T.C. AKDEN Z ÜN VERS TES FEN B L MLER ENST TÜSÜ

DÖ EMEALTI (ANTALYA), ERMENEK (KARAMAN), BUCAK (BURDUR) VE ÇEVRES NDEK TRAVERTEN KAYAÇLARDA AYRI MA VE AYRI MANIN KAYAÇLARIN MÜHEND SL K ÖZELL KLER NE ETK LER

Muzaffer ORHAN

YÜKSEK L SANS TEZ JEOLOJ MÜHEND SL ANAB L M DALI

2016

T.C. AKDEN Z ÜN VERS TES FEN B L MLER ENST TÜSÜ

DÖ EMEALTI (ANTALYA), ERMENEK (KARAMAN), BUCAK (BURDUR) VE ÇEVRES NDEK TRAVERTEN KAYAÇLARDA AYRI MA VE AYRI MANIN KAYAÇLARIN MÜHEND SL K ÖZELL KLER NE ETK LER

Muzaffer ORHAN

YÜKSEK L SANS TEZ JEOLOJ MÜHEND SL ANAB L M DALI

(Bu tez Akdeniz Üniversitesi Bilimsel Ara tırma Projeleri Koordinasyon Birimi tarafından 2014.02.0121.005 nolu proje ile desteklenmi tir.)

T.C. AKDEN Z ÜN VERS TES FEN B L MLER ENST TÜSÜ

DÖ EMEALTI (ANTALYA), ERMENEK (KARAMAN), BUCAK (BURDUR) VE ÇEVRES NDEK TRAVERTEN KAYAÇLARDA AYRI MA VE AYRI MANIN KAYAÇLARIN MÜHEND SL K ÖZELL KLER NE ETK LER

Muzaffer ORHAN

YÜKSEK L SANS TEZ JEOLOJ MÜHEND SL ANAB L M DALI

Bu tez ../../201.. tarihinde a a ıdaki jüri tarafından Oybirli i/Oyçoklu u ile kabul edilmi tir.

Yrd. Doç. Dr. Yasemin LEVENTEL Prof. Dr. M. Gürhan YALÇIN Yrd. Doç. Dr. Mehmet ÖZÇEL K

ÖZET

DÖ EMEALTI (ANTALYA), ERMENEK (KARAMAN), BUCAK (BURDUR) VE ÇEVRES NDEK TRAVERTEN KAYAÇLARDA AYRI MA VE AYRI MANIN KAYAÇLARIN MÜHEND SL K ÖZELL KLER NE ETK LER

Muzaffer ORHAN

Yüksek Lisans Tezi, Jeoloji Mühendisli i Anabilim Dah Danı man: Yrd. Doç. Dr. Yasemin LEVENTEL Eylül 2016, 101 Sayfa

Özellikle estetik görünümü nedeniyle, tufa ve travertenin yüzey kaplama malzemesi olarak kullanımı büyük ölçüde artmı ve daha fazla tercih edilir hale gelmi tir. Bununla birlikte, tufa ve traverten gibi bo luklu kayaçlarda kar ıla ılan sorunların ba ında "ayrı ma" gelmekte ve ayrı manın bu tip kayaçların yapı malzemesi (kaplama, dolgu yada riprap gibi) olarak kullanılmasına etkisi de önem kazanmaktadır. Bu çalı mada; atmosfer ko ullarına ve kıyı bölgelerinde tuzlu ortama maruz kalan bu kayaçlardaki ayrı manın, kayaçların mühendislik davranı ına etkileri laboratuar deneyleri ile ara tırılmı tır. Dö emealtı (Antalya), Ermenek (Karaman) ve Bucak (Burdur)'dan olmak üzere üç farklı lokasyondan alınan kaya bloklarından karot numuneler hazırlanmı tır. Numunelerin birim hacim a ırlı 1, porozitesi, a ırlıkça ve hacimce su emme oranları, tek eksenli basınç dayanımları, suda da ılmaya kar ı duraylılı 1 ve P dalgası hızları belirlenmi tir. Sonrasında, NaCl, Na₂SO₄ ve MgSO₄ tuzlarında bekletildikten sonra aynı parametreler tekrar belirlenmi tir. Parametrelerin kar ıla tırılması sonucunda; gerek atmosfer ko ullarının gerek tuzlu ortamın tufa ve travertenlerin mühendislik özellikleri üzerinde olumsuz etkiye neden oldu u görülmü tür.

ANAHTAR KEL MELER: Ayrı ma, bozunma, traverten, tufa.

JÜR : Yrd. Doç. Dr. Yasemin LEVENTEL (Danı man) Prof. Dr. M. Gürhan YALÇIN Yrd. Doç. Dr. Mehmet ÖZÇEL K

ABSTRACT

THE WEATHERING ON TRAVERTINE IN DÖ EMEALTI (ANTALYA), BUCAK (BURDUR), ERMENEK (KARAMAN) AND THE EFFECTS OF THE WEATHERING ON THE ENGINEERING PROPERTIES OF THE ROCKS

Muzaffer ORHAN

MSc. Thesis in Department of Geological Engineering Supervisor: Asst. Prof. Dr. Yasemin LEVENTEL September - 2016, 101 pages

Due to the particular aesthetic appearance, tufa and travertine usage as surfacing stone greatly increased and they have become even more preferred. However, one of the most important problems for the porous rocks such as tufa and travertine is "weathering". So, the effects of weathering for this type of rock when used as construction materials (surfacing, landfill or riprap, etc.) have become a significant problem, too. In this study; effects of weathering in these rocks, when exposed to atmospheric conditions and saline environment in the coastal areas, to the engineering behavior of rocks have been investigated by laboratory experiments. The core samples were prepared from the rock blocks taken from three different locations; Dö emealti (Antalya), Ermenek (Karaman) and Bucak (Burdur). Unit weight, porosity, water absorption ratios by weight and volume, uniaxial compressive strength, slake durability and P-wave velocities of the samples were determined. Then, after curing in NaCl, Na₂SO₄ and MgSO₄ salts, the same parameters were determined again. As a result of comparison of the parameters; it has been shown that both atmospheric conditions and saline environment have adverse effects on engineering properties of tufa and travertine.

KEYWORDS: Weathering, deterioration, travertine, tufa.

COMM TTEE: Yrd. Doç. Dr. Yasemin LEVENTEL (Supervisor) Prof. Dr. M. Gürhan YALÇIN Yrd. Doç. Dr. Mehmet ÖZÇEL K

ÖNSÖZ

Yüksek lisans e itimim sürecinde yapmı oldu um ara tırmalarda beni yönlendiren ve çalı malarımda desteklerini esirgemeyen de erli danı man hocam Yrd. Doç. Dr. Yasemin LEVENTEL 'ye sonsuz te ekkürlerimi sunarım.

Tez çalı malarımın arazi ve laboratuvar a amalarında destekleri ve yardımları için; Doç. Dr. Nihat D POVA, n aat Yüksek Mühendisi Bülent CANG R, Jeoloji Mühendisleri Erhan GÜNE, Serhan ACIR, Erkut URAL ve Ali YO URTÇUO LU'na te ekkür ederim.

Arazi çalı maları sırasında blok boyutunda numune alımında kolaylık sa layan; Erkılıç Mermer'de Üretim Müdürü Recep ACAR, Portsan Mermer Sanayi Petrol ve Tarım Ürünleri Enerji Nakliyat Ticaret A. .'de Endüstri Mühendisi Mustafa KOZAK ve Ege Do alta ve Traverten Sanayi Ticaret Limited irketi yetkilisi Faruk KARAMAN'a te ekkür ederim.

E itim hayatım boyunca benden maddi ve manevi desteklerini hiçbir zaman esirgemeyen, hayatım boyunca minnettar kalaca ım sevgili aileme gönülden te ekkürlerimi iletirim.

y HDER EEK	
OZET	i
	11
	111 :
Ç NDEK LEK	1V
S MGELER VE KISALIMALAR D Z N	V1
EK LLER D Z N	V111
Ç ZELGELER D Z N	1X
1. G R	1
2. KURAMSAL B LG LER ve KAYNAK TARAMALARI	4
2.1. Çalı ma Bölgeleri le lgili Kaynak Taramaları	4
2.2. Çalı ma Bölgelerine Ait Travertenler	9
2.3. Çalı ma Konusu le lgili Kaynak Taramaları	
2.4. Bozunma	
2.4.1. Bozunma türleri	19
2.4.1.1. Fiziksel bozunma	19
2.4.1.2. Kimyasal bozunma	
2.4.1.3. Biyolojik bozunma	23
3. MATERYAL VE METOT	24
3.1. Materyal	24
3.2. Metot	24
3.2.1. Literatür taraması	
3.2.2. Arazi çalı maları	
3.2.3. Laboratuvar çalı maları	
3.2.3.1. Numune hazırlama	24
3.2.3.2. Uygulanan deneyler	
4. BULGULAR	34
4.1. Taze Kayaç Örneklerinin Fiziksel ve Mekanik Özellikleri	34
4.2. Bozunmu Kayaç Örneklerinin Fiziksel ve Mühendislik Özellikleri	
4.2.1. MgSO ₄ ile yapılan tuz kristallenme deneyi	
4.2.2. Na ₂ SO ₄ ile yapılan tuz kristallenme deneyi	39
4.2.3. NaCl ile yapılan tuz kristallenme deneyi	
4.3. Sonik Hız Deneyi.	
4.3.1. Dö emealtı (Antalya) traverteninde P dalga yayılımı	44
4.3.2. Bucak (Burdur) traverteninde P dalga yayılımı.	46
4.3.3. Ermenek (Karaman) traverteninde P dalga yayılımı	46
4.4. Tek Eksenli Basınç Dayanım Testi	
4.4.1. Kontrol numunelerinin tek eksenli basınç dayanım de erleri	
4.4.2. 1. Grup numunelerin 40. döngü sonrası tek eksenli basınç dayanım de	49
4.4.3. 2. Grup numunelerin 40. döngü sonrası tek eksenli basınç dayanım de	51
4.4.4. 3. Grup numunelerin 40. döngü sonrası tek eksenli basınç dayanım de	53
4.5. Suda Da ilmaya Kar i Duraylilik ndeksi Deneyi	
5. TARTI MA	
6. SONUÇ	61
7. KAYNAKLAR	63
ÖZGEÇM	

Ç NDEK LER

S MGELER VE KISALTMALAR D Z N

<u>Simgeler</u>

А	Silindirik örne in kesit alanı
Aw	A ırlıkça su emme oranı
cm^2	santimetrekare
d	Dalganın ilerledi i yolun boyu
dk	Dakika
D	Çap
e	Bo uk oranı
F	Yenilme anında kaydedilen yük
gr	Gram
Hw	Hacimce su emme oranı
kgf	Kilogram kuvvet
km	Kilometrekare
kn	Kilonewton
L	Boy
m	Metre
mm	Milimetre
m^3	Metreküp
Mpa	Megapascal
n	Gözeneklilik
Р	Kayaç örnekleri içerisinden geçirilen sıkı ma dalgası
Pundit	Ultrasonik Test Cihazı
Q	Kaya Kütlesi Sınıflaması
RMR	Kaya Kütle ndeksi
t	Zaman
Th	Toryum
U	Uranyum
V	Hacim
Vp	P dalgasının yayılma hızı
Vv	Bo lukların hacmi
W	Kayacın birim hacim a ırlı 1
W1	Taze (ayrı mamı)
W2	Az ayrı mı
W3	Orta ayrı mı
W4	Çok ayrı mı
W5	Tamamen ayrı mı
Wd	Kuru birim hacim a ırlık
Ws	Doygun birim hacim a ırlık
с	Tek Eksenli Sıkı ma Dayanımı
	Pi sayısı
μs	P dalgasının etkin ilerleme zamanı
%	Yüzde
	Yo unluk

<u>Kısaltmalar</u>

CaCO3Kalsiyum karbonatDSDevlet SuDSDevlet SuGPSKüresel Yer Belirleme SistemiMgSO4Magnezyum SülfatNaCISodyum KlorürNa2SO4Sodyum Sülfat

EK LLER D Z N

ekil 1.1. Çalı ma alanının yer bulduru haritası	2
ekil 2.1. Dö emealtı (Antalya) bölgesi ve çevresinin jeolojik haritası	11
ekil 2.2. Bucak (Burdur) bölgesi ve çevresinin jeolojik haritası	12
ekil 2.3. Ermenek (Karaman) bölgesinin ve çevresinin jeolojik haritası	.14
ekil 2.4. Fiziksel bozunma süreçleri (Anon, 1995)	21
ekil 2.5. Kimyasal bozunma süreçleri (Anon, 1995)	23
ekil 3.1. Karot alma makinesi ile karotların alınması	25
ekil 3.2 Silindirik örneklerin boyutlarının kumpasla ölçülmesi	25
ekil 3.3 Örneklerin saf suda bekletilmesi ve suya doygun a ırlıklarının tartılması	27
ekil 3.4 Sonik hız deneyinin yapılı 1 ve kullanılan Pundit cihazı	28
ekil 3.5. Deneylerde kullanılan tuzlar ve örneklerin tuzlu suya bırakılması	28
ekil 3.6. Etüve yerle tirilen karotların görünümü	29
ekil 3.7. Tek eksenli sıkı ma dayanımı deneyinde kullanılan hidrolik pres	30
ekil 3.8. 1.grup (MgSO4 grubu) örneklerden bazılarının yenilme sonrası durumu	31
ekil 3.9. 2.grup (Na2SO4 grubu) örneklerden bazılarının yenilme sonrası durumu	31
ekil 3.10. 3.grup (NaCI grubu) örneklerden bazılarının yenilme sonrası durumu	32
ekil 3.11. Kontrol numunelerinden bazılarının yenilme sonrası durumu	32
ekil 3.12. Suda da 11maya kar 1 duraylılık indeksi deneyinde kullanılan deney düzer	ne i
ve deneyde kullanılan örneklere ait görüntü	33
ekil 4.1. Gözeneklilik ve birim hacim a ırlıkları arasındaki ili ki	36
ekil 4.2. Tuz çözeltileri (MgSO ₄) çevrimleri sonucunda fiziksel ve mekanik	
özelliklerdeki normalize edilmi de i im grafikleri	39
ekil 4.3. Tuz çözeltileri (Na ₂ SO ₄) çevrimleri sonucunda fiziksel ve mekanik	
özelliklerdeki normalize edilmi de i im grafikleri	41
ekil 4.4. Tuz tuz çözeltileri (NaCl) çevrimleri sonucunda fiziksel ve mekanik	
özelliklerdeki normalize edilmi de i im grafikleri	43
ekil 4.5. Dö emealtı (Antalya) traverteninin gözeneklili i ile P dalga yayılım hız	
korelasyon grafikleri	45
ekil 4.6. Bucak (Burdur) traverteninin gözeneklili i ile P dalga yayılım hız	. –
korelasyon grafikleri	47
ekil 4.7. Ermenek (Karaman) traverteninin gözeneklili 1 ile P dalga yayılım hiz	40
korelasyon grafikleri	48
ekil 4.8. Kontrol numunelerinin tek eksenli basınç dayanımı ile P dalga yayılım hizi	1
arasındaki korelasyon grafikleri	50
ekil 4.9. 1.Grup (MgSO ₄) numunelerinin 40. dongu sonrasi tek eksenli basinç	7 1
dayanimi ile P dalga yayilim hizi arasındaki korelasyon grafikleri	
devenue ile D deles voyalen bez arean delei barelessen arefiliteri	57
dayaninin ne P daiga yayinim nizi arasindaki koreiasyon grafikleri	33
ekii 4.11. 5. Grup (NaCI) numunelerinin 40. dongu sonrasi tek eksenli basinç dayanı	.m1
ne r daiga yayinin nizi arasindaki korelasyon grafikleri	33

Ç ZELGELER D Z N

Çizelge 2.1. Kaya malzemesine ait bozunma sınıflarının tanımı (ISRM, 1978)
Çizelge 2.2. Kaya kütlesine ait bozunma sınıflarının tanımı (ISRM, 1978
Çizelge 2.3. Kaya kütlesi için bozunma derecelerinin tanımlanması (ISRM, 1981)17
Çizelge 2.4. Anon (1995) tarafından tüm kaya malzemesi grupları için önerilen
bozunma sınıflaması17
Çizelge 2.5. Bozunma türleri ve mekanizmaları (Ollier, 1969; Beavis, 1985; Perry, 1986)
Cizelge 2.6. Fiziksel parcalanma nedenleri ve mekanizmaları (Blyth ve Freiter, 1987;
Beavis, 1985; Waltham, 1994)
Çizelge 4.1. Dö emealtı(Antalya) traverteninin fiziksel özelliklerinin istatiksel
da 111m1
Çizelge 4.2. Bucak (Burdur) traverteninin fiziksel özelliklerinin istatiksel da 11111135
Çizelge 4.3. Ermenek (Karaman) traverteninin fiziksel özelliklerinin istatiksel
da 111m1
Çizelge 4.4.Tuz çözeltileri (MgSO ₄) çevrimleri sonucunda fiziksel ve mekanik
özelliklerdeki normalize edilmi de i im de erleri
Çizelge 4.5. Tuz çözeltileri (Na ₂ SO ₄) çevrimleri sonucunda fiziksel ve mekanik
özelliklerdeki normalize edilmi de i im de erleri
Çizelge 4.6. Tuz çözeltileri (NaCl) çevrimleri sonucunda fiziksel ve mekanik
özelliklerdeki normalize edilmi de i im de erleri
Çizelge 4.7. Dö emealtı (Antalya) traverteninde ölçülen P dalga yayılım hızlarının (m/sn)
istatistiki verileri44
Çizelge 4.8. Burdur (Bucak) travertenlerinde ölçülen P dalga yayılım hızlarının (m/sn)
istatistiki verileri
Çizelge 4.9. Ermenek (Karaman) travertenlerinde ölçülen P dalga yayılım hızlarının
(m/sn) istatistiki verileri
Çizelge 4.10. Kontrol numunelerinin tek eksenli basınç dayanım de erlerinin istatistiksel
da ilimi (MPa)49
Çizelge 4.11. 1.Grup (MgSO ₄) numunelerinin 40. döngü sonrası tek eksenli basınç
dayanım de erlerinin istatistiksel da ilimi (MPa)
ζ_{12} Cizelge 4.12. 2. Grup (Na ₂ SO ₄) numunelerinin 40. döngü sonrasi tek eksenli basınç
dayanım de erlerinin istatistiksel da ilimi (MPa)
Çizelge 4.13. 3. Grup (NaCl) numunelerinin 40. dongu sonrasi tek eksenli basınç
$G_{i} = 1 + 14 \text{ D}$
Çizelge 4.14. Da ilma dayanım de erleri (Gamble, 1971)
Çizelge 4.15. Kontrol numunelerine alt suda da ilmaya kar i duraylilik indeksi deney
Solluçian
çızeige 4.10. 40. doligu solirası, gruplallı suda da "lillaya kar"ı durayıllık ilideksi delley
Cizalas 5.1. Dö amaaltı (Antalya) Tak aksanli başına dayanım danay sonyalarının
çızeige 5.1. Do emeanı (Antaiya) Tek eksenin basınç dayanını deney sonuçlarının
Cizelge 5.2 Bucak (Burdur) Tek eksenli başınc dayanım deney sonuclarının
kar ila tirilmasi 50
Cizelge 5.3 Frmenek (Karaman) Tek eksenli başıncı dayanım denev sonuclarının
kar ila tirilmasi 60
Kur nu urmnusi

EKLER D Z N

Ek-1a. Dö emealtı (Antalya) Traverteninin Fiziksel Özellikleri	73
Ek-1b. Bucak (Burdur) Traverteninin Fiziksel Özellikleri	74
Ek-1c. Ermenek (Karaman) Traverteninin Fiziksel Özellikleri	75
Ek-2a. 10. Döngü Sonucunda (MgSO ₄) Örneklerin Fiziksel Özellikleri	76
Ek-2b. 10. Döngü Sonucunda (Na ₂ SO ₄) Örneklerin Fiziksel Özellikleri	80
Ek-2c. 10. Döngü Sonucunda (NaCl) Örneklerin Fiziksel Özellikleri	84
Ek-3. Sonik Hız Deneyi(Örneklerin çözeltilere yatırılmasından önce ve 40. döngü	
sonrası olmak üzere) Verileri	88
Ek-4. Tek Eksenli Basınç Dayanım De erleri	94
Ek-5. Suda Da 11maya Kar 1 Duraylılık ndeksi Deneyi	98
• • •	

1. G R

Kayaçlar olu tukları andan itibaren fiziksel, mekanik ve kimyasal ko ulların etkisi altında de i ikliklere u ramaktadır. Kayaçların jeo-mühendislik özelliklerini etkileyen bu de i imler genel anlamda ayrı ma (bozunma) terimi altında incelenmektedir. Günümüze de in ayrı ma konusunda yapılan çalı malar genellikle magmatik kayaç türlerinden olan granitik kayaçlar üzerinde yo unla mı, sınırlı sayıda da ba kala ım ve çökel kayaçlar üzerinde gerçekle tirilmi tir (Chigira ve Oyama, 1999; Tugrul ve Zarif, 2000; Ehlen, 2002;Tugrul, 2004; Avigad vd., 2005; Turkington ve Paradise, 2005; Zakharova vd., 2007).

