı sistemler nano ve mikro ölçekte modellenmiş olup mekanik analizleri gerçekleştirilmiştir ve gerçekleştirilmeye devam edilmektedir. Nano ve mikro-elektro-mekanik sistemlerin dış zorlar altında mekanik davranışlarının bilinmesi. bu ölçekte modellenen ürünlerin tasarımı açısından oldukça önemlidir. Kiriş gibi tek boyutlu elemanların modellenmesinden sonra plak ve kabuk gibi yüzeysel taşıyıcı sistemler de nano ve mikro ölçekte modellenmektedir. Mesela mikro ve nano işlemcilerin çipleri plak gibi modellenebilir. Deneysel çalışmalar göstermiştir ki mikro ve nano ölçekteki taşıyıcı sistemlerin dış zorlar altında mekanik analizi yapılırken, elde edilen sonuçlar klasik elastisite teorileriyle elde edilen sonuçlardan farklıdır. Bunun nedeninin, mikro yapının iç karakteristik boyutlarıyla alakalı olduğu anlaşılmıştır. Ancak günümüzde yapılan atomik simülasyonların oldukça maliyetli ve yüksek işlem hacmine sahip olmasından dolayı araştırmacılar, analitik yöntemlerle. başka deyişle yüksek mertebeden boyut etkili sürekli ortam teorileriyle bu ölçekte modellenen cisimlerin davranışlarını anlamaya çalışmışlardır. Yerel olmayan elastisite teorisi, Değiştirilmiş şekil değiştirme değişimi teorisi, Yüzey enerjili elastisite teorisi gibi teoriler bu noktada örneklenebilir. Mikro ve nano kabukların boyut etkili bir serbest titreşim analizi, mikro ve nano-teknolojik yeni çalışmalara ışık tutabilir.

7. KAYNAKLAR

- Carrera, E. 2002. Theories and finite elements formultilayered. anisotropic. composite plates and shells. *Archives of Computational Methods in Engineering*, 9:87-140.
- Carrera, E. 2003. Historical review of Zig-Zag theories formultilayered plates and shells. *Applied Mechanics Review*, 56:287-309.
- Civalek, Ö. 1998. Finite Element analyses of plates and shells. Fırat University. Elazığ. (in Turkish)
- Civalek, Ö. 2006a. An efficient method for free vibration analysis of rotating truncated conical shells. *International Journal of Pressure Vessels Piping*, 83:1-12.
- Civalek, Ö. 2006b. The determination of frequencies of laminated conical shells via the discrete singular convolution method. *Journal of Mechancs of Materials and Structures*, 1:165-192.
- Civalek, Ö. 2007a. Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC). *Structural Engineering and Mechanics*, 25(1):127-130.
- Civalek, Ö. 2007b. Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: discrete singular convolution (DSC) approach. *Journal of Computational and Applied Mathematics*, 205: 251-271.
- Civalek, Ö. 2008. Vibration analysis of conical panels using the method of discrete singular convolution. *Communications in Numerical Methods in Engineering*, 24:169-181.
- Hua, L., Lam, KY. 1998. Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method. *International Journal of Mechanical Sciences*, 40(5):443-459.
- Hua, L. 2000. Frequency characteristics of a rotating truncated circular layered conical shell. *Composite Structures*, 50:59-68.
- Han, J.B., Liew. K.M. 1999. Axisymmetric free vibration of thick annular plates. *International Journal of Mechanical Sciences*, 41:1089-1109.
- Irie, T., Yamada, G., Tanaka, K. 1984. Natural frequencies of truncated conical shells. *Journal of Sound and Vibration*, 92(3): 447-453.
- Jin, G., Ma, X., Shi, S., Ye, T., Liu, Z. 2014. A modified Fourier series solution for vibration analysis of truncated conical shells with general boundary conditions. *Applied Acoustics*, 85: 82-96.
- Kapania, P.K. 1989. Review on theanalysis of laminatedshells. *Journal of Pressure Vessells Techica*, 111: 88-96
Kraus, H. 1967. Thin Elastic Shells. New York: Wiley.

- Lam, K.Y., Loy, CT. 1995. Analysis of rotating laminated cylindrical shells by different shell theories. *Journal of Sound and Vibration*, 186(1):23-35.
- Lei, Z.X., Zhang, L.W., Liew, K.M. 2015. Vibration analysis of CNT-reinforced functionally graded rotating cylindrical panels using the element-free kp-Ritz method. *Composite Structures*, 77:291-303.
- Lei, Z.X., Zhang, L.W., Liew, K.M., Yu, J.L. 2016. Parametric analysis of frequency of rotating laminated CNT reinforced functionally graded cylindrical panels. *Composites Part B Enginereing*, 90: 251-266.
- Liew, K.M., Ng, T.Y., Zhao, X. 2005. Free vibration analysis of conical shells via the element-free kp-Ritz method. *Journal of Sound and Vibration*, 281(3):627-645.
- Lin, C.C., Teng, C.S. 1988. Free vibration of polar orthotropic laminated circular and annular plates. *Journal of Sound and Vibration*, 209:797-810.
- Love, A.E.H. 1888. On the small free vibrations and deformations of thin elastic shells. Philosophical Transactions of the Roval Society. London.
- Love, A.E.H. 1952. A Treatise on the Mathematical Theory of Elasticity.Cambridge University Press. Cambridge.
- Mirzaei, M., Kiani, Y. 2016. Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels. *Composite Struct*ures, 142:45-56.
- Ng, C.H.W., Zhao, Y.B., Wei, G.W. 2004.Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates. *Computer Methods in Applied Mechanics and Engineering*, 193: 2483-2506.
- Noor, A.K., Burton, W.S. 1990. Assessment of computational models for multilayered composite shells. *Applied Mechanics Review*, 43: 67-97.
- Noor, A.K., Burton, W.S., Peters, J.M. 1991. Assessment of computational models for multilayered composite cylinders. *International Journal of Solids and Structures*, 27: 1269-1286.
- Noor, A.K., Burton, W.S., Bert, C.W. 1996. Computational models for sandwich panels and shells. *Applied Mechanics Review*, 49: 155-200.
- Qatu, M.S. 1999. Accurate theory for laminated composited eepthick shells. *International Journal of Solids and Structures*, 36: 2917-2941.
- Qatu, M.S. 2002. Recent research advances in the dynamic behavior of shells. part 1: laminated composite shells. *Applied Mechanics Review*, 55: 325-350.
- Qatu, M.S., Sullivan RW., Wang. W. 2010. Recentresearchadvances in thedynamicbehavior of compositeshells: 2000-2009. *Composite Structures*, 93:14-31.