1930'lu yıllardan itibaren kaya bozunmaları ile ilgili birçok çalı mada birbirine benzeyen de i ik bozunma tanımlamaları yapılmı tır (Ollier,1969; Fookes vd., 1971; Chandler, 1972; Richards, 1972; Bell,1983; Beavis, 1985; Bltyh ve Freiter 1987). Bozunmanın günümüzde en çok kabul gören tanımı, Fookes vd. (1971) tarafından yapılmı olan ve "kayaların hidrosfer ve atmosferin do rudan etkisi altında kalarak ayrı ması olayı" olarak açıklayan tanımdır.

Bozunmanın mekanizması, kayaçların toprak (zemin) olarak adlandırılmalarına kadarki süreci etkileyen veya belirleyen a amalar olarak tanımlanabilir. Bozunma mekanizması; birçok ara tırmacı tarafından "fiziksel", "kimyasal" ve "biyolojik" olmak üzere üç ana grup altında toplanmı tır (Beavis, 1985; Perry, 1986; Johnson ve DeGraff, 1988).

Günümüzde, karbonatlı kayaçların özellikle yüzey kaplama malzemesi eklindeki kullanımları, yapılara estetik ve antik görünümler verdi inden, büyük ölçüde artmı ve tercih edilir hale gelmi tir. Bu nedenle bozunmanın/ayrı manın karbonatlı kayaçların yapı malzemesi (kaplama, dolgu ya da riprap gibi) olarak kullanılmasına etkisi de önem kazanmaktadır.

Bu tez çalı masında temel amaç; Dö emealtı (Antalya), Bucak (Burdur) ve Ermenek (Karaman) çevresindeki karbonatlı kayaçların ayrı ma tipleri ve derecelerini belirleyerek sınıflandırmak; kayaçların mühendislik davranı ına etkilerini ara tırmak, farklı mühendislik yapıları için yapı malzemesi olarak kullanılma olanaklarını irdelemek, gerek ayrı manın kentle me alanı seçimine etkisini gerek kentle menin ayrı maya katkısını ortaya koymaktır. Bunun için üç farklı bölgeden üç farklı ta oca 1 seçilmi tir (ekil 1.1): Dö emealtı (Antalya), Bucak (Burdur) ve Ermenek (Karaman). Söz konusu ocaklardan kaya blokları alınmı ; ISRM (1981) tarafından önerilen yöntemler kullanılarak standartlara uygun karot örnekleri hazırlanmı ; bunların hem ilksel hem de a ındırma amaçlı kullanılan tuz deneyleri sonrasında fiziksel ve mekanik özellikleri belirlenmi ; böylece kayaç malzemelerinde olu an de i imler ortaya konmu tur.

Literatür taramasına sadık kalmak amacıyla kaynakçalarda "bozunma" ifadesi kullanılmı, ancak tez içerisinde "ayrı ma" kelimesi tercih edilmi tir.

ekil 1.1. Çalı ma Alanının Yer Bulduru Haritası.

Antalya'nın genel topografyası, ehir merkezinin engebeli kayalıklar üzerinde, denizden 30 m'ye kadar yükselen bir antik traverten teras üzerine kurulmu olmasından dolayı e sizdir. Topografya e imi 17-25 km kadar çok az olup, yükseklik yakla ık 120 m'ye kadar hafifçe artmaktadır. Bu noktada en yüksek rakımı 300 m olan ikinci bir teras ortaya çıkar. kinci terasın üzerinde topografya neredeyse Toros da larının eteklerine kadar uniform ekilde yükselmektedir. Bu karstik olu um erime kanallarıyla çokça dallanmı ve parça olmu tur. Do uya do ru; Aksu nehrinin vadisinde ve batıya do ru Konyaaltı plajının kuzeyinde traverten yıpranmı ve yüzey alüvyon ile kaplanmı, plajlar olu mu tur. Antalya topraklarının % 12.9'unu ovalar kaplamaktadır; bunların içinde en önemli olanları Antalya Ovası, Finike Ovası, Alanya Ovası, Kasaba Ovası, Demre Ovası ile Tekirova'dır (Antalya Çevre Durum Raporu, 2011).

Genel olarak Torosların iç kısmında yer alan Burdur, dalgalı plato görünümündedir. Yüzey ekilleri açısından; il topraklarını çevreleyen da lar ve aralarına sıkı mı düzlükler, güney ve güneydo udaki yüksek yaylalar ve güneybatıdaki taban kesimi ovalık engebeli plato olmak üzere üç ana bölüme ayrılabilir. 1 arazisinin % 60.6'sı da lık alan, % 2.7'si yayla, % 19'u ova ve % 17.6'sı ise platodur. lin kuzey, kuzeybatı ve güneyindeki da ların arasında verimli ovalar, göller, bunlara dökülen akarsular ve bunların besledi i havzalar vardır. 1 merkezinden güney ve güneydo uya gidildikçe yükseltisi artan ova, plato ve da lar vardır. Güneybatı arazisi daha yumu ak yapıdadır. 1 tabanda verimli ovaları olan bir yayla görünümündedir. 1 toprakları tektonik ve karstik çöküntü alanlarını kapsamaktadır. Bu nedenle sularla dolu çöküntü çanaklarının, vadilerin, ma araların, inlerin ve dehlizlerin bulundu u bölge göller bölgesi adını almı tır (Burdur 1 Çevre Durum Raporu, 2011).

Karaman il sınırları içerisinde bulunan arazinin üçte ikisi da lıktır. lin en yüksek da ı, Sarıveliler ilçesinde bulunan, Orta Toroslar'daki Yunt Da ı'dır ve yüksekli i 3227 m.'dir. Ayrıca, il merkezinin 20 km kuzeyinde bulunan Karada , 2271 m. yüksekli indedir. Sönmü bir volkanik da dır. 1 merkezi ovada kurulmu tur. Hemen güneyinde Toroslar'ın uzantıları yeralır. Mut yönünden Akdeniz'e, merkez Toroslar üzerinde, önemli bir geçit olan Sertavul Beli (Geçidi), ç Anadolu'yu Akdeniz'e ba layan önemli geçitlerden biridir. Daha güneyde ve görkemli Orta Toroslar'ın üzerinde, Ermenek, Ba yayla ve Sarıveliler ilçeleri yer almaktadır. Bu bölgede yer alan

Göksu Nehri'nin iki ana kolu, Orta Toroslarla birle erek, dik ve derin uçurumlu Ta eli (Klikya) platosunu olu turmaktadır. Kazım Karabekir ilçesinden güneye inildi inde, yine Toroslar'a ula ılır. Buranın en yüksek da 1 Hacıbaba Da 1 ile do usunda yer alan Musa, Yülek ve Çavdarlı tepeleri, daha güneyde, Toroslar'a dahil Geyik ve Bolkar Da ları'na ula ılır. Ayrancı ilçesini ku atan da lar; Bolkar, Bozo lan, Musa, Meke ve Çakırda silsileleridir. Toroslar'a dahil bu da ların arasındaki "Tarihi Mara Yolu"ndan çel iline ula ma olana 1 mevcuttur.

Karaman etrafında bulunan da ların ve Karada çevresinde, ovada yeralan iç denizin kıyı kesimlerinde, falezlere rastlanmaktadır. Bu falezlerin (taraça, seki) diklikleri l ile 10 m. arasında de i mektedir ve 900-995-1010 m. yükseltilerde yer almaktadırlar. Jeolojik devirlerde bu falezler, Karaman-Konya-Ere li havzasındaki iç denizin seviye de i melerine ba lı olarak meydana gelmi tir. Karada , esas itibariyle büyük bir koni görünümündeyse de, aslında üç koninin birbirleri ile kayna masından meydana gelmi tir. Bu üç koni, Karada 'ın en yüksek noktası Mihaliç Tepe (2271 m.); bunun kuzeyindeki, Ba tepe ve do usundaki Kızıltepe konileridir. Ba tepe'nin üzerinde, çapı 150 m. olan bir krater bulunmaktadır.

lin iki önemli ovası bulunmaktadır. 1 merkezinden Konya ve Ere li'ye do ru deniz seviyesinden 1000-1050 m. yükseklikte verimli "Karaman Ovası" yer almaktadır. Alanı 600 km olan ovada, tarıma engel olmayacak ekilde hafif dalgalanmalar bulunmaktadır. Di er bir ova "Ayrancı Ovası"dır. Ovanın geni li i 375 km; deniz seviyesinde yüksekli i ise 1010 - 1026 m.dir (Karaman Çevre Durum Raporu, 2011).

2. KURAMSAL B LG LER VE KAYNAK TARAMALARI

2.1. Çalı ma Bölgeleri le lgili Kaynak Taramaları

Antalya Bölgesi

Darkot ve Erinç (1951); Antalya Travertenini (tufa) "Toros eteklerine dayanmı ve birbirinden keskin bir ekilde ayrılmı üç basamaktan olu an bir merdiveni andıran taraçalı bir yapı" olarak tanımlamı tır.

(1985) tarafından yapılan "Antalya – Kırkgöz Kaynakları ve Traverten DS Platosu Karst Hidrojeolojik Özellikleri" çalı mada platolar ikiye ayrılmı ve denizden itibaren 250 -350 m kotlar arası için "Üst Plato", 35 - 150 m kotlar arası için "Alt Plato" tanımlaması yapılmı tır.

Nossin (1989); SPOT sayısal uydu görüntüleri üzerinde yaptı 1 de erlendirmeler sonucunda traverten (tufa) platolarını iki ana gruba ayırmı tır. Bu iki grup içinde de biri deniz altında olmak üzere 5 ayrı platoya ayırmı tır.

Burger (1990); düzlükleri deniz seviyesinden 110 m kotuna kadar "alt grup", 200 m ile 310 m arasına kadar "üst grup" olmak üzere iki ana gruba, bu iki grubu da kendi içinde 8 alt gruba ayırmı tır.

Özçelik ve Karagüzel (1992) tarafından, Antalya yerle im merkezi 18L-19L nolu paftalarının jeolojik ve jeoteknik özellikleri incelenmi ve bölgenin "Mühendislik Jeolojisi Haritası" adı altında 1:5000 ölçekli "Ar iv Haritası", "Jeoteknik Haritası" ve " Profil Haritası" hazırlanarak zeminler ve kayaçları olu turan birimlerin fiziksel ve mekaniksel özellikleri arazi ve laboratuvar deneyleri ile açıklanmı tır.

Kılıç and Yavuz (1994), Antalya travertenlerinin jeoteknik özelliklerinin belirlendi i çalı malarında, travertenleri masif, zayıf ve süngerimsi travertenler olarak üç gruba ayırmı lardır.

Ford and Pedley (1996); yayınında ilk kez Antalya Traverteni yerine tufa sözcü ünü kullanmı lar ve U/Th metoduyla bu olu umların 300 bin yıldan daha ya lı olabilece i ifade edilmi tir.

Dipova (1997); Konyaaltı (Antalya) bölgesindeki zemin davranı ını belirlemek için daha önce yapılan zemin etüt raporlarını incelemi, elde edilen verileri tablo halinde sunmu tur. Ara tırmacı bu çalı mayı yaparken zemin katmanlarının yatay ve dü ey süreklili ini dikkate alarak inceleme alanını 5 bölgeye ayırmı ve mikro- bölgelendirme haritası hazırlamı tır. Yörede yaygın olarak uygulanan tip yapıyı tespit etmi , bu tip yapıyı belirledi i bölgeler üzerinde gezdirerek yapının temel etki derinliklerini hesaplamı tır. Ayrıca bu tip yapının kendi a ırlı 1 nedeni ile olu an oturma özelliklerini her bir bölge için bulmu tur.

Ekmekçi ve Ba al (2000) tarafından, Antalya traverten platosu toprakları ve traverten akifer üzerinde bulunan toprakların do al arındırma incelenmi süreçlerinde önemli rol oynayan bazı parametreler belirlenmi tir. Çalı ma alanında görülen topraklar geciktirme etkileri, toprak kalınlı 1 ve yeraltısuyu seviyesine uzaklıklarına ba lı olarak üç gruba ayrılmı tır. Yüksek geciktirme etkisine sahip, kaim ve yeraltısuyuna uzaklıklarına fazla olan topraklar dü ük kirlilik riski; akifer üzerinde yayılım gösteren yüksek arındırma etkisine sahip litozolik topraklar yüksek kirlilik riski ve beslenme alanında yayılım gösteren yüksek kalınlı a sahip topraklar veya yüksek geciktirme etkisine sahip ince topraklar orta derecede kirlilik riski ta 1yan topraklar olarak gruplandırılmı tır. Bölgede yeraltısuyu kalitesinin korunması amaçlı ileriye dönük çalı malarda ve arazi kullanımının planlamasında bu bilgilerin dikkate alınması gerekti i ortaya konmu tur.

Dipova ve Doyuran (2002) Antalya tufa çökellerinin çökme mekanizmasını belirlemek için; tane, bo luk ve taneler arası ba malzemesinin özellikleri mikroskop ve elektron mikroskopu (SEM) kullanılarak ara tırılmı tır. Tufanın indeks özellikleri ve çökme potansiyelinin (Cp) belirlenmesi amacı ile örselenmi ve örselenmemi örnekler alınarak laboratuvarda deneye tabi tutulmu ve çalı maların çökelme ortamı ve mikro dokunun tufanın çökme davranı 1 ile ilgili oldu un belirlenmi tir.

Dipova ve Acar (2003); Konyaaltı (Antalya) kıyı alanındaki mavi-ye il kilin sıkı abilirlik özelliklerinin belirlenmesi için sabit efektif gerilme altında sıkı ma indeksi de erleri ile ikincil sıkı ma parametreleri arasındaki ili kiyi, kısa ve uzun süreli konsolidasyon deneyleri ile ara tırmı lardır. Yapılan çalı malar sonucunda mevcut olan 10~15 katlı yapılardaki toplam sıkı ma miktarları içerisinde ikincil sıkı manın %10~16'lık bir payı te kil etti ini bulmu lardır.

Kahraman et al. (2005); Burdur, Antalya, Karaman, cel, Konya, Ni de ve Sivas illerinden elde ettikleri dokuz farklı traverten örne i üzerinde görünür gözeneklilik, bo luk oranı, a ırlıkça su emme ve P dalgası hızı de erlerini laboratuvar deneyleriyle belirlemi ler ve gerçekle tirdikleri istatistiksel analizler sonucunda P dalgası hızı ile di er fiziksel özellikler arasındaki ili kileri ortaya koymu lardır. Çalı manın sonucunda yazarlar, P dalgası hızı ile travertenlerin fiziksel özellikleri arasında önemli bir ili ki oldu unu ve bu nedenle uygulanması kolay, ekonomik ve daha hızlı olan ultrasonik deneylerin kayaların fiziksel özelliklerinin belirlenmesinde kullanılabilece ini belirtmi lerdir.

Ko un vd. (2005); Antalya il sınırları içerisinde yapılan çalı ma sonucunda; akarsu, bataklık, göl ve elale – baraj ortamlarında çökelmi olan 10 adet litofasiyes tanımlamı lardır. Bunlar; 1. fitoherm çatıta 1 fasiyesi, 2. fitoherm ba lamta 1 fasiyesi, 3.mikritik tufa fasiyesi, 4. fitoklastik tufa fasiyesi, 5. onkoidal tufa fasiyesi 6. intraklastik tufa fasiyesi, 7.mikrodetritik tufa fasiyesi, 8. eski topraklar, 9. pizolitik tufa fasiyesi (kanal ve havuz tipi) ve 10. intraformasyonel konglomera fasiyesleridir.

Dipova ve Yıldırım (2005) tarafından, Antalya bölgesine ait sayısal topografik haritalar bilgisayar ortamında analiz edilerek, 3 boyutlu yüzey modeli elde edilmi, platoların sınırları belirlenmi ve buna göre sayıları belirlenerek gruplamalar yapılmı tır.

smailov vd (2005) tarafından, Antalya travertenlerinin çe itli kanalizasyon atıklarına kar 1 avrı ması incelenmi tir. Elde edilen denevsel verilere göre travertenlerin dayanaklı ındaki de i im oranları hesaplanmı ve istatiksel yorumlar yapılarak ortalama de erleri saptanmı tır.

Ko un ve Sarıgül (2006), Antalya tufaları içerisinde farklı bile imsel ve dokusal özellikleri ile ayrılan farklı giysili tanelerden onkoidler yüksek enerjili akı hızının geli ti i dar yarıklarda ve çöküntü alanlarında, buna kar ın pizolitler daha zayıf su hareketlerinin etkili oldu u teras havuzlarında ve gölsel tufayı kesen kanalların içlerinde meydana geldi ini belirtmi lerdir.

Dipova ve Cangir (2011); Antalya il merkezinin depremselli inin incelenmesi amacıyla Antalya çevresindeki sismotektonik bölgelerde 1900 - 2010 yılları arasında gerçekle en depremler dikkate alınarak, istatistiksel yöntemlerle tehlike analizi gerçekle tirmi lerdir. Bu çalı madan elde edilen bilgiler 1 1 ında; Antalya imar alanında tüm araziyi temsil edecek düzeyde zemin verileri elde edildi inde, zemin büyütme ve sıvıla ma potansiyeli haritaları hazırlanması ve mevcut yapıların depreme karı dayanıklılıklarının incelenmesine dönük bir çalı ma ba latılmadan önce, zeminlerin depremsellik davranı ları ile ilgili tüm bilgilerin bir mikro-bölgelendirme çalı ması halinde tamamlanmı olması gerekti ini belirtmi lerdir.

Akçal ve Acar (2013); Antalya bölgesindeki travertenlerin fiziksel ve mekanik özellikleri belirlenmeye çalı ılmı tır. Fiziksel özelliklerinin belirlenmesinde karot numunelerine uygulanan laboratuar deneylerinden yararlanılmı tır. Mekanik özellikleri belirlenirken 3 ayrı malzeme üzerinde çalı 1lm1 tır; do al ko ullardaki malzeme, 90 gün deniz suyunda bekletilen malzeme ve 90 gün atık sularda bekletilen malzeme. Sonrasında bu ko ullardaki dayanımı tek eksenli basınç testi ile belirlenmi tir. Sonuç olarak gerek deniz suyunun gerek atık suyunun travertenlerin dayanımını olumsuz etkiledi i sonucuna varılmı tır.

Özçelik (2015a); Muratpa a lçesi'nde 9 katlı 5 bina in aatı için yer seçimi (jeolojik, jeofiziksel ve jeoteknik) ara tırması yapmı tır. Temel kaya, 2000 yılına kadar septik çukurlar aracılı ıyla evsel ve endüstriyel atıkların direkt bo altıldı ı travertenlerdir. Bu nedenle, traverten kayaların, yüksek deformabilite ve yetersiz dayanım gibi zayıf mühendislik özelliklerine sahip oldu u, bunun da mühendislik yapısının in aatında sorunlara yol actı 1 bildirilmi tir. Bu çalı mada, kaya içine bo altılan atık suların etkileri ve traverten kayaların malzeme özelliklerinin yanısıra temel güçlendirilmesi ara tırılmı tır.

Özçelik (2015b); Antalya'daki akvaryum kompleksi için yer seçimi (jeolojik, jeofiziksel ve jeoteknik) çalı maları yapılmı ; zayıf travertenlerin kütle ve malzeme özelliklerinin belirlenmesi ve iyile tirilmeleri konusu ara tırılmı tır. Traverten kayaların, yüksek deformabilite ve yetersiz dayanım gibi zayıf mühendislik özelliklerine sahip oldu u, bunun da mühendislik yapısının in aatında sorunlara yol açtı 1 bildirilmi tir. Ayrıca yenilme riskine kar ılık önlemler belirlenmi tir. Bu çalı mada, zayıf travartenlerin kütle ve malzeme özellikleri ile temel iyile tirme yöntemleri ara tırılmı; bu yöntemler uygulanmı tır.

Burdur Bölgesi

Parejas (1942); Sandıklı-Dinar-Burdur-Isprta-E irdir dolaylarının 1/100000 ölçekli jeoloji haritasını yaparak, bölgenin stratigrafisinin Paleozoik, Mesozoik, Tersiyer ve Neojen'den meydana geldi ini belirtmi tir.

Poisson (1977); Ara tırmacı, Beyda larını olu turan karbonat kayalarının stratigrafisini ortaya koymayı amaçlamı tır. Karbonat kayalarının Liyas'tan Senoniyen'e kadar resifal kireçta ları olarak devam etti ini, Senoniyen'in ise pelajik kireçta larından olu tu unu belirtmi tir. Üst Paleosen-Alt Eosen ya ında bir olistostromun varlı ını, bunların üzerinde Lütesiyen kirecta larının uyumsuz oldu unu, Akitaniyen'de resifal kireçta ları, Burdigaliyen'de fili olarak devam etti ini savunmu tur. Antalya Napları'nın üç ana naptan olu tu unu belirten yazar, alt napın Çataltepe ve Tahtalıda ünitesinden olu tu unu ve Çataltepe ünitesinin Antalya Napları'nın temel parçasını olu turdu unu belirtmi tir Bu nedenle daha çok Çataltepe ünitesinin stratigrafisini ortaya koymaya çalı mı tır.

Akbulut (1980); E irdir Gölü güneyinde yapılmı olan çalı mada, Senomaniyen sonunda Çandır Formasyonunun Davras Kireçta ı üzerine bindirdi i ve allokton Sütçüler Formasyonu tarafından da örtüldü ü belirtilmi tir.

Kazancı vd. (1986); Burdur-göl havzasından deltayik kuvars kumları üzerinde elektron mikroskopik calı malar yaparak, bunların yüzey dokuları itibariyle iki kaynaktan olu tu unu belirtmi tir.

Yalçınkaya vd. (1986); "Batı Torosların Jeolojisi" adlı raporunda Triyas ya lı kireçta larının Burdigaliyen ya lı A lasun formasyonunun üzerine Miyosende etkili olan basınç gerilmeleri sonucunda bindirdi ini belirtmi tir.

Karaman (1990) tarafından, İsparta ile A lasun arasında kalan yakla ık 150 km²'lik alanın jeoloji haritası yapılmı ve bölgedeki kayaç toplulukları otokton ve allokton olarak iki gruba ayrılmı tır. Bu birimlerin birbirleri ile olan stratigrafiktektonik ili kileri açıklanmaya çalı ılmı tır. Bölgenin jeolojik yapısını ve tektonik morfolojisini önemli ölçüde de i tiren bindirme olayının Orta Miyosen'de gerçekle ti i belirlenmi tir. Bölgedeki ilk volkanizma faaliyetininin de Miyosen-Pliyosen geçi ine rastladı 1 belirtilmektedir. Ba lıca iki evrede faaliyet gösteren volkanizmanın olu umuna, Akda bindirmesi ile e ya lı yanal atımlı fayların sebep olabilece i dü ünülmektedir.

Ku çu ve Varkal (1991); Çamlık(Bucak-Burdur) travertenlerin jeolojisi ve mermer olarak kullanılabilirli ine göre; 1990 yılının ilk 8 aylık döneminde çıkarılan 355 adet blo un, boyut da 11m1 incelendi inde %56'sının 1-2.5 m³ arasında de i ti i gözlenirken, en büyük blok boyutunun, 7.5-9.5 m³ arasında oldu u ve bununda tüm toplam blok oranının %1.5'unu olu turdu u belirlenmi tir. Çamlık Travertenlerinin fiziko-mekanik deneyleri neticesinde, seviyelerine göre birim hacim a ırlı ının 2.44-%1.3-2.7, gözeneklilik $2.39 \,{\rm gr/cm^3}$, su emme oranının %3.2-6.4, e ilme mukavemetininse 48.8 kgf/cm²-39.6 kgf/cm² arasında de i irken, basınç mukavemetinin 350-453.7 kgf/cm² de erleri arasında oldu u saptanmı tır. Çamlık Travertenlerinin 659 375 000 m³ muhtemel rezervi oldu u belirlenmi tir.

Görmü ve Özkul (1995); Isparta-Gönen ve Burdur-A lasun arasındaki istiflerin stratigrafisini de erlendirilmi ; istif adlandırmalarında, ya landırmalarında ve ortamsal yorumlarında bazı bulgular sunulmu tur. De i ik litolojik ünitelerden olu an ncesu formasyonunun ya 111 Eosen, Volkanizmanın ya 111 da Plio-Kuvaterner olarak belirlemi lerdir.

Poisson vd. (2003); Isparta Büklümü'nün tektonik geli imi ile ilgili yaptıkları jeolojik yorumda; tabandan en üste do ru, önce Bey Da ları otoktonunun Camlıdere olistostomu tarafından üzerlendi i, sonra Geç Kretase-Paleosen'de Antalya Napı'nın (Isparta Cay formasyonu) bölgeye yerle ti i, Erken-Orta Miyosen'de denizel tortulla manın Antalya Napı ve Bey Da ları karbonat platformu üzerinde uyumsuz olarak geli ti i, Langiyen'de ise bölgeye Lisiyen Napları'nın yerle ti i ve son olarakta Aksu konglomeralarının Serravaliyen-Tortoniyen zamanında Bey Da ları ve Lisiyen Napları üzerini kapladı ını belirtmi lerdir.

Kun ve Türkmen (2003) tarafından, son yıllarda travertenlerin do al ta endüstrisinde, travertene artan talep do rultusunda söz konusu bölgenin öneminin arttı 1 belirtilmi ve Burdur - Bucak cevresi travertenlerin Neojen va lı ve bilimsel tanım içinde de erlendirilen travertenlere göre daha dayanımlı bir yapı oldukları ortaya konmu tur.

Yalcın ve Özcelik (2004) tarafından, Burdur vöresi travertenleri üzerinde gerçekle tirilen çalı mada, söz konusu travertenlerin fiziksel ve mekanik özellikleri incelenerek yapıta ı olarak kullanılabilirlikleri ara tırılmı tır. Çalı ma sonucunda daha masif yapıdaki travertenlerin yapıta 1 olarak kullanıma uygun oldu u, ancak gözenekli yapıya sahip olan travertenlerin yapıta 1 olarak kullanılamayaca 1 belirlenmi tir.

Erdo an (2013); Burdur-A lasun meteoroloji istasyonuna ait çe itli parametreler ve hidrolojik ölçümler de erlendirilerek A lasun Havzası için su bilançosu hazırlamı tır. Havzada hesaplanan toplam beslenim $25.2 \times 10^6 \text{ m}^3/\text{yll}$ ve toplam bo alım $32,0 \times 10^6 \text{ m}^3/\text{yll olarak hesaplanmı tır.}$

Karaman Bölgesi

Blumenthall (1944); Güney Anadolu Torosları'nın Karaman-A a 1 Göksu Çöküntüsü'nün do usunda kalan bölümünü "Do u Toroslar", batısında kalan bölümünü "Batı Toroslar" olarak adlandırmı tır.

Niehoff (1960); Helvesiyen-Tortoniyen aralı ında büyük oranda sonlanan iddetli fay tektoni inin Miyosen transgresyonuna yol açtı ını ve bunun sonucunda kuzeyde "Karaman Havzası", güneyde "Mut Havzası" olmak üzere iki ayrı havzanın olu tu unu, transgresyonun Karaman Havzası'nda Üst Burdigaliyen - Alt Helvesiyen, Mut Havzası'nda ise Üst Akitaniyen - Burdigaliyen aralı ında ba ladı ını belirtmi tir.

Platen (1971); Karaman güneyindeki denizel Miyosen'in Burdigaliyen -Helvesiyen ile ba ladı ını, en geni yayılımına Helvesiyen'de ula tı ını belirtmi tir.

nan ve U ur (1981); Hadim, Bozkır, Ermenek, Gazipa a dolaylarında bölgenin Kambriyen - Eosen aralı ında çökelmi , farklı havza özelliklerini yansıtan birbirleri üzerinde allokton örtüler olu turan birliklerden meydana geldi ini belirtmi lerdir.

Gökdeniz (1981); Karaman - Ermenek arasında Mesozoyik ya lı karbonatlardan olu an otokton konumlu kaya birimleriyle onun üstünde, birbiri üstüne bindirmeli konumda üc avrı allokton birlik ve tüm birimleri örten Miyosen va lı kayaların varlı ından söz eder. Allokton kayaların en alt yapısal diliminin içinde ye il tüfitlerin de bulundu u olistostrom gibi kaba kırıntılılarla ba layan ve pelajiklerle biten Orta - Üst Triyas ya lı kayalardan olu tu unu, bunun üzerinde kırıntılılardan olu an vah i fili in bulundu unu belirtmi tir.

Özhan (1990) tarafından yapılan, "Görmel Barajı (Ermenek, GD-Konya) Kuvvet Tünel Güzergahının Mühendislik Jeolojisi ncelemesi" adlı çalı masında, Görmel barajı kuvvet tünel güzergahındaki kaya birimlerini RMR ve Q sistemlerine göre de erlendirmi ; her iki sisteme göre gerekli destekleme önlemlerini kar 1la tırmı tır. Q Sistemi ile yapılan de erlendirmenin daha ayrıntılı ve geçerli oldu unu ve bu sistem parametrelerinin kombinasyonlarına göre gerekli destek önlemlerinin alınması artı ile Görmel barajı kuvvet tünel güzergâhının, mühendislik jeolojisi bakımından tünel in aatına uygun oldu unu belirtmi tir.

Sümer (2001); Karaman'ın güneybatısının jeolojisi incelenmi tir. nceleme yapılan alanda mermer ve traverten yataklarının varlı 1 tespit edilmi tir.

Ilgar (2004); Ermenek havzasının güney kenarındaki kırıntılı istifinin fasiyes analizini yapmı ve istifin stratigrafik incelenmesini gerçekle tirmi tir.

Esirtgen (2009) tarafından, Bucakı la bölgesindeki (Karaman güneybatısı – Orta Toroslar) Mesozoik ve Tersiyer ya lı birimler ayırtlanmı tır. Birimlerin ya ları tespit edilmi, mineralojileri, olu um ortamları ve ba ıl deniz seviyesi de i imleri belirlenmi tir.

2.2. Çalı ma Bölgelerinin Genel Jeolojisi

Calı ma alanlarının genel jeolojik özellikleri literatür taramasıyla ortaya konmu tur. Bununla birlikte bölgelerin jeolojik haritaları Maden Tetkik ve Arama Genel Müdürlü ü, Jeoloji Etütleri Dairesi tarafından hazırlanan "1/500.000 ölçekli, Türkiye Jeoloji Haritası, Konya paftasından" türetilmi tir (MTA, 2002).

Dö emealtı (Antalya) bölgesinin jeolojik haritası ekil 21'de, Bucak (Burdur) bölgesinin jeolojik haritası ekil 2.2'de ve Ermenek (Karaman) bölgesinin jeolojik haritası ise ekil 2.3'de sunulmu tur.

Antalya Bölgesi

Bölgedeki en eski temel ve derli toplu çalı ma Kalafatçıo lu (1973)' e aittir. Kafatçıo lu yaptı ı çalı mada kendinden önce de i ik ya ve isimlerle tanımlanan Triyas birimlerinin ritmik bir seri oldu unu belirtmi ; kumta ları, radyolarit çört ve plaketli kireçta larından olu an üç formasyona ayırmı tır. Aynı Triyas serisi daha kuzeyde çalı an Lefevre (1967) tarafından Antalya napları olarak tanımlanmı tır. Antalya napları ise Brunn vd. (1971) tarafından Alt nap (Çataltepe ünitesi), Orta nap (Alakırçay ünitesi), Üst nap (Tahtalıda ünitesi) olarak ayrılmı tır. Bu ayrıma enel vd. (1992-1996) Tekirova ofiyolit napını ilave etmi tir. Antalya napları bölgede, Beyda ları otoktonu olarak bilinen Jura- Kretase ya lı Beyda ları Formasyonu (Günay vd. 1982) ile ba layıp, Tersiyer Kasaba Formasyonu (I dır vd. 1972) ile sonlanan birim üzerinde yer alır.

Bölgede geni yayılım gösteren batıda Bo açay, do uda Aksu çayı, kuzeyde Toros Da ları ve güneyde Akdeniz ile sınırlı alanda bulunan Antalya Travertenleri, konum ve olu um özellikleri ile literatürde önemli bir yere sahiptir. Penck (1918), Phillipson (1918), Altınlı (1944), Darkot ve Erinç (1951), Aydar ve Dumont (1979), nan (1980), Burger (1990) ve Lale (2005), Antalya travertenlerinin karasal kökenli ve tektonik kırıklara ba lı kaynak suları ile olu tu unu, buna ba lı basamaklı bir yapıya sahip olduklarını söylemi lerdir. Di er taraftan Atabey (2004), Dipova (2002a), Glover ve Robertson (2003), Dipova ve Yıldırım (2005), Ko un vd. (2005) yaptıkları çalı malarda Antalya travertenlerinin olu um özelliklerine göre traverten yerine kalkerli tatlısu çökellerini ifade eden tufa teriminin (Ford ve Pedley, 1996) kullanılması gerekti ini söylemi lerdir.

Antalya tufası, batıda ve kuzeyde Beyda ları ile, do uda Aksu Nehri, güneyde ise Akdeniz ve Akdeniz kıyısında geli en kıyı düzlükleri ile çevrili ve 4 ayrı çökelme sisteminde geli mi tir. Bunlar; gölsel, akarsu, ça layan ve paludal sistemlerdir (Dipova ve Yıldırım, 2005).

Antalya tufası çökeliminin gerçekle ti i Aksu baseninin olu umu Anadolu Yarımadası'nın tektonik geli imi ile ilintilidir. Tektonik etkilerle Anadolu blo unun batıya do ru hareket etmesi ve sıkı ma sonucu olu an yükselme ile Aksu Havzası'nın yarı graben eklinde açılması neticesinde Antalya'nın batısında alçalma do usunda ise yükselme olmu tur. Açılan bu yarı graben içinde Antalya Tufası çökelmi tir (Glover and Robertson, 1998).

ekil 2.1. Dö emealtı (Antalya) bölgesi ve çevresinin jeolojik haritası (MTA, 2002).

Burdur Bölgesi

Bölgede altta Üst Paleosen-Alt Eosen ya lı, allokton konumlu, " ç Toros Napı" bulunur. Bu ofiyolitler üzerine, Lütesyen ya lı Gölba ı Formasyonu uyumsuzlukla gelir. Pliyosen ya lı Burdur Formasyonu da bu birimler üzerine uyumsuz olarak gelir. Birbirleri ile uyumsuz olan Pliyo-Kuvaterner ya lı Karaçal ve Yakaköy Formasyonları da di erlerinin üzerine uyumsuz olarak gelir. En üstte Kuvaterner ya lı alüvyon ve birikinti konileri yer alır.