- Reddy, JN., Liu, C.E. 1985. A higher-order shear deformation theory of laminated elastic shells. *Inernational Journal of Engineering Sciences*, 23:319-330.
- Reddy, J.N. 2003. Mechanics of laminated composite plates and shells: theory and analysis. Second Edition. CRC pres.
- Shen, H.S. 2009. Functionally graded materials: nonlinear analysis of plates and hells. CRC Press.
- Shen, H.S., Xiang, Y. 2012. Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments. *Computer Methods in Applied Mechanics and Engineering*, 213: 196-205.
- Shu, C. 1996. Free vibration analysis of composite laminated conical shells by generalized differential quadrature. *Journal of Sound and Vibration*. 194: 587-604.
- Soedel, W. 1993. Vibrations of Shells and Plates.Second Edition. Revised and Expanded. New York: Marcel Dekker.
- Soldatos, K.P. 1999. Mechanics of cylindrical shells with non-circular cross-section. *Applied Mechanics Review*, 52: 237-274
- Soldatos, K.P., Hadjigeorgiou, V.P. 2005. Three-dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels. J Sound Vib 1990; 137: 369-384.f laminated conical shells. *Computational Mechanics*, 25:346-357.
- Su, Z., Jin, G., Ye, T. 2014a. Free vibration analysis of moderately thick functionally graded open shells with general boundary conditions. *Composite Structures*, 117:169-186.
- Su, Z., Jin, G., Shi, S., Ye, T., Jia. X. 2014b. A unified solution for vibration analysis. International Journal of Mechanical Sciences, 80.62-80.
- Tong, L. 1993. Free vibration of composite laminated conical shells. *International Journal of Mechanical Sciences*. 35:47-61.
- Tong, L. 1994. Free vibration of laminated conical shells including transverse shear deformation. *International Journal of Solids and Structures*.31: 443-456.
- Viswanathan, K.K., Kim, K.S., Lee, J.H. 2009. Asymmetric free vibrations of laminated annular cross-ply circular plates including the effects of shear deformation and rotary inertia: spline method. *Forschung im Ingenieurwesen*. 73: 205-217.
- Wang, Q., Shi, D., Liang, Q., Ahad, F. 2016. An improved Fourier series solution for the dynamic analysis of laminated composite annular. circular. and sector plate with general boundary conditions. *Journal of Computational Materials*, 50: 4199-4233.
- Wei, G.W. 2001a. A new algorithm for solving some mechanical problems. *Computer Methods in Applied Mechanics and Engineering*, 190:2017-2030.

- Wei, G.W. 2001b. Vibration analysis by discrete singular convolution. *Journal of Sound and Vibration*, 244: 535-553.
- Wu, C.P., Wu, C.H. 2005. Asymptotic differential quadrature solutions for the free vibration of laminated conical shells. *Computational Mechanics*, 25:346-357.
- Ye, J. 2003. Laminated composite plates and shells: 3D modeling. Springer.
- Ye, T., Jin, G., Chen, Y., Shi, S. 2014. A unified formulation for vibration analysis of open shells with arbitrary boundary conditions. *International Journal of Mechanical Sciences*, 81: 42-59.
- Zhang, LW., Lei, Z.X., Liew, K.M., Yu, J.L. 2014. Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels. *Composite Structures*, 111: 205-212.
- Zhao, X., Liew, K.M., Ng, T.Y. 2003. Vibration analysis of laminated composite cylindrical panels via meshfree approach. *International Journal of Solids and Structures*, 40:161-180.
- Zhao, X., Liew, K.M. 2011. Free vibration analysis of functionally graded conical shell panels by a meshless method. *Composite Structures*, 93:649-664.

ÖZGEÇMİŞ

ALİ KEMAL BALTACIOĞLU

E-mail: alikemal555@hotmail.com

ÖĞRENİM BİLGİLERİ

Doktora	Akdeniz Üniversitesi
2012-2018	Fen Bilimleri Enstitüsü. İnşaat Mühendisliği Anabilim Dalı. Antalya
Yüksek Lisans	Akdeniz Üniversitesi
2009-2011	Fen Bilimleri Enstitüsü. İnşaat Mühendisliği Anabilim Dalı. Antalya
Lisans	Karadeniz Teknik Üniversitesi
1991-1995	Mühendislik Fakültesi. İnşaat Mühendisliği Bölümü. Trabzon

MESLEKİ VE İDARİ GÖREVLER

Proie	Mühendisi	ve	Yazılım	
Uzmai	11			
				İller Bankası Genel Müdürlüğü - ANKARA
1998- Devam Ediyor				