ç Toros Napı: Allokton konumda olan birim ba lıca serpantinit, harzburjit, gabro, diyabaz, spilit, radyolarit ile de i ik boyutlardaki kumta 1 ve kireçta 1 bloklarından olu ur. Gökçeba köyü, karalar Köyü ve daha güneyde Hacılar, Karaçal Köyü civarında yüzeyler. Alt dokana 1 gözlenemeyen birimi, Gölba 1 ve Burdur Formasyonları uyumsuz olarak örter.

Hacılar Kireçta 1 Blokları: Masif görünümlü, kristalize kireçta larından olu ur. Yassıgüme Köyü çevresi ile Sivritepe dolaylarında yüzeyler. Allokton konumlu olan bu blokların, içinde yer aldıkları ofiyolitik kayaçlarla olan dokana 1 tektoniktir.

Gölba 1 Formasyonu: Fli fasiyesinde çökelmi olan birim, Gökçeören Köyü ile Yakaören ve Gölba 1 Köyleri arasında yüzeyler. Çakılta 1, kumta 1, killi kireçta 1, kireçta 1 ve marn ardalanmasından olu ur. ç Toros Napı üzerinde uyumsuz olarak oturan birim, Pliyosen ve Kuvaterner ya lı tortullar tarafından uyumsuz olarak örtülür.

Burdur Formasyonu: Burdur ili ve çevresinde gözlenen bu birim, Akdere ve Gölcük olmak üzere iki üyeye ayrılmı tır. Birbirleriyle yanal ve dü ey geçi li olan iki üyenin toplam kalınlı 1, 1000 metredir. Akdere üyesi, açık renkli tonlu olup, çakılta 1, kumta 1, kilta 1, kirecta 1, marn, tüfit ve jipsli seviyelerden olu ur. Gölcük üyesi ise tüfitlerle, bunlara e lik eden tüf, aglomera ve andezitik-trakitik özellikli lavlardan olu ur. Burdur Formasyonu, ofiyolitik kayaçlar ve Gölba 1 Formasyonu üzerinde uyumsuz olarak bulunur. Üst dokana 1 ise bazı kesimlerde Karaçal Formasyonu ve genç travertenler ile alüvyon örtülerle uyumsuzdur.

Karaçal Formasyonu: Burdur'un güneybatısında yüzeyler. Sarımsı-kırmızımsı renkli, gev ek dokulu çakılta larından olu ur. Burdur Formasyonu ile alt dokana 1 uyumsuz olan birim, alüvyonlar tarafından uyumsuz olarak örtülür.

Yakaköy Traverteni: Sarımsı krem beyazı renkli olup, yer yer kalın tabakalanma sunar. Bazı kesimleri tüflerle yanal ve dü ey geçi lidir. Birim, Burdur Formasyonu'nun killi-marnlı seviyeleri üzerinde açısal uyumsuzdur. Üst dokana 1 ise alüvyonlar tarafından uyumsuz olarak örtülmü tür.

Alüvyon ve Birikinti Konileri: Burdur Gölü çevresinde yaygın bir ekilde görülür. Alüvyon ve birikinti konileri için gerekli malzeme, Pliyosen ya lı karasal tortullardan sa lanmı tır. Gev ek tutturulmu kum, kil ve çakıldan olu ur (Anonim-1).

ekil 2.2. Bucak (Burdur) bölgesi ve çevresinin jeolojik haritası (MTA, 2002).

Karaman Bölgesi

Karaman ve civarında otokton konumlu kayalar yüzeyler. "Hadim Birli i" adı altında toplanan ba lıca birimler, Orta Kambriyen ya lı Çaltepe Formasyonu, Üst Kambriyen-Ordovisiyen ya lı Seydi ehir Formasyonu, Orta Jura-Kretase ya lı Kaplanlı Formasyonu, Üst Kretase-Orta Eosen ya lı Yeniköy Formasyonu, Orta-Üst Eosen ya lı Karaçalı Formasyonu'dur.

Çaltepe Formasyonu: Hamzalar Köyü güneybatısında ve Göksu Vadisi tabanında yüzeyler. Altta siltta 1- eyl ardalanmasıyla ba lar. Orta-kalın tabakalı kristalize ve yer yer dolomitize kirecta larıyla sürer. Üstte eyl arakatkılı, yumrulu görünümlü kireçta ları yer alır. Formasyonun tabanı gözlenememektedir, üstte ise Kambriyen-Ordovisiyen va lı Seydi ehir Formasyonu ile geçi lidir.

Seydi ehir Formasyonu: Kaplanlı Köyü dolayında, Göksu Irma 1 ve kolları içinde yüzeyler. nce-orta tabakalı, sarımsı ye il, ye ilimsi kül renginde kilta 1, milta 1, kumta 1 ardalanmasından olu ur. Altta Çaltepe Formasyonu ile geçi lidir. Üstte Orta-Üst Jura-Kretase ya lı Kaplanlı Formasyonu tarafından diskordanslı ili ki ile üzerlenir.

Kaplanlı Formasyonu: Kaplanlı Köyü ve kuzeyindeki Çakırıngedik Tepe dolaylarında yüzeyler. Kül renkli, orta-kalın tabakalı, ince kilta 1-marn arakatkılı kireçta 1, dolomitik kireçta 1 ve yer yer dolomitten olu ur. Formasyonun en üst düzeyinde, rudist kavkı kırıntılı kireçta ları gözlenir. Altta, Seydi ehir Formasyonu üzerine uyumsuz olarak gelir, üstte ise Paleosen-Orta Eosen ya lı Yeniköy Formasyonu ile geçi lidir.

Yeniköy Formasyonu: Yeniköy'ün 4 km kuzeyinde Karaçalı Tepe, Polatköy ve güneyinde yüzeyler. Kül renkli, orta-kalın tabakalı, ince kırıntılı, mercanlı ve bol algli kireçta larından olu ur. Altta Kaplanlı Formasyonu ve üstte Karaçalı Formasyonu ile geçi lidir.

Karaçalı Formasyonu: Polat Köyü'nün 1.5 km güneyinde, Tuzladere ile Küplüce Köyü-Çardak Yayla arasında yüzeyler. Boz-kirli beyaz renkli, ince-orta tabakalı, volkanik gereç katkıları içeren, çakılta 1-kumta 1-siltta 1 ardalanması ile ba lar. ri kireçta ı çakıllı, volkanik gereç katkılı iri çakıl, çakıl, kum, silt, kil boyu gerecin yı 1 ımından olu an moloz akması düzeyiyle sürer. Birim daha üstte, formasyonu üstten tektonik ili kiyle üzerleyen Gedikda 1 Birli inin kızıl renkli, ince-orta tabakalı, çörtlü kirecta 1 bloklarıyla serpantin parçaları içeren, volkanik gereç katılı çakılta 1, kumta 1, siltta 1 ardalanması biçiminde gözlenir. Birim, altta Paleosen-Orta Eosen ya lı Yeniköy Formasyonu ile geçi lidir. Üstte Göksu naplarını olu turan nap dilimleri paketi tarafından tektonik ili ki ile üzerlenir (Anonim-2).

ekil 2.3. Ermenek (Karaman) bölgesinin ve çevresinin jeolojik haritası (MTA, 2002).

2.3. Çalı ma Konusu le lgili Kaynak Taramaları

Moye (1955); bozunma konusunda çalı an ilk ara tırmacılardan biridir ve Avustralya'daki granitler üzerinde yaptı 1 incelemeler sonucunda granitlerin bozunma derecesinin ortaya konması amacıyla ilk sınıflama sistemini önermi tir. Daha sonraki yıllarda, Kiersch and Treacher (1955), Ruxton and Berry (1957), Knill and Jones (1965), Little (1969), Fookes and Horswill (1970) ve Fookes et al. (1972) tarafından yine ço unlukla granitlerin bozunma derecelerinin incelenmesi amacıyla çe itli sınıflama sistemleri geli tirilmeye çalı ılmı tır.

Illiev (1967); kayaç içindeki ses yayılım hızı indeksini kullanarak farklı bozunma derecelerini karakterize edebilmi tir.

Ollier (1969); minerallerin bozunması olayına tamamıyla kimyasal açıdan bakılmaması gerekti ini ve aynı bile ime sahip minerallerin farklı oranlarda bozunmaya maruz kalabildiklerini belirtmi tir.

Fookes vd (1971); bozunmanın günümüzde en çok kabul gören tanımını yapmı lar ve bozunmayı "kayaların hidrosfer ve atmosferin do rudan etkisi altında kalarak ayrı ması olayı" olarak açıklamı lardır.

Franklin ve Chandra (1972); suda da 1lmaya kar 1 dayanıklılık indeksi, bozunma oranı ve ev açısı arasında bir ba lantı kurulması üzerine çalı malar yapmı lardır.

Richards (1972); bozunmaya u ramı kayaçların sınıflandırılmasına yönelik bir program olu turmu tur.

Dearman (1974); fiziksel bozunma derecesinin ve karbonatlı kayalarda çözünme mekanizmasının ortaya konabilmesi amacıyla çe itli tanımlamalar önermi tir. Anon (1977) tarafından yapılan çalı mada, kaya kütlesi ve kaya malzemesindeki bozunma ara tırılmı, kaya kütleleri için yedi adet bozunma derecesi belirlenirken, kaya malzemesindeki bozunma miktarının tanımlamasının görsel olarak yapılabilece i ifade edilmi tir (Anon 1995; Arıkan 2002).

Kaya malzemesi ve kaya kütlesi için mühendislik amaçlı bir bozunma sınıflaması Dearman et al. (1978) tarafından geli tirilmi ve bu sınıflama daha sonra ISRM (1978) tarafından da kabul görmü tür. Bu sınıflama sisteminde bozunma sonucu meydana gelen renk de i imi, kayanın dayanımındaki azalma ve mineral kompozisyonundaki de i imler esas alınmı tır. ISRM(1978) tarafından kaya malzemesi için önerilen bozunma sınıflarının tanımı Çizelge 2.1'de; kaya kütlesi için önerilen bozunma sınıfları ise Çizelge 2.2'de sunulmaktadır.

Olivier (1979); tek eksenli basma dayanımı ve i me katsayısı parametrelerine dayanarak kayaçların duraylılı ına yönelik çalı malar yapmı tır.

Price (1993); tarafından kayaların bozunma derecelerini sayısal olarak açıklayan bir yöntem önerilmi tir. Bu yöntem, özellikle, yerüstünde bulunan kaya kütlelerinin bozunma derecelerini sayısal olarak açıklamaktadır.

Tu rul (1995); bazaltların bozunmasına yönelik olarak Niksar ve yöresinde yapmı oldu u doktora tezi çalı masında, bu bölgedeki bazaltlar için kaya kütlesinin dokusu, kaya/zemin oranı, kaya ve süreksizliklerdeki renk de i imleri ve çekirdek tası özelliklerine dayalı göreceli bir bozunma sınıflaması geli tirmi tir. Dört ayrı bozunma sınıfı içeren söz konusu sınıflama sisteminin olu turulabilmesi için, elde edilen örnekler üzerinde çok sayıda petrografik, kimyasal ve fiziksel analiz ile jeomekanik deneyler gerçekle tirilmi tir.

Price (1995); mühendislik yapılarının genellikle sı derinliklerde in a edildi ini belirterek, kayalarda meydana gelen bozunmanın mühendislik projeleri için dikkate alınması gereken önemli bir konu oldu unu vurgulamı tır. Bununla birlikte, kaya malzemesinin bozunmasını kontrol eden en önemli hususların mineraloji, tane boyu ve gözeneklilik ile geçirgenlik oldu u ifade edilmi tir.

Gökçeo lu vd (2009); granitlerin ayrı ma derecesi dolaylı yöntemlerle belirlenmeye çalı ılmı tır. Bu çalı mada; yapay sinir a ları ve bulanık mantık yardımıyla, basit ve ucuz ayrı ma derecesi tahmin modellerinin olu turulması amaçlanmı tır. Bunun için Türkiye'nin güneydo usundaki Har it granitoid numuneleri kullanı mı tır. Model girdileri gözeneklilik, P-dalga hızı ve tek eksenli basınç dayanımı iken model çıktısı da ayrı ma derecesidir. Bu çalı mada geli tirilen modellerin ayrı ma derecesinin dolaylı belirlenmesinde kullanılabilece i sonucuna varılmı tır.

Tanım	Tanımlayıcı Özellikler		
Taze	Bozunmanın etkisi görülmez.		
Renk de i tirmi	Renk de i mi tir.		
Da 1lmı Dayanım azalmı ancak kaya, zemin haline dönü memi tir.			
Dozunmu	lksel doku korunmasına ra men kaya, zemin haline dönü mü tür.		
Dozumnu	Minerallerin bazıları veya tümü bozunmu tur.		
Ufalanmı	lksel doku korunmasına ra men kaya, zemin haline dönü mü tür.		
Utatalilli	Kaya kolaylıkla ufalanabilir, ancak mineral taneleri bozunmamı tır.		

Cizelge	2.1. Kav	a malzemesine	ait bozunma	sınıflarının tanımı	(ISRM, 1978).
3					(,,,,

Çizelge 2.2. Kaya kütlesine ait bozunma sınıflarının tanın	n (ISRM, 1978).
--	-----------------

Tanım	Sınıf	Tanımlayıcı Özellikler		
Taze	т	Malzemede bozunmanın etkisi görülmez, ancak süreksizlik		
	1	yüzeylerinde renk de i imi olabilir.		
Az	п	Malzemede ve süreksizlik yüzeylerinde renk de i imi olmasına ra men,		
bozunmu	11	kayanın dayanımı azalmamı tır.		
Orta		Malzeme tamamen renk de i tirmi ve dayanım önemli ölçüde		
derecede	III	azalmı tır. Taze veya renk de i tirmi sa lam kaya kütlesi bol eklemli		
bozunmu		bir yapı gösterebilir veya çekirdek ta ları halinde bulunabilir.		
leri		Kaya malzemesinin bir bölümü bozunmu veya ufalanmı tu		
derecede	IV	IV Dayanımsız ve renk de i tirmi olup, kaya malzemesi çekirdek ta ları		
bozunmu		eklinde bulunabilir.		
Tamamen	V	Kaya malzemesi tümüyle zemin haline dönü mü veya ufalanmı tır.		
bozunmu	v lksel kaya yapısı ve dokusu korunmaktadır.			
Kalıntı	Kaya malzemesi tümüyle zemin haline dönü mü tür. Kütleye veya			
toprak	VI malzemeye ait doku tamamen kaybolmu tur. Hacim büyük ölçüd			
_		artmı, ancak malzeme henüz ta ınmamı tır.		

Dayanımı dikkate almayan ancak kaya ve süreksizlik yüzeylerindeki renk de i imlerine dayanan bir di er sınıflama sistemi ISRM (1981) tarafından önerilmi tir (Çizelge 2.3). Bu sınıflama sisteminin sınırlayıcı yönü, kaya kütlesindeki bozunma derecelerinin tamamen göreceli kavramlar yardımıyla belirlenmesidir.

Tanım	Simge	Tanımlayıcı Ozellikler	
Taze	W1	Ana kayada renk de i imi yok, dayanımda bir azalma veya di er	
(bozunmamı)		bozunma etkileri söz konusu de il.	
Az bozunmu	W2	Kayanın süreksizliklere yakın olan kesimlerinde çok az renk de i imi var. Süreksizlik yüzeyleri açık ve çok az de i mi . Kaya, bozunmamı kayaya oranla belirgin bir zayıflık göstermiyor.	
Orta bozunmu	W3	Kayanın rengi de i mi, süreksizlikler açık ve yüzey rengi de i mi olabilir, bozunma kayanın içine etki etmeye ba lamı. Kaya belirgin ölçüde zayıflamı (ana kaya/bozunmu kaya oranının tahmini mümkündür)	
Çok bozunmu	W4	Kayanın rengi de i mi, süreksizlikler açık ve yüzey rengi de i mi olabilir, Süreksizliklere yakın kesimlerde orijinal doku de i mi, bozunma kayanın iç kesimlerini daha fazla etkilemi, ancak ana kaya halen mevcut (ana kaya/ bozunmus kaya oranının tahmini mümkündür)	
Tamamen bozunmu	W5	Kayanın rengi de i mi ve kaya, zemin haline dönü mü tür, ancak orijinal dokusu genel olarak korunmu . Seyrek olarak küçük ana kaya parçaları bulunabilir. Bozunma ürünü, zeminin ve kısmen ana kayanın özelliklerini yansıtmaktadır.	

Çizelge 2.3. Kaya kütlesi için bozunma derecelerinin tanımlanması (ISRM 1981).

Son yıllarda bozunma derecelerinin sayısal olarak ortaya konabilmesi amacıyla yapılmı en kapsamlı çalı ma Price (1993) tarafından gerçekle tirilmi tir. Ara tırmacı, tüm kaya türleri için genel bir sınıflama önermekle birlikte magmatik, sedimanter ve metamorfik kaya türleri için ayrı ayrı puanlama sistemi de geli tirmi tir. Bu puanlama sistemlerinde kaya dayanımı, renk de i imleri ve süreksizlik yüzey özellikleri dikkate alınmı tır.

Tüm kaya malzemesi türleri için olu turulmu geni kapsamlı bir sınıflama sistemi Anon(1995) tarafından önerilmi tir (Çizelge 2.4). Bu sistemde, bozunma sonucu kayanın özelliklerindeki farklıla malar; renk de i imi, dayanımdaki azalma. süreksizliklerdeki de i imler ve bozunma ürünleri dikkate alınarak de erlendirilmekte ve bozunma sınıfları bu de erlere ba lı olarak gözlemsel olarak belirlenmektedir.

Derece	Sınıf	Tanımlayıcı Özellikler	
Ι	Taze	lksel durum de i memi tir.	
II	Az bozunmu	Hafif renk de i imi, dayanımda azalma.	
III	Orta bozunmu	Dayanımda önemli ölçüde azalma, renk de i imi kayanın içine etki etmi, iri parçalar elle kırılmaz.	
IV	Çok bozunmu	ri taneler elle kırılabilir, kaya suda çabuk da 11maz.	
V	Tamamen bozunmu	Dayanım oldukça azalmı tır, kaya suda çabuk da ılır, kayanın orijinal dokusu de i memi tir.	
VI	Kalıntı zemin	Bozunma sonucu kalıntı zeminler olu mu tur, kayanın orijinal dokusu kaybolmu tur.	

Çizelge 2.4. Anon (1995) tarafından tüm kaya malzemesi grupları için önerilen bozunma siniflamasi

Özvan (2010) tarafından, ayrı ma sonucu pürüzlü yüzeylerin olu tu u granit ve kristalize kirecta 1 gibi kayaların kesme dayanımı de erlerinin, pürüzlülük ve bozu ma ile olan ili kisi ara tırılmı tır. Buna göre; granitlerde pürüzlülük, bozu arak ortamdan uzakla an feldspat mineralleri sonucu olu tu u, kristalize kireçta larında ise stilolit olu umları sonucu olu tu u belirtilmi tir.

Bilgin vd (2012) tarafından, Hasankeyf ve yöresindeki kayaçların ayrı masına etki eden faktörler ara tırılmı tır. Çevredeki litolojiler ve tarihi yapıtların tektonik olaylardan ve ya mur sularından olumsuz etkilenerek kaya dü melerine ve ayrı malara neden oldu u belirtilmi tir.

Karaman vd (2012) tarafından, Araklı-Ta önü(Trabzon) kalker oca ında de i ik karbonat fasiyeslerinde yüzeylenen kayaçların ayrı ma durumları de erlendirilmi tir. A ırlıkça su emme yüzdelerine göre; Z-2 ayrı mamı, Z-1 ve Z-4 az ayrı mı, Z-3 ise orta ayrı mı sınıfına dahil edilmi tir.

2.4. Bozunma

1930'lu yıllardan itibaren kaya bozunmaları ile ilgili birçok çalı ma ve birbirine benzeyen de i ik bozunma tanımlamaları yapılmı tır. (Ollier, 1969; Fookes vd. 1971; Chandler, 1972; Richards, 1972; Bell, 1983; Beavis, 1985; Bltyh ve Freiter 1987). Yapılan bozunma tanımlamaları içinde önceleri bazı çeli ki, karı ıklık ve eksikler olmasına ra men, günümüze kadar yapılmı olan ara tırmalar neticesinde bozunma olayını en iyi ekilde ifade eden bir tanımlama olu turmaya çalı ılmı tır. Bozunmanın günümüzde en çok kabul gören tanımı, Fookes vd. (1971) tarafından yapılmı olan ve bozunmayı "Kayaların Hidrosfer ve Atmosferin Do rudan Etkisi Altında Kalarak Ayrı ması Olayı" olarak açıklayan tanımdır.

Bozunmanın mekanizması, kayaçların toprak (zemin) olarak adlandırılmalarına kadarki süreci etkileyen veya belirleyen a amalar olarak tanımlanabilir. Bozunma mekanizması birçok ara tırmacı tarafından fiziksel ayrı ma, kimyasal ve biyolojik bozunma olmak üzere üç ana grup altında toplanmı tır (Beavis, 1985; Perry, 1986; Johnson ve DeGraff, 1988), (Çizelge 2.5).

Kaya kütlelerinin bozunması, bozunmaya u ramı malzemenin kütledeki da ılımına, süreksizlikler üzerindeki etkisine ve kavactaki renk de i imlerine göre de erlendirilir. Bozunmaya u ramı kayada meydana gelen de i iklikler, kayanın mühendislik ve jeoteknik özellikleri açısından çok önemlidir.

Bozunma Çe idi Mekanizma		Etkileri	
 Fiziksel Parçalanma (Mekanik Bozulma) Mekanik yük azalması Mekanik yükleme Termal yükleme Islanma ve kuruma Re-Kristalizasyon Mekanik göçmeler Kolloidal kopmalar 		 Parça boyutlarının küçülmesi yüzey alanının artmasına neden olur. Kimyasal bir de i iklik yoktur. Blok ve tane parçalanması olur. 	
 Erime (Çözülme) Oksitlenme ndirgenme Hidrasyon Hidroliz Çözelti olu umu Katyon de i imi Karbonatla ma 		 Yeni mineraller olu ur. Dokusal de i iklikler nedeniyle mineral malzemesi kaybı olur. Kaya malzemesi ve kaya kütlesinin fiziksel ve mekanik özelliklerinde özellikle dayanımlarında, önemli dü ü ler olur. 	
Biyolojik Bozunma	 Basit parçalanmalar Malzeme nakli Kimyasal etkiler Toprak nemi üzerinde etkiler PH üzerindeki etkiler Erozyonun önlenmesi 	 Fiziksel, kimyasal ve biyokimyasal etkiler. Bakteriyel aktiviteler Parçalanma Bozunma 	

Çizelge 2.5.	Bozunma türleri ve mekanizmaları (Ollier, 1969; Beavis, 1985; Peri	ry
	1986).	

2.4.1. Bozunma Türleri

Bozunma fiziksel, kimyasal ve biyolojik olmak üzere üç ana sınıfa ayrılmaktadır. Kayalarda meydana gelen bozunma kaya mühendisli i açısından çok önemlidir.

2.4.1.1. Fiziksel Bozunma

Fiziksel parçalanma kaya kütlelerinin ve malzemesinin parçalanması ile olu ur. Kayaların bloklar halinde parçalanması kaya kütlesi içindeki süreksizliklere, taneler halinde parçalanması ise tane sınırlarına ve mineral çatlakları gibi mikro süreksizliklere ba lıdır. Bazı ara tırmacılara göre çok az kimyasal de i ikli e yol açarak olu an mekanik parçalanmalar da fiziksel parçalanma olarak adlandırılabilir (Johnson ve DeGraff, 1988). Fiziksel parçalanmaya neden olan en önemli etkenler basınç, sıcaklık, ya mur ve rüzgârdan olu ur (Çizelge 2.6). Cizelge 2.6. Fiziksel parçalanma nedenleri ve mekanizmaları (Blyth ve Freiter, 1987;

Mekanik Yük Azalması	Dü ey arazi gerilmesinin örtü tabakasının erozyonu neticesinde azalması ile dü ey yönde bir gerilme rahatlaması olur. Böylece dü ey yönde bir genle me olu ur. Bu durum mevcut çatlak yüzeylerinin açılmasına ve yeni kırık ve çatlakların olu masına öncülük eder.
Mekanik	Kurak çölümsü bölgelerde kum rüzgârları sebebiyle olu an taneler arası
Yükleme	çarpı malar ve iddetli ya 1 lar sonrasında meydana gelen a ınmalardır.
Termal	Kayaç ve zeminlerin so uk bölgelerde so uma sonucu büzülmesi, çatlak,
Yükleme	yarık ve gözenek sularının donması ve sıcak bölgelerde de kayaların sıcaklık
	de i imleri sonucu parçalanması meydana gelebilir.
Islanma ve	Minerallerin ve ba layıcı malzemelerin suyu emmeleri ve kaybetmeleri
Kuruma	sonucunda olu an genle me ve büzülmelerin neden oldu u de i imlerdir.
Kristalle me	Donma, buharla ma ve kimyasal de i iklikler sonucu gözenek ve çatlaklarda
Kilstalle lile	meydana gelen de i imlerdir.
Mekanik	Havanın ve suyun yer de i tirmesi ve gerilmelerin etkisiyle yarmalarının ve
Göçmeler	yeraltı bo luklarının olu ması sonucu meydana gelen de i imlerdir.
Kallaidal	Bozunmaya ba lı olarak kayacın yüzeyinde olu an ince bir tabaka halindeki
Konmalar	kilin kayaçtan koparken tabakaya ba lı bütün parçacıkların birlikte ayrılması
Kopinalar	sonucu olu ur.

Fiziksel parçalanmayı meydana getiren mekanizmalar ekil 2.4'de gösterilmi tir. Bu mekanizmalar kayada hacim artı 1, yüzey alanı artı 1 ve dane boyu küçülmesi gibi sonuçlar meydana getirmektedir.

Jeolojik süreçlerle yüzeye ula an derinlik kayacındaki eklem takımları boyunca giren sular donma sonucunda çatlak aralıklarını geni leterek, blokları birbirinden ayırarak hareketlendirip kaymalara, blok dü melerine sebep olabilmektedirler. Fiziksel ayrı maya neden olan faktörler a a ıda belirtilmi tir(Anonim-3).

Isıl Genle me

- Gece-gündüz sıcaklık farkının fazla oldu u, çöl benzeri sıcak bölgelerde meydana gelir.
- Gündüz sıcak etkisi ile geni leyen kayaç, geceleri so ur ve büzü ür. Bu gerilim farkı ilk olarak dı katmanları etkilemeye ba lar ve dı çeperin ince katmanlar halinde soyulmasına neden olur.
- Nemin dü ük oldu u hallerde etkisi azalır.
- Soyulma veya so an-kabu u eklinde bozulmadır.

ekil 2.4. Fiziksel bozunma süreçleri (Anon, 1995).

Donma-Çözülme

- Kırık ve çatlaklardaki suyun donarak, genle mesi ile olu ur. Genle me sırasında 2100 kgf/cm² ye kadar çıkabilen gerilme, birçok kayacın dayanımından fazladır ve parçalanmaya yol açar.
- Donma-Çözülme olayı nemin fazla oldu u ve sıcaklı ın sıkça donma noktasının altı ve üstünde dalgalanmalar yaptı 1, alpin ve buzul (çevresi) alanlarda görülür.
- Kırık ve çatlaklara giren su donar ve bunların derinle me ve geni lemesine yol açar. Bu etki suyun donma sonrasında hacminin % 9 oranında artması sebebi iledir.

Basınç-Serbestleme

- Kayaçların a ırlıkça yüklenmesi ile olu an basıncın ortadan kalktı 1 durumlarda meydana gelir. Erozyon, buzul erimesi vb. faktörlerle üstten kalkan a ırlık ile olu an gerilim serbestlemesi sonucu altta rahatlayan kayaçlarda geni leme ve bunu takiben yüzeye paralel kırıklanmalar geli ir.
- En genel örne i derinlerde olu an intrüzif kayaçların (granit vb.) üzerindeki örtünün kalkması ile meydana gelen serbestleme.

Hidrolik Hareketler

- Kayaç çatlakları içerisine hızlı bir ekilde nüfuz eden suların (genellikle güçlü dalgalar eklinde) etkisi ile olu ur.
- Hızla giren sıvı çatlak tabanında bir hava tabakası sıkı tırır ve bu basınç artı ı kayacı zayıflatır. Dalganın geri çekilmesi ile iyice sıkı tırılmı hava, iddetli bir ekilde çatla ı terk eder ve zayıflık yüzeylerinin artmasına sebep olur.
- Özellikle dalga etkisine maruz kalan yamaç ve falezlerde çok hızlı bir günlenme geli imi görülür.

Tuz Kristallenmesi

- Tuzlu çözeltilerin kayaç kırık ve çatlaklarına nüfuz etmesi, ardından buharla arak • tuz kristalleri bırakması ile olu ur. Bu tuz kristalleri sıcaklı ın arttı 1 durumlarda genle erek, kayaç üzerindeki gerilimi arttırırlar.
- Tuz kristallenmesi ayrıca karbonatlı kayaçların ayrı ması sonucu, sodyum sülfat veya sodyum karbonatlı tuz cözeltilerinin olu umu ile de meydana gelebilir.
- En etkili kayaç çözen tuzlar magnezyum sülfat ve kalsiyum klorittir. Bazı tuzlar kristal halde hacimsel olarak 4-5 kat büyüyebilirler.
- Esas olarak ısınmanın fazlaca buharla maya sebebiyet verdi i kurak iklimlerde görülür. Bu ekilde kuvvetli tuz kristallenmesi meydana gelir.
- Deniz kıyılarında meydana gelen bal pete i ekilli tuz günlenmesi tipiktir.

Biyotik Günlenme

- Canlı organizmalarda mekanik günlenmeye katkıda bulunurlar (kimyasal günlenmeye biyolojik etkileri haricinde).
- Likenler ve yosunlar üzerlerinde ya adıkları kayaç yüzeylerinde daha nemli ve kimyasal bir mikro-çevre yaratırlar. Bu durum kayaç bozunumunu arttırır.
- Daha büyük ölçekte, özellikle bitki kökleri kayaçlar üzerinde fiziksel basınç yaratarak, ilerler ve su ile kimyasal çözeltilerin nüfuzuna olanak verecek süreksizlikler yaratırlar.
- Aynı çe itle çe itli delici hayvanlar ve böcekler, meydana getirdikleri oyuk ve delikler vasıtası ile su ve di er kimyasal etkenlere daha açık ve daha az dayanımlı ortamlar olu tururlar.

2.4.1.2. Kimyasal bozunma

Yer yüzeyine yakın yerlerde karbondioksit, su, oksijen ve mikroorganizmaların etkisiyle; kayacın kimyasal bile iminde meydana gelen de i im sonucunda, kayacı olu turan minerallerin ba ka minerallere dönü mesi olayıdır. Fiziksel bozunmanın tersine kimyasal bozunma, bozunan malzemelerin bile imini de i tirir. Ba ta oksijen olmak üzere atmosferdeki gazlar, su ve asitler kimyasal bozunmanın önemli etkenleridir. Kimyasal bozunma sırasında hidratasyon, hidroliz, çözünme ve oksidasyon olu an en önemli kimyasal aktivitelerdir.

Canlıların etkinlikleri de bozunmada önemli bir rol oynar. Yüzeylerinde liken (mantar ve alglerden olu an karma canlılar) geli en kayaçlar kimyasal bozunmaya likensiz olanlardan daha fazla u rar. Ek olarak, bitkiler toprak suyundaki iyonları alıp topraktaki minerallerin kimyasal duraylılı ını dü ürür ve bitki kökleri de organik asitler salarak bozunmayı artırır.

Minerallerin ve kaya malzemesinin kimyasal bozunması sonucunda bozunma ürününde hacimsel bir geni leme söz konusudur (Ollier, 1984). Bu hacimsel geni leme aynı zamanda fiziksel bozunmanın da etkisinin artmasına yardımcı olur. Bu gibi durumlarda kimyasal ve fiziksel bozunmanın ayırt edilmesi zorla maktadır (ekil 2.5). Kayaların bünyesinde bulunan çe itli minerallerin kimyasal bozunma kar ısında gösterdikleri tepkiler farklıdır. Örne in kaya olu turan minerallerden kuvars bozunmaya kar ı daha dayanıklıyken, biyotit dı etkenler karsısında kolayca klorite ve di er kil minerallerine dönü ebilir. Kimyasal bozunma süreçleri nemli ortamlarda ve dü ük kotlarda daha hızlı geli ebilmektedir.

ekil 2.5. Kimyasal bozunma süreçleri (Anon, 1995)

2.4.1.3. Biyolojik bozunma

Kaya ve minerallerin bozunması, fiziksel ve kimyasal faktörlerin yanı sıra bitkiler, hayvanlar ve bakterilerin etkisiyle de gerçekle ebilmektedir. Yapılan çalı malarda, bakterilerin etkisiyle kayalarda meydana gelen biyolojik bozunmanın sanılandan daha etkili oldu u belirlenmi tir (Ollier, 1984). Öte yandan organik malzemeler, çe itli faktörlerin yardımıyla (sızıntı suyu, hayvansal faaliyetler vb.) derinlere ta ınarak bozunmayı hızlandırmaktadır. Toprak içerisinde yasayan hayvanlar da biyolojik bozunma sürecinde önemli bir yer tutmaktadır.

3. MATERYAL VE METOT

3.1. Materyal

Yüksek Lisans Tez kapsamında yapılan bu çalı mada; Dö emealtı (Antalya), Bucak (Burdur) ve Ermenek (Karaman) dolaylarındaki travertenlerin fiziksel ve mekaniksel özelliklerindeki de i imler incelenmi tir. Arazi çalı maları kapsamında, üç farklı ta ocaklarından kayaç örnekleri alınmı tır.

Arazi çalı malarında; jeolog çekici, GPS cihazı, balyoz, foto raf makinesi, erit metre kullanılmı tır. Laboratuvar çalı maları için karot alma makinesi, karot kesme ve düzleme makinesi, P dalgası ölçümü için Pundit, tek eksenli basma dayanımı, nokta yük aleti, suda da ılmaya kar ı duraylılık indeksi deney düzene i ve hassas terazi kullanılmı tır. Tuz kristallenme deneyleri ise saf su ve MgSO₄, Na₂SO₄, NaCI tuzları kullanılarak yapılmı tır.

3.2. Metot

Bu tez çalı ması; literatür taraması ile ba lamı, sonrasında arazi ve laboratuvar çalı maları ile devam etmi, son olarak büro çalı maları ile tamamlanmı tır.

3.2.1. Literatür taraması

Önceki çalı maların derlendi i bu a amada; kaynaklar iki alt ba lık halinde derlenmi tir. lk olarak çalı ma alanları ile ilgili literatür taranmı, sonrasında tezin konusunu olu turan "ayrı ma" konularındaki bilimsel kaynaklar incelenmi tir.

3.2.2. Arazi çalı maları

Arazi çalı maları öncesinde ilgili bölgelerdeki ta ocakları hakkında ön bilgi edinilmi tir. Sonrasında, mümkün oldu u kadar farklı bölgelerden, farklı nitelikteki karbonatlı kayaçları temsil eden 3 ayrı ocak belirlenmi tir. Arazi çalı maları kapsamında ta ocaklarına gidilerek kayaç örnekleri alınmı, gözleme dayalı tanımlar yapılmı, foto raf alımı gerçekle tirilmi tir.

3.2.3. Laboratuvar çalı maları

Karot haline getirilen kaya örneklerinin, fiziksel ve mekanik özelliklerini belirlemek amacıyla indeks laboratuar deneyleri standartlara uygun yapılmı tır. Bu çalı malar, Akdeniz Üniversitesi Jeoloji Mühendisli i Bölümü ve n aat Mühendisli i Bölümü laboratuvarında yürütülmü tür.

3.2.3.1. Numune hazırlama

Karotlar, laboratuvarda NX çaplı matkap kullanılarak, karot alma makinesi ile "karot boyu/karot çapı" oranı 2,0-2,5 olacak ekilde alınmı tır (ekil 3.1). Bunun için, ISRM (1981) tarafından önerilen yöntemler kullanılmı tır. Alınan karot örneklerinin alt ve üst yüzeylerinin paralelli i kumpas yardımı ile sa lanmı tır (ekil 3.2).

ekil 3.1. Karot alma makinesi ile karotların alınması.

ekil 3.2. Silindirik örneklerin boyutlarının kumpasla ölçülmesi.

3.2.3.2. Uygulanan deneyler

Kayaç örneklerin fiziksel ve mekanik özelliklerini belirlemek için; birim hacim a ırlık ve yo unluk, su emme, porozite, ar imet, P - dalgası hızı, suda da ılmaya kar ı duraylılık indeksi, tek eksenli basınç dayanımı ve tuz kristallenme deneyi yapılmı tır. Tuz kristallenme deneyinde saf su ve MgSO₄, Na₂SO₄, NaCI tuzları kullanılmı tır. Ayrı mayı sa layan tuzun, kaya örneklerinin fiziksel ve mekanik özelliklerine olan etkisi ara tırılmı tır.

- Yo unluk - Birim Hacim A ırlık Deneyi

Yo unluk – birim hacim a ırlık deneyi, düzenli bir geometriye sahip karot veya prizmatik kayaç örneklerinin kütlesel (gözenekler de dahil) yo unlu unun ve birim hacim a ırlı ının tayini amacıyla yapılır. Yo unlu u ve birim hacim a ırlı ı belirlenecek kayaç örnekleri, i ebilen ve ıslanma – kuruma sonucu kolaylıkla da ılabilecek özellikte olmamalıdır. Bu deney için ISRM (2007) tarafından önerilen yöntem esas alınmı tır (Ulusay vd., 2011).

Karot boyu/ karot çapı oranı ¹/₂ olacak ekilde tasarlanan örne in çapı (D) ve boyu (L), kumpasla birbirine dik iki ayrı yönde, 0,1 mm duyarlılıkta ölçülerek örneklerin hacimleri hesaplanmı tır (V). Hacmi belirlenen örnek 0,01 gr duyarlılı a sahip hassas terazide tartıldıktan sonra kayacın birim hacim a ırlı 1 (W) de eri belirlenmi tir. Belirlenen W ve V de erleri esas alınarak her örne in yo unlu u a a ıdaki e itliklerden hesaplanmı tır:

Kayacın birim hacim a ırlı 1 (W, gr), Hacim (V, cm³), Yo unluk (g/cm³)

$$\rho = \frac{W}{V}$$
(3.1)

- A ırlıkça ve Hacimce Su Emme Deneyi

Düzenli geometriye sahip kayaç örneklerinin, a ırlıklarına ve hacimlerine oranla, bo luklarının alabilece i su miktarının belirlenmesi için yapılan bu deneyde, RILEM (1980) ve TSE (1978) tarafından önerilen yöntemler esas alınmı tır. Hacmi (V) belirlenen örneklerin önce kuru birim hacim a ırlıkları (Wd) belirlenmi tir (Ulusay vd., 2011). Daha sonra örnekler saf su dolu bir kapta 12 saat bekletilmi tir. Saf su dolu kaptan çıkarılan örneklerin, suya doygun yüzeyleri kâ ıt havlu ile kurulandıktan sonra, suya doygun a ırlıkları hassas terazide tartılarak belirlenmi tir (Ws) (ekil 3.3).

ekil 3.3. Örneklerin saf suda bekletilmesi ve suya doygun a ırlıklarının tartılması.

Kuru birim hacim a ırlık (Wd), Doygun birim hacim a ırlık (Ws), Hacim (V)

A ırlıkça su emme (%),
$$Aw = \frac{W - W}{W} \times 100$$
 (3.2)

Hacimce su emme (%), $Hw = \frac{W - W}{V} x 100$ (3.3)

- Görünür Gözeneklilik ve Bo luk Oranı Tayini

Düzenli bir geometriye sahip kayaç örneklerinin gözeneklili inin (porozitesinin) belirlenmesi amacıyla yapılan deneyde, ISRM (2007)'nin önerdi i hususlar dikkate alınmı tır (Ulusay vd 2011).

Örnek kurutulduktan sonra kuru a 1rlı 1 (Wd) belirlenmi, daha sonra bir vakum altında suya doygun hale getirilmi ve vakum sonrası örne in ka 1t havlu ile yüzeyi kurulanıp hassas terazide tartılarak doygun a 1rlı 1 (Ws) belirlenmi tir. Suya doygun a 1rlıkları belirlenen örne in bo luk hacmi hesaplanarak gözeneklilik de eri belirlenmi tir.

Bo lukların hacmi (cm³),
$$V = \frac{W - W}{PW}$$
 ($\rho = s$ y ğu ğu) (3.4)

Gözeneklilik (porozite) (%),
$$n = \frac{v}{v} X 100$$
 (3.5)

Bo luk oranı,
$$e = \frac{n}{1 - n}$$
 (3.6)

- Sonik Hız Deneyi

P dalga hızı laboratuvarlarda do rudan ya da dolaylı olarak ölçülebilir. Dolaylı yöntemler do rudan yöntemlere göre daha kolaydır. Bu nedenle e er do rudan P dalga hızı ile dolaylı P dalga hızı arasında güçlü bir ili ki kurulabilirse, do rudan P dalga hızı de eri, dolaylı ölçümlerden tahmin edilebilir ve böylece ölçümleri daha da

kolayla tırabilir (Kahraman, 2002). Deney; ASTM (1994), ISRM (2007) ve CANMET (1977b) tarafından önerilen hususlar dikkate alınarak yapılmı tır.

Alt ve üst yüzeyi birbirlerine paralel olan karot örnekleri üzerinde 54 kHz'lik vericisi ve alıcısı olan E48 marka PUNDIT (Portable Ultrasonic Nondestructive Digital Indicating Tester) kullanılarak, örneklerin P (sıkı ma) dalgasının yayılma hızı belirlenmi tir (ekil 3.4). Alt ve üst yüzeyleri hassas ekilde düzeltilmi örneklerin alt ve üst yüzeylerine ince bir gres ya 1 sürüldükten sonra, örnekler alıcı-verici (transducer) uçları arasına yerle tirilerek, P - dalga hızının, örne in bir ucundan di er ucuna geçi zamanı belirlenmi tir.

Hız a a ıdaki formül yardımıyla hesaplanmı tır.

$$V = \frac{d}{t}$$

(3.7)

Burada; V: Hız(m/s), d: Dalganın ilerledi i yolun boyu(mm) ve t: Zaman(µs)

ekil 3.4. Sonik hız deneyinin yapılı 1 ve kullanılan Pundit cihazı.

- Tuz Kristallenme Deneyi

Bu ara tırmada üç farklı ta oca ından getirilen karbonatlı kayaçların üç farklı tuza yatırılarak, fiziksel ve mekaniksel ayrı ma üzerine olan etkisini döngüsel olarak incelemek amacıyla; MgSO₄, Na₂SO₄ ve NaCI tuzları tercih edilmi tir (ekil 3.5).

ekil 3.5. Deneylerde kullanılan tuzlar ve örneklerin tuzlu suya bırakılması.

Üç ayrı tuzun kullanıldı ı tuz kristallenmesi deneyi RILEM (1980) standartlarına göre yapılmı tır. Buna göre örnekler % 14 magnezyum sülfat (MgSO₄), sodyum sülfat (Na₂SO₄) ve sodyum klorür (NaCI) çözeltisi içerisinde tam olarak batırılmı ekilde 4 saat bekletilmi ve gözeneklerin tuz çözeltisi ile mümkün oldu unca doyması sa lanmı tır. Çözeltiden çıkarılan örnekler bez ile kurulandıktan sonra 105±3 °C'lik fırında 16 saat kurumaya bırakılmı tır. 16 saat sonra fırından çıkarılan örnekler, oda sıcaklı ında 4 saat boyunca so utulmu tur (ekil 3.6). Yapılan bu i lem "1 çevrime" kar ılık gelmektedir. Her üç farklı çözeltide üç farklı bölgeden getirilen karbonatlı kayaçlar için uygulanmı tır. Bu ekilde her bir karbontalı kayaç grubu için 40 adet çevrim uygulanmı ve her 10 çevrim sonrasında numunelerin fiziksel de i imleri belirlenmeye çalı ılmı tır.

ekil 3.6. Etüve yerle tirilen karotların görünümü.

- Tek Eksenli Basınç Dayanımı Deneyi

Tek eksenli basınç dayanımı deneyi, silindirik bir ekle sahip kaya malzemesi örneklerinin dayanım ve kaya kütlesi sınıflamalarında, ayrıca tasarımda yaygın biçimde kullanılan "tek eksenli sıkı ma dayanımının saptanması" amacıyla yapılır. Deneyde, ISRM (2007) tarafından önerilen yöntemler kullanılmı tır. Örneklerin boy/çap oranı 2.5-3.0 arasında olacak ekilde hazırlanmı, alt ve üst yüzeyleri birbirine paralel, yan yüzeyleri pürüzsüz – düz ve herhangi bir kırık ve çatlak içermeyen kayaç örnekleri kullanılmı tır.

Deney, her gruptan seçilen "kontrol numuneleri" ile 40. çevrimin sonunda "deneye uygun olan numunelerde" uygulanmı tır. Deney sırasında örne e sabit bir hızda ve sürekli olarak eksenel yükleme yapabilecek yeterli kapasitede hidrolik pres kullanılmı tır (ekil 3.7). Yükleme hızı, örneklerin 5 ile 10 dakika arasında yenilecek ekilde ayarlanmı tır. Örnek yenildi i anda yükleme durdurulup yenilme yükü göstergeden okunarak kaydedilmi tir. Örneklerin "tek eksenli sıkı ma dayanımı" a a ıdaki formülden hesaplanmı tır. $\sigma_{c} = \frac{F}{A}$ F: Yenilme anında kaydedilen yük, A: Silindirik örne in kesit alanı (= (D/2)²) D: Örnek çapı

Deney kapsamında yenilme yükü kaydedildikten sonra tüm karotların foto raflaması yapılmı tır. Bunlardan 1.grup (MgSO₄) karot numuleri ekil 3.8'de, 2.grup (Na₂SO₄) karot numuneleri ekil 3.9'da ve 3.grup (NaCI) karot numuneleri ekil 3.10'da, son olarak kontrol numuneleri ekil 3.11'de verilmi tir.

ekil 3.8. 1.grup (MgSO₄) örneklerden bazılarının yenilme sonrası durumu.

ekil 3.9. 2.grup (Na₂SO₄) örneklerden bazılarının yenilme sonrası durumu.

ekil 3.10. 3.grup (NaCI) örneklerden bazılarının yenilme sonrası durumu.

ekil 3.11. Kontrol numunelerinden bazılarının yenilme sonrası durumu.

- Suda Da ılmaya Kar ı Duraylılık ndeksi Deneyi

Gerek kontrol numuneleri gerek deneylerde kullanılan numuneler 40-60 gr a ırlı ında parçalara bölünmü, kö elerinin birbirine çarparak mekanik parçalanmaya neden olmaması için, kenarları mümkün oldu unca yumu atılmı tır (ekil 3.12).

Her kayaç örne inden yakla ık 10 adet parça seçilmi tir. Seçilen parçalar temiz bir tambura konulduktan sonra mikro dalga fırında kurutulmu ve a ırlı ı tartılmı tır. Daha sonra su içinde, dakikada 20 devir yaptırılarak 10 dakika tambur içerisinde örnekler döndürülmü tür. Bu i lemden sonra tambur içerisindeki örnekler, tambur ile birlikte mikro dalga fırında kurutulup tartılmı tır (Ulusay vd 2011). Bu a amalar aynı örnekler üzerinden tekrarlandıktan sonra 5. çevrimden sonra belirlenen kayıp oranları seçilmi tir.

ekil 3.12. Suda da 1lmaya kar 1 duraylılık indeksi deneyinde kullanılan deney düzene i ve deneyde kullanılan örneklere ait görüntü.

Deneyin uygulanı yönteminde ISRM (2007)'nin önerdi i hususlar dikkate alınmı tır. "Suda da ılmaya kar ı duraylılık indeksi" tamburda en son kalan malzemenin a ırlı ının deneyin ba langıcındaki malzeme a ırlı ına oranı eklinde ifade edilir ve a a ıdaki gibi hesaplanır.

Suda Da 1lmaya Kar 1 Duraylılık ndeksi(%),

$$I_{d1} = \frac{B-D}{A-D} \times 100 \text{ ve } I_{d2} = \frac{C-D}{A-D} \times 100$$
 (3.9)

A: Tambur + örnek a 1rlı 1 B: Tambur + Kalan örnek a 1rlı 1 (1. Çevrim) C: Tambur + Kalan örnek a 1rlı 1 (2. Çevrim) D: Tamburun a 1rlı 1

4. BULGULAR

4.1. Taze Kayaç Örneklerinin Fiziksel ve Mekanik Özellikleri

Dö emealtı (Antalya), Bucak (Burdur) ve Ermenek (Karaman) ta ocaklarından alınan kayaç örneklerinin mühendislik özelliklerinin belirlenmesi çalı ması Akdeniz Üniversitesi Jeoloji Mühendisli i ve n aat Mühendisli i laboratuvarlarında yapılmı tır.

Öncelikle araziden bloklar halinde getirilen numunelerden karot alma makinesi yardımıyla, ISRM (1981)'de belirtilen ekilde karotlar alınmı, standartlarda belirtilen ekillerde alt ve üst yüzeyleri, kar ılıklı ölçümler arasındaki farkın çapa oranı 0,005'ten fazla olmayacak ekilde, düzeltilmi tir. Hazırlanan örne in çap ve boyları kumpasla bir birine dik iki ayrı yönde, hassas ekilde ölçülmü ve örne in hacmi belirlenmi tir. Daha sonra hacmi belirlenen örnek 0,01 gr duyarlılı a sahip hassas terazide tartıldıktan sonra kayacın birim hacim a ırlı ı de eri ve yo unlu u hesaplanmı tır.

Birim hacim a ırlı ı de eri belirlenen örneklerin bo luklarının alabilece i su miktarının belirlenmesi için ilk önce kuru birim hacim a ırlık de erleri hesaplanmı tır. Daha sonra örnekler saf su dolu bir kapta 12 saat bekletilmi tir. Saf su dolu kaptan çıkartılan örnekler ka ıt havlu ile kurulandıktan sonra suya doygun a ırlıkları hassas terazide tartılarak, a ırlıkça ve hacimce su emme oranları standartlara uygun ekilde belirlenmi tir. Ayrıca; Dö emealtı (Antalya), Bucak (Burdur) ve Ermenek (Karaman) travertenlerinden olu an kontrol numuneleri üzerinde tek eksenli sıkı ma dayanımı deneyi yapılmı tır.

Dö emealtı (Antalya) traverteninin ilksel fiziksel özellikleri 42 örnek üzerinde yapılan laboratuar çalı malarıyla belirlenmi tir. Elde edilen veriler EK 1a'da sunulmu tur. Örneklerin fiziksel özelliklerinin istatiksel da ılımları Çizelge 4.1 'de verilmi tir.

	öı	Г	Г		C (1)
Fiziksel Özellikler	Ornek	En	En	Ortalama	Standart
	Sayısı	Dü ük	Yüksek	Ortalallia	Sapma
Kuru Birim Hacim A ırlık (γ_k , kN/m ³)	42	22.74	24.85	24.04	0.46
Gözeneklilik (n, %)	42	2.02	6.35	3.39	0.90
Bo luk Oranı (e, %)	42	0.02	0.07	0.04	0.01
Doygun Birim Hacim A Irli 1 (γ_d , kN/m ³)	42	23.17	25.05	24.37	0.41
A ırlıkça Su Emme Oranı (A _w , %)	42	0.80	2.74	1.39	0.39
Hacimce Su Emme Orani (H _w , %)	42	2.02	6.35	3.39	0.90

Çizelge 4.1. Dö	emealtı (Antalya)	traverteninin	fiziksel	özelliklerinin	istatiksel
da	ılımı.				

Bucak (Burdur) traverteninin fiziksel özellikleri 46 örnek üzerinde incelenmi tir ve veriler EK 1b'de verilmi tir. Fiziksel özelliklerinin istatiksel da ılımları Çizelge 4.2 'de gösterilmi tir.

Fiziksel Özellikler	Örnek Sayısı	En Dü ük	En Yüksek	Ortalama	Standart Sapma
Kuru Birim Hacim A ırlık (γ_k , kN/m ³)	46	22.88	25.19	24.28	0.53
Gözeneklilik (n, %)	46	0.04	3.31	0.96	0.67
Bo luk Oranı (e, %)	46	0.0004	0.0343	0.0097	0.0068
Doygun Birim Hacim A 1rli 1 (γ_d , kN/m ³)	46	23.03	25.20	24.38	0.48
A ırlıkça Su Emme Oranı (A _w , %)	46	0.02	1.42	0.39	0.28
Hacimce Su Emme Orani (H _w , %)	46	0.04	3.31	0.96	0.67

(lizeloe	42	Bucak	(Burdur)) traverteninin	fiziksel	özelliklerinin	istatiksel da	ılımı
Ľ	LIZCISC	4.2.	Ducar	Duruur) liaventeininn	IIZIKSCI	OZEIIIKIEIIIIII	Istatiksei ua	11111111.

Ermenek (Karaman) traverteninin fiziksel özellikleri 45 örnek üzerinde incelenmi tir. Tüm veriler EK 1c'de görülebilmektedir. Fiziksel özelliklerinin istatiksel da ılımları Çizelge 4.3 'de gösterilmi tir.

Çizelge 4.3. Ermenek (Karaman) traverteninin fiziksel özelliklerinin istatiksel da 11m1.

Fizikaal Özalliklar	Örnek	En	En	Ortolomo	Standart
Fiziksei Özenikler	Sayısı	Dü ük	Yüksek	Ortalallia	Sapma
Kuru Birim Hacim A ırlık (γ_k , kN/m ³)	45	23.42	25.00	24.25	0.42
Gözeneklilik (n, %)	45	0.66	2.55	1.52	0.42
Bo luk Oranı (e, %)	45	0.0172	0.0695	0.0400	0.0115
Doygun Birim Hacim A Irli 1 (γ_d , kN/m ³)	45	23.61	25.17	24.39	0.41
A 1rlıkça Su Emme Oranı (A _w , %)	45	0.27	2.88	0,66	0.38
Hacimce Su Emme Orani (H _w , %)	45	0.66	7.06	1.63	0.92

Yukarıdaki çizelgelerden de anla ılaca 1 gibi, kuru birim hacim a ırlık de erleri birbirine yakın olmakla birlikte, en yüksek de er ortalama 24.25 ile Ermenek (Karaman) numunelerine aittir. Gözeneklilik açısından de erlendirildi inde ise; Dö emealtı (Antalya) numuneleri ortalama 3.39 ile di erlerinden oldukça yüksek bir de ere sahiptir. Dö emealtı (Antalya) ve Ermenek (Karaman) numuneleri birbirine çok yakın bo luk oranına sahipken, Bucak (Burdur) numuneleri çok daha dü ük de erdedir. Her üç numune için doygun birim hacim a ırlık de erleri çok yakındır. A ırlıkça ve hacime su emme oranları oldukça farklı olmakla birlikte, en yüksek de er Dö emealtı (Antalya) numunelerinden elde edilmi tir (ortalama 1.39 ve 3.39). Bununla birlikte belirlenen temel de i tirgelerin birbiriyle ili kisini ortava kovmak amacıyla bazı korelasyonlar yapılmı tır. Bu korelasyonlar sonucunda elde edilen gözeneklilik (n) ile kuru birim hacim a ırlık $\begin{pmatrix} k \end{pmatrix}$ ve doygun birim hacim a ırlık $\begin{pmatrix} d \end{pmatrix}$ arasındaki ili ki ekil 4.1'de verilmi tir. Bu de i kenler arasında do rusal bir ili ki oldu u görülmektedir. Ayrıca gözeneklilik (n) ile kuru birim hacim a ırlık (k) arasındaki korelasyon katsayısının, gözeneklilik (n) ile doygun birim hacim a ırlık (d) arasındaki korelasyon katsayısından daha büyük oldu u dikkat çekmektedir.

ekil 4.1. Gözeneklilik ve birim hacim a ırlıkları arasındaki ili ki.

4.2. Bozunmu Kayaç Örneklerinin Fiziksel ve Mühendislik Özellikleri

Kayaların gözeneklerinde atmosferik olayların (ya mur, rüzgâr vb.) etkisi ile biriken sülfat bile imli tuzların suyun etkisi ile çözünüp, daha sonra suyun ortamdan ayrılması ile kuruyarak yeniden kristallenmesi sonucunda olu an kristallenme basınçları gözenek çeperlerinde etkili olmaktadır. Traverten, tufa gibi kayalarda kristallenme basınçları, ayrı mayı hızlandırmakta ve kayanın duraylılı ını kaybetmesine neden olmaktadır (Cooke, 1994., Benavente et al. 2007, Ruiz-Agudo et al. 2007).

Tuz kristallenme deneyindeki amaç; $MgSO_4$, Na_2SO_4 ve NaCI tuzlarının kayaçların ayrı ması üzerindeki fiziksel ve mekaniksel de i imi belirlemektir. Tuz kristallenme deneyinde üç farklı tuz türü kullanılmı ve deneyler RILEM (1980) standartlarına göre yapılmı tır.

Tuz kristallenme deneyinde travertenin fiziksel ve mekanik özelliklerindeki de i imleri belirlemek için % 14 tuz içeren MgSO₄, Na₂SO₄ ve NaCI tuzları kullanılmı tır. Örnekler % 14 MgSO₄, Na₂SO₄ ve NaCI çözeltisi içersinde tam olarak batırılmı ekilde 4 saat bekletilmi tir. Çözeltiden çıkarılan örnekler bez ile kurulandıktan sonra 105^{0} C'lik fırında 16 saat kurumaya bırakılmı tır. Fırından çıkarılan örnekler 4 saat so umaya bırakılmı tır. 24 saatte yapılan bu i lem "bir döngüye" kar ılık gelmektedir ve bu ekilde toplam 40 döngü uygulanmı tır.

Her bir tuz çözeltisinde 30 karot 40 gün (40 döngü) boyunca ayrı maya maruz bırakılmı tır. Her 10 döngüde karotların fiziksel ve mekaniksel özelliklerindeki de i imler hesaplanmı tır. A a ıda laboratuvar sonuçlarından elde edilen de erlerde; "A" Dö emealtı (Antalya), "B" Bucak (Burdur) ve "K" Ermenek (Karaman)'a ait örnekleri simgelemektedir.

4.2.1. MgSO₄ ile yapılan tuz kristallenme deneyi

% 14'lük MgSO₄ çözeltisi ile yapılan tuz kristallenme deneyinde kullanılan toplam 30 adet örne in her 10. döngü sonucunda fiziksel özelliklerindeki de i imler belirlenmi tir. Elde edilen veriler EK 2a'da görülebilmektedir. Bu verilere göre elde edilen fiziksel ve mekanik özelliklerdeki de i im Çizelge 4.4'de gösterilmektedir. Bu de i imlerin grafik gösterimi de ekil 4.2' de sunulmu tur.

Gerek çizelgeden gerek ekilden de anla ıldı ı gibi, kütle de i imi her üç numune tipi için geçerlidir. Dö emealtı (Antalya) numunelerinde kütle artı ı söz konusu iken, Bucak (Burdur) ve Ermenek (Karaman) numunelerinde kütle kaybı gözlenmi tir. Ancak hepsinde de bu de i im 10. döngü sonrasında aksi yönde geli mi tir.

Görünür gözeneklilik açısından de erlendirildi inde, Dö emealtı (Antalya) numunelerinde 10. döngüde artı, 20. döngüde sabitlenme, 30. döngüde azalma ve 40 döngüde yine artı görülmektedir. Bucak (Burdur) numunelerinde çok ciddi bir de i im olmamı, ancak 30 ve 40. döngü arasında artı olmu tur. Ermenek (Karaman) numunelerinde de dalgalanma söz konusudur.

Kuru birim hacim a ırlık söz konusu oldu unda ise her üç numune grubunun benzer davrandı ı, hatta arttı ı, ancak 10. döngü sonrasında artı hızının azaldı ı görülebilmektedir. 30. döngüden sonra ise e riler a a ıya yönelmi tir.

A ırlıkça ve hacimce su emme e rileri birbirine çok yakındır. Dö emealtı (Antalya) ve Ermenek (Karaman) numunelerinde çok ciddi bir de i imin olmadı 1; bununla birlikte Bucak (Burdur) numunelerinde bu oran ikiye katlanmı tır.

Doygun birim hacim a ırlık de erlerinin Bucak (Burdur) numunelerinde 20. döngüye kadar hızla yükseldi i, 20. ve 30. döngü arası azalırken 30. ve 40. döngü arasında arttı ı görülmü tür. Dö emealtı (Antalya) numunelerinde ise nöbetle e gerçekle en azalma ve artı söz konusudur. Ermenek (Karaman) numunelerinde ise en çarpıcı de i im 10. döngüye kadar olan azalmadır.

Bo luk oranı göz önüne alındı ında, Dö emealtı (Antalya) numunelerinde de i imin az oldu u; Ermenek (Karaman) numunelerinde azalma, Bucak (Burdur) numunelerinde artı oldu u açıktır.

ANTALYA										
Çevrim sayısı	Kütle (M, %)	Kuru Birim Hacım Ağırlık (γ _k , %)	Doygun Birim Hacim Ağırlık (γ _d , %)	Görünür Gözeneklilik (n, %)	Ağırlıkça su emme oranı (A _w , %)	Hacimce su emme oranı (H _w , %)	Boşluk oranı (e, %)			
0	100	100	100	100	100	100	100			
10	100.41	100.42	99.63	49.85	100.15	99.75	99.81			
20	100.44	100.45	99.81	58.29	116.28	115.84	116.37			
30	100.43	100.44	99.56	43.93	87.69	87.35	87.22			
40	100.35	100.36	99.75	60.00	120.50	119.95	120.69			
BURDUR	BURDUR									
Çevrim sayısı	Kütle (M, %)	Kuru Birim Hacım Ağırlık (γ _k , %)	Doygun Birim Hacim Ağırlık (γ _d , %)	Görünür Gözeneklilik (n, %)	Ağırlıkça su emme oranı (A _w , %)	Hacimce su emme oranı (H _w , %)	Boşluk oranı (e, %)			
0	100	100	100	100	100	100	100			
10	99.74	100.99	100.28	188.11	188.64	186.60	189.07			
20	99.82	101.06	100.42	193.03	193.67	191.66	194.04			
30	99.81	101.05	100.33	162.88	163.32	161.75	163.57			
40	99.73	100.97	100.46	228.51	229.39	227.16	230.44			
KARAMAI	N					-				
Çevrim sayısı	Kütle (M, %)	Kuru Birim Hacım Ağırlık (γ _k , %)	Doygun Birim Hacim Ağırlık (γ _d , %)	Görünür Gözeneklilik (n, %)	Ağırlıkça su emme oranı (A _w , %)	Hacimce su emme oranı (H _w , %)	Boşluk oranı (e, %)			
0	100	100	100	100	100	100	100			
10	99.54	100.22	99.59	101.54	102.02	101.54	39.26			
20	99.55	100.24	99.64	104.02	104.51	104.02	40.21			
30	99.55	100.23	99.60	100.06	100.54	100.06	38.67			
40	99 48	100 17	99 72	124 76	125 44	124 76	48 43			

Çizelge 4.4. Tuz çözeltileri (MgSO₄) çevrimleri sonucunda fiziksel ve mekanik özelliklerdeki normalize edilmi de i im de erleri.

ekil 4.2. Tuz çözeltileri (MgSO₄) çevrimleri sonucunda fiziksel ve mekanik özelliklerdeki normalize edilmi de i im grafikleri.

4.2.2. Na₂SO₄ ile yapılan tuz kristallenme deneyi

% 14'lük Na₂SO₄ çözeltisi ile yapılan tuz kristallenme deneyinde kullanılan toplam 30 adet örne in her 10. döngü sonucunda fiziksel özelliklerindeki de i imler belirlenmi tir. Elde edilen veriler EK 2b'de görülebilmektedir. Bu verilere göre elde edilen fiziksel ve mekanik özelliklerdeki de i im Çizelge 4.5'de gösterilmektedir. Bu de i imlerin grafik gösterimi de ekil 4.3' de sunulmu tur.

Çizelge ve ekilden de anla ıldı ı gibi, kütle de i imi $MgSO_4$ çevrimlerinden elde edilen sonuçlara benzemektedir. Dö emealtı (Antalya) numunelerinde kütle artı ı, Bucak (Burdur) ve Ermenek (Karaman) numunelerinde kütle kaybı gözlenmi tir. Yine hepsinde de bu de i im 10. döngü sonrasında aksi yönde geli mi tir.

ANTALYA							
Çevrim sayısı	Kütle (M, %)	Kuru Birim Hacım Ağırlık (γ _k , %)	Doygun Birim Hacim Ağırlık (γ _d , %)	Görünür Gözeneklilik (n, %)	Ağırlıkça su emme oranı (A _w , %)	Hacimce su emme oranı (H _w , %)	Boşluk oranı (e, %)
0	100	100	100	100	100	100	100
10	100.48	100.47	100.02	64.39	64.07	64.39	63.64
20	100.54	100.54	100.06	61.81	61.48	61.81	61.09
30	100.45	100.45	99.91	57.42	57.17	57.42	56.65
40	100.39	100.39	100.03	70.54	70.28	70.54	70.04
BURDUR							
Çevrim sayısı	Kütle (M, %)	Kuru Birim Hacım Ağırlık (γ _k , %)	Doygun Birim Hacim Ağırlık (γ _d , %)	Görünür Gözeneklilik (n, %)	Ağırlıkça su emme oranı (A _w , %)	Hacimce su emme oranı (H _w , %)	Boşluk oranı (e, %)
0	100	100	100	100	100	100	100
10	99.69	100.71	99.95	149.97	150.42	149.97	150.94
20	99.76	100.78	100.00	148.25	148.61	148.25	149.08
30	99.69	100.72	99.87	132.57	132.99	132.57	133.10
40	99.56	100.58	99.95	181.36	182.19	181.36	183.10
KARAMA	N		-	- · ·		-	
Çevrim sayısı	Kütle (M, %)	Kuru Birim Hacım Ağırlık (γ _k , %)	Doygun Birim Hacim Ağırlık (γ _d , %)	Görünür Gözeneklilik (n, %)	Ağırlıkça su emme oranı (A _w , %)	Hacimce su emme oranı (H _w , %)	Boşluk oranı (e, %)
0	100	100	100	100	100	100	100
10	99.93	100.30	99.79	152.04	153.05	152.04	59.82
20	99.94	100.20	99.83	205.57	208.91	205.57	82.29
30	99.92	100.30	99.73	141.69	142.68	141.69	55.65
40	99.82	100.21	99.89	187.62	189.09	187.62	74.16

Çizelge	4.5.	Tuz	çözeltileri	(Na_2SO_4)	çevrimleri	sonucunda	fiziksel	ve	mekanik
		özell	liklerdeki no	ormalize ed	ilmi de i i	m de erleri.			

Görünür gözeneklilik ise Dö emealtı (Antalya) numunelerinde azalma e ilimi gösterirken; Bucak (Burdur) ve Ermenek (Karaman) numunelerinde artı ile birlikte dalgalanma söz konusudur.

Kuru birim hacim a ırlık de erlerinde ise her üç numune grubunun benzer davrandı 1, genel olarak arttı 1, ancak 20. döngü sonrasında azaldı 1 görülebilmektedir. Bununla birlikte Ermenek (Karaman) numunelerinde dalgalanma açıktır.

A ırlıkça ve hacimce su emme e rileri burada da birbirine çok yakındır. Dö emealtı (Antalya) numunelerinde genel olarak bir azalma söz konusudur. Ermenek (Karaman) ve Bucak (Burdur) numunelerinde ise artı la birlikte dalgalanma mevcuttur. Doygun birim hacim a ırlık de erlerinde en çarpıcı azalma Ermenek (Karaman) numunelerinde gözlenmekle birlikte; Bucak (Burdur) numunelerinde de bir azalım söz konusudur. Dö emealtı (Antalya) numunelerinde ise hem artı hem azalma vardır. Ancak her üç e ride de dalgalanma dikkat çekicidir.

Bo luk oranı de erlerinde, Dö emealtı (Antalya) ve Ermenek (Karaman) numunelerinde azalma, Bucak (Burdur) numunelerinde ise çok ciddi bir artı oldu u görülebilmektedir.

ekil 4.3. Tuz çözeltileri (Na₂SO₄) çevrimleri sonucunda fiziksel ve mekanik özelliklerdeki normalize edilmi de i im grafikleri.

4.2.3. NaCl ile yapılan tuz kristallenme deneyi

% 14'lük NaCl çözeltisi ile yapılan tuz kristallenme deneyinde kullanılan toplam 30 adet örne in her 10. döngü sonucunda fiziksel özelliklerindeki de i imler belirlenmi tir. Elde edilen veriler EK 2c'de görülebilmektedir. Bu verilere göre elde edilen fiziksel ve mekanik özelliklerdeki de i im Çizelge 4.6'da gösterilmektedir. Bu de i imlerin grafik gösterimi de ekil 4.4' de sunulmu tur.

Çizelge 4.6. Tuz çözeltileri (NaCl) çevrimleri sonucunda fiziksel ve mekanik özelliklerdeki normalize edilmi de i im de erleri.

ANTALYA										
Çevrim sayısı	Kütle (M, %)	Kuru Birim Hacım Ağırlık (γ _k , %)	Doygun Birim Hacim Ağırlık (γ _d , %)	Görünür Gözeneklilik (n, %)	Ağırlıkça su emme oranı (A _w , %)	Hacimce su emme oranı (H _w , %)	Boşluk oranı (e, %)			
0	100	100	100	100	100	100	100			
10	100.30	100.34	99.86	67.51	67.28	67.51	66.73			
20	100.32	100.36	99.97	73.22	72.99	73.22	72.65			
30	100.34	100.38	99.83	60.59	60.38	60.59	59.80			
40	100.35	100.39	99.93	67.52	67.27	67.52	66.79			
BURDUR	BURDUR									
Çevrim sayısı	Kütle (M, %)	Kuru Birim Hacım Ağırlık (γ _k , %)	Doygun Birim Hacim Ağırlık (γ _d , %)	Görünür Gözeneklilik (n, %)	Ağırlıkça su emme oranı (A _w , %)	Hacimce su emme oranı (H _w , %)	Boşluk oranı (e, %)			
0	100	100	100	100	100	100	100			
10	99.36	100.62	99.92	207.01	208.23	207.01	209.56			
20	99.33	100.59	99.93	208.18	209.46	208.18	210.87			
30	99.33	100.59	99.80	173.53	174.67	173.53	175.38			
40	99.30	100.56	99.93	208.30	209.66	208.30	211.12			
KARAMAI	N									
Çevrim sayısı	Kütle (M, %)	Kuru Birim Hacım Ağırlık (γ _k , %)	Doygun Birim Hacim Ağırlık (γ _d , %)	Görünür Gözeneklilik (n, %)	Ağırlıkça su emme oranı (A _w , %)	Hacimce su emme oranı (H _w , %)	Boşluk oranı (e, %)			
0	100	100	100	100	100	100	100			
10	99.75	100.20	99.74	127.93	128.5	127.93	50.23			
20	99.75	100.22	99.78	132.91	133.48	132.91	52.18			
30	99.75	100.21	99.73	125.36	125.9	125.36	49.18			
40	99.74	100.18	99.80	138.76	139.42	138.76	54.66			

ekil 4.4. Tuz çözeltileri (NaCl) çevrimleri sonucunda fiziksel ve mekanik özelliklerdeki normalize edilmi de i im grafikleri.

Kütle de i imi di er çözeltilerde oldu u gibi görülmektedir. Dö emealtı (Antalya) numunelerinde kütle artı 1 söz konusu iken, Bucak (Burdur) ve Ermenek (Karaman) numunelerinde kütle kaybı gözlenmi tir.

Görünür gözeneklilik de erlerinde de di erlerinde oldu u gibi, Dö emealtı (Antalya) numunelerinde azalma e ilimi görülürken; Bucak (Burdur) ve Ermenek (Karaman) numunelerinde artı söz konusudur ve özellikle Bucak (Burdur) numunelerine ait e ride dalgalanma mevcuttur. Kuru birim hacim a ırlık de erlerinde ise her üç numune grubunun benzer davrandı 1, genel olarak arttı 1, ancak 10. döngü sonrasında azaldı 1 görülebilmektedir.

A ırlıkça ve hacimce su emme e rileri burada da birbirine çok yakındır. Dö emealtı (Antalya) numunelerinde genel olarak bir azalma söz konusudur. Ermenek (Karaman) ve Bucak (Burdur) numunelerinde ise artı la birlikte dalgalanma mevcuttur.

Doygun birim hacim a ırlık de erlerinin tümünde ciddi bir azalma görülmektedir. Yine en çarpıcı azalma Ermenek (Karaman) numunelerinde gözlenmektedir. Ancak her üç e ride de dalgalanma söz konusudur.

Bo luk oranı de erlerinde Na_2SO_4 oldu u gibi, Dö emealtı (Antalya) ve Ermenek (Karaman) numunelerinde azalma, Bucak (Burdur) numunelerinde ise çok ciddi bir artı oldu u görülebilmektedir.

4.3. Sonik Hız Deneyi

Örneklerin fiziksel ve mekanik özellikleri ile de i imlerini belirlemek için kullanılan yöntemlerden biri de P dalga yayılım hızının ölçülmesidir. P dalga yayılım hız ölçümleri, örneklerin çözeltilere yatırılmasından önce ve 40. döngü sonrasında olmak üzere 2 defa yapılmı tır. Elde edilen tüm veriler EK 3'de sunulmu tur.

4.3.1. Dö emealtı (Antalya) traverteninde P dalga yayılımı

Çizelge 4.7'de Dö emealtı (Antalya) traverteninde ölçülen P dalga yayılım hızları, her iki ölçüm için istatistiki olarak verilmi tir. Ayrıca ekil 4.5'de örneklerin geçirimlili i ile P dalga yayılım hız korelasyonları görülebilmektedir. Çizelgede görülebildi i gibi, tuz çözeltilerinde bekletilmeden önceki P dalga yayılım hız de erleri, 40. döngü sonrası elde edilen hız de erlerinden daha yüksektir.

Çizelge 4.7. Dö emealtı (Antalya) traverteninde ölçülen P dalga yayılım hızlarının (m/sn) istatistiki verileri.

ANTALYA	lksel	40. Döngü Sonrası	
En Dü ük	5691	5271	
En Yüksek	6136	5815	U
Ortalama	5845	5504	GR
Standart Sapma	138	188	1.0
En Dü ük	5668	4693	
En Yüksek	6034	5691	UP
Ortalama	5836	5147	GR
Standart Sapma	136	339	2.0
En Dü ük	5638	5000	
En Yüksek	6226	5815	UP
Ortalama	5879	5360	GR
Standart Sapma	210	328	3.

Farklı tuz çözeltilerine göre yapılan sınıflandırma ve korelasyonu gösteren ekil 4.5 incelendi inde, P dalga yayılım hızı ile gözeneklilik arasındaki ili ki daha net görülebilmektedir. Tüm e riler, korelasyon katsayısı 1'e en yakın olan, polinom olarak belirlenmi tir. Ayrıca; ilksel korelasyon katsayılarının, 40. döngü sonrası elde edilen korelasyon katsayılarından genellikle daha yüksek oldu u görülebilmektedir.

ekil 4.5. Dö emealtı (Antalya) traverteninin gözeneklili i ile P dalga yayılım hız korelasyon grafikleri.

Örneklerin çözeltilere yatırılmasından öncesini ifade eden ilksel korelasyonda, 1. Grup numunelerinde gözeneklilik artarken P dalga hızı azalmakta; bu durum gözeneklili in %5-%5.5 oldu u noktadan sonra de i mektedir. Benzer durum; 3. Grup 40. döngü sonrası ili kide görülmektedir ancak de i im noktası yakla ık %3'tür. Ayrıca sadece 1.Grup numunelerinde polinomun yönü de i mi ; ilksel korelasyonda içbükey iken, 40. döngü sonrasında bu ili ki dı bükey bir hal almı tır. 2. Grup numunelerin ekilleri incelendi inde de i imin sadece korelasyon katsayısında oldu u görülebilmektedir. 3. Grup numunelerde dikkat çeken konu; korelasyon katsayısının ilksel durumda çok daha küçük olmasıdır.

4.3.2. Bucak (Burdur) traverteninde P dalga yayılımı

Çizelge 4.8'de Bucak (Burdur) travertenlerinde ölçülen P dalga yayılım hızları, her iki ölçüm için istatistiki olarak verilmi tir. Ayrıca ekil 4.6'da örneklerin geçirimlili i ile P dalga yayılım hız korelasyonları görülebilmektedir. Burada da, tuz çözeltilerinde bekletilmeden önceki ortalama P dalga yayılım hız de erlerinin, 40. döngü sonrası elde edilen ortalama hız de erlerinden daha yüksek oldu unu söylemek yanlı olmayacaktır.

Çizelge 4.8.	Burdur (Bucak)	traverten lerinde	ölçülen P	dalga	yayılım	hızlarının	(m/sn)
	istatistiki veriler	i.					

BURDUR	lksel	40. Döngü Sonrası	
En Dü ük	5505	5544	
En Yüksek	6250	6331	UP
Ortalama	5871	5838	ВЯ
Standart Sapma	224	259	1.
En Dü ük	5638	5023	
En Yüksek	6067	5847	U
Ortalama	5816	5597	GR
Standart Sapma	149	266	2. 0
En Dü ük	5661	5377	
En Yüksek	5989	5944	U I
Ortalama	5814	5630	GR
Standart Sapma	100	207	3. (

ekil 4.6. incelendi inde ise tüm e rilerin yine aynı gerekçe ile, korelasyon katsayısı 1'e en yakın olan, polinom oldu u görülebilir. Burada da, 3. Grup numuneleri hariç, ilksel korelasyon katsayılarının, 40. döngü sonrası elde edilen korelasyon katsayılarından daha yüksektir.

lksel korelasyonda, 1. Grup numunelerinde gözeneklilik artarken P dalga hızı azalmaktadır. Ancak 40. döngü sonrası polinom yön de i tirmi tir; ilksel korelasyonda dı bükey iken, 40. döngü sonrasında bu ili ki içbükey olmu tur ve de i im noktası yakla ık %2.5'tir. Benzer durum; 3. Grup numunede de görülmektedir; de i im noktaları ilkinde %2, di erinde 4 dolayındadır. 2. Grup numunelerin ekilleri incelendi inde de i imin sadece korelasyon katsayısında oldu u görülebilmektedir. Burada da yine 3. Grup numunelerde korelasyon katsayısı ilksel durumda daha küçüktür.

4.3.3. Ermenek (Karaman) traverteninde P dalga yayılımı

Çizelge 4.9'da Ermenek (Karaman) travertenlerinde ölçülen P dalga yayılım hızları, her iki ölçüm için istatistiki olarak verilmi tir. Ayrıca ekil 4.7'de örneklerin geçirimlili i ile P dalga yayılım hız korelasyonları görülebilmektedir. Ermenek (Karaman) numunelerinin de tuz çözeltilerinde bekletilmeden önceki ortalama P dalga yayılım hız de erleri, 40. döngü sonrası elde edilen ortalama hız de erlerinden daha yüksektir.

- ekil 4.6. Bucak (Burdur) traverteninin geçirimlili i ile P dalga yayılım hız korelasyon grafikleri.
- Çizelge 4.9. Ermenek (Karaman) travertenlerinde ölçülen P dalga yayılım hızlarının (m/sn) istatistiki verileri.

KARAMAN	lksel	40. Döngü Sonrası	
En Dü ük	5738	5431	
En Yüksek	6149	5978	UP
Ortalama	5888	5722	GR
Standart Sapma	124	149	1. (
En Dü ük	5691	4820	
En Yüksek	6352	5350	UP
Ortalama	5927	5109	GR
Standart Sapma	204	190	2.0
En Dü ük	5574	5297	
En Yüksek	6585	5847	UP
Ortalama	5888	5576	GR
Standart Sapma	269	195	3. (

Benzer ekilde tüm e riler polinom olarak seçilmi tir. Öncekilerden farklı olarak, ilksel korelasyon katsayılarının, 40. döngü sonrası elde edilen korelasyon katsayılarından daha küçük oldu u görülmektedir.

1. Grup ve 3. Grup numunelerinin her iki grafi inde belli bir de ere kadar, gözeneklilik de eri artarken (yakla ık %2) P dalga hız de eri artmakta, sonrasında azalmaktadır. Her iki grafik de dı bükeydir. Benzer durum 3. Grup numuneleri için de söz konusudur. De i im noktaları ilkinde %1.2 dolaylarında iken, di erinde %2.3 dolaylarındadır. 2. Grup numunelerinde durum farklıdır. İksel halde içbükey olan e ri (de i im noktası yakla ık %1.4), 40. döngü sonrasında dı bükey (de i im noktası yakla ık %2) olmu tur.

4.4. Tek Eksenli Basınç Dayanım Testi

Her üç ocaktan alınan kayaç örneklerinin tek eksenli sıkı ma dayanımı belirlenmeye çalı ılmı tır. Bunun için kontrol numuneleri kullanılmı tır. Kontrol numuneleri kayacın ilksel dayanımı hakkında bilgi verirken; çözeltilere yatırılan ve 40. döngü sonrasında deneye tabii tutulan numunelerden ise ayrı manın tek eksenli basınç dayanımına etkisi anla ılmaya çalı ılmı tır. Numunelerin çapı 5.50 mm, kesit alanı 23.75 mm²'dir. Kontrol numunelerinde yükleme hızı 4 kN/dk, yükleme süresi ISRM (2007) tarafından önerilen en az 5 dakika olarak belirlenmi tir. Ancak 40. döngü sonrasında, ayrı madan dolayı bu süre 6 dakikaya çıkarılmı, yükleme hızı ise 2 kN/dk'ya dü ürülmü tür. Deney sonuçlarının tümü EK 4'de verilmi tir.

4.4.1. Kontrol numunelerinin tek eksenli basınç dayanım de erleri

Çizelge 4.10'da kontrol numunelerinin tek eksenli basınç dayanım de erlerinin istatistiksel da ılımı verilmi tir. ekil 4.8'de ise aynı numunelerin tek eksenli basınç dayanımı ile P dalga yayılım hızı arasındaki korelasyon grafikleri görülmektedir.

Çizelge 4.10. Kontrol numunelerinin tek eksenli basınç dayanım de erlerinin istatistiksel da ılımı (MPa).

KONTROL NUMUNELER	Antalya	Burdur	Karaman
En dü ük	32.72	27.29	29.65
En yüksek	62.75	56.64	54.96
Ortalama	47.29	43.50	40.19
Standart Sapma	8.32	8.29	6.93

Çizelgeden de görülebilece i gibi, ortalama tek eksenli basınç dayanım de erleri Dö emealtı (Antalya) için 47.29, Bucak (Burdur) için 43.50 ve Ermenek (Karaman) için 40.19 MPa olarak belirlenmi tir. Bununla birlikte, ekil 23 incelendi inde, P dalga hızı ve tek eksenli basınç dayanımının korelasyonunda Dö emealtı (Antalya) ile Ermenek (Karaman) arasındaki benzerlik görülebilmektedir. Korelasyon katsayıları da çok yakındır. Bucak (Burdur) numunelerine ait e rinin korelasyon katsayısı di erlerinden daha yüksektir ve e ri içbükeyden çok do rusala yakındır.

4.4.2. 1.Grup (MgSO₄) numunelerin 40. döngü sonrası tek eksenli basınç dayanım de erleri

Çizelge 4.11'de 1. Grup (MgSO₄) numunelerinin tek eksenli basınç dayanım de erlerinin istatistiksel da ılımı verilmi tir. ekil 4.9'da ise aynı numunelerin tek eksenli basınç dayanımı ile P dalga yayılım hızı arasındaki korelasyon grafikleri görülmektedir.

Ortalama tek eksenli basınç dayanım de erleri Dö emealtı (Antalya) için 36.77, Bucak (Burdur) için 37.58 ve Ermenek (Karaman) için 31.02 MPa'dır. ekil 24 incelendi inde, P dalga hızı ve tek eksenli basınç dayanımı arasındaki korelasyonlardan en yüksek katsayının Ermenek (Karaman) numunelerine ait oldu u (0.5671) görülebilmektedir. Ayrıca burada e ri dı bükey iken, di er iki grup e rileri içbükeydir.

ekil 4.8. Kontrol numunelerinin tek eksenli basınç dayanımı ile P dalga yayılım hızı arasındaki korelasyon grafikleri.

Çizelge 4.11. 1.Grup (MgSO₄) numunelerinin 40. döngü sonrası tek eksenli basınç dayanım de erlerinin istatistiksel da 11m1 (MPa).

40.DÖNGÜ SONRASI	Antalya	Burdur	Karaman
En dü ük	29.27	17.86	18.61
En yüksek	43.67	50.91	41.56
Ortalama	36.77	37.58	31.02
Standart Sapma	5.16	10.40	6.08

ekil 4.9. 1.Grup (MgSO₄) numunelerinin 40. döngü sonrası tek eksenli basınç dayanımı ile P dalga yayılım hızı arasındaki korelasyon grafikleri.

4.4.3. 2. Grup (Na₂SO₄) numunelerin 40. döngü sonrası tek eksenli basınç dayanım de erleri

Çizelge 4.12'de 2.Grup (Na₂SO₄) numunelerinin tek eksenli basınç dayanım de erlerinin istatistiksel da ılımı verilmi tir. ekil 4.10'da ise aynı numunelerin tek eksenli basınç dayanımı ile P dalga yayılım hızı arasındaki korelasyon grafikleri görülmektedir.

Bu grup numunelerde 39.30 MPa ortalama tek eksenli basınç dayanım de eri ile Dö emealtı (Antalya) en yüksek, 35.47 MPa de eri ile Bucak (Burdur) orta ve 28.43 de eri ile Ermenek (Karaman) en dü ük de erlere sahip olmu lardır. ekil 4.10'daki P dalga hızı ve tek eksenli basınç dayanımının korelasyonunda yine Dö emealtı (Antalya) ile Ermenek (Karaman) arasında benzerlik görülmektedir. E riler içbükeyden çok do rusala yakındırlar. Tek eksenli basınç dayanımı ile birlikte P dalga hızı da artmaktadır. Bucak (Burdur) numunelerine ait grafikte ise e ri dı bükeydir ve de i im noktası 38 MPa dolaylarındadır.

40. DÖNGÜ SONRASI	Antalya	Burdur	Karaman
En dü ük	24.26	24.93	14.87
En yüksek	63.59	49.40	42.32
Ortalama	39.30	35.47	28.43
Standart Sapma	12.54	7.42	9.23

Çizelge 4.12.	2.Grup	(Na_2SO_4)	numunelerinin	40.	döngü	sonrası	tek	eksenli	basınç
	dayanın	n de erleri	nin istatistiksel	da 1	lımı (M	Pa).			

4.4.4. 3. Grup (NaCl) numunelerin 40. döngü sonrası tek eksenli basınç dayanım de erleri

Çizelge 4.13'de 3.Grup (NaCl) numunelerinin tek eksenli basınç dayanım de erlerinin istatistiksel da ılımı verilmi tir. ekil 4.11'de ise aynı numunelerin tek eksenli basınç dayanımı ile P dalga yayılım hızı arasındaki korelasyon grafikleri görülmektedir.

Dö emealtı (Antalya) 38.85, Bucak (Burdur) 35.87 ve Ermenek (Karaman) 28.58 MPa ortalama tek eksenli basınç dayanım de erine sahiptir. 2. Grup numunelerden elde edilen de erlere yakındır. ekil 26'deki P dalga hızı ve tek eksenli basınç dayanımının korelasyonunda birbirinden ba ımsız e riler elde edilmi tir.

Dö emealtı (Antalya)'ya ait e ride neredeyse do rusal bir ili ki göze çarpmaktadır. Bucak (Burdur) numunelerine ait grafikte durum neredeyse tam tersidir ve tek eksenli basınç dayanımı arttıkça, P dalga hızı azalmaktadır. Ermenek (Karaman) numunelerine ait e ri içbükeydir ve de i im noktasından sonra (yakla ık 26 MPa) do rusal ili kiye geçmektedir.

Çizelge	4.13.	3.Grup	(NaCl)	numunelerinin	40.	döngü	sonrası	tek	eksenli	basınç
		dayanım	de erle	rinin istatistiksel	da	ılımı (M	IPa).			

40. DÖNGÜ SONRASI	Antalya	Burdur	Karaman
En dü ük	17.48	23.88	21.14
En yüksek	67.93	48.09	40.17
Ortalama	38.85	35.87	28.58
Standart Sapma	13.65	8.41	6.42

4.5. Suda Da ılmaya Kar ı Duraylılık ndeksi Deneyi

ndeks türünde olan bu deney, kayaların sınıflaması ve birbirleriyle kar ıla tırılması için kullanılır. Kaya örne inin standart iki çevrim süresince kurumaya ve ıslanmaya bırakılması durumunda, parçalanmaya ve zayıflamaya kar ı gösterdi i duraylılı ın belirlenmesi amacıyla yapılan bu deney, hem kontrol numunelerine hem de 40. döngü sonrasında tüm grup numunelerine uygulanmı ; sonuçlar da kar ıla tırılmı tır. Elde edilen verilerin tümü EK 5'de sunulmu tur. Da ılma dayanım de erleri Çizelge 4.14'de verilmi tir. Kontrol numunelerine ait suda da ılmaya kar ı duraylılık indeksi deney sonuçları Çizelge 4.15'de; 40. döngü sonrası, grupların suda da ılmaya kar ı duraylılık indeksi deney sonuçları ise Çizelge 4.16'da verilmi tir.

Çizelge 4.14. Da 1lma dayanım de erleri (Gamble, 1971).

ndeks De eri (I _{d1})	ndeks De eri (I _{d2})	Da 11ma Dayanım Sınıflaması
< 60	0-30	Çok Dü ük
60-85	30-60	Dü ük
85-95	60-85	Orta Derecede
95-98	85-95	Orta – Yüksek
98-99	95-98	Yüksek
99	98	Çok Yüksek

ekil 4.11. 3.Grup (NaCl) numunelerinin 40. döngü sonrası tek eksenli basınç dayanımı ile P dalga yayılım hızı arasındaki korelasyon grafikleri.

KONTROL									
NO	I _{d1}	I _{d2}	K2	99.61	99.30				
A6	99.45	99.04	K7	99.61	99.34				
A7	99.73	99.48	K12	92.20	91.99				
A11	99.42	99.05	K13	99.69	99.28				
A14	99.50	99.16	K14	99.63	99.41				
A16	99.72	99.45	K15	99.64	99.41				
A18	99.75	99.50	K20	99.53	99.22				
A23	99.49	99.17	K21	99.60	99.33				
A28	99.56	99.10	K22	99.62	99.32				
A29	99.38	98.88	K24	99.49	99.28				
A31	99.37	98.96	K25	99.30	98.96				
A32	99.33	98.92	K27	99.54	99.21				
A37	99.71	99.52	K30	99.52	99.12				
			K31	99.52	99.12				
			K32	99.28	98.91				
B3	98.97	98.39	B17	99.43	98.97				
B4	99.50	99.11	B23	99.66	99.37				
B6	99.61	99.25	B27	99.57	99.31				
B7	99.60	99.34	B32	99.73	99.52				
B8	99.48	99.15	B34	99.12	98.60				
B9	99.81	99.50	B40	99.55	99.26				
B10	99.79	99.48	B41	99.44	98.98				
B13	99.59	99.39	B44	99.61	99.33				

Çizelge 4.15. Kontrol numunelerine ait suda da ılmaya kar ı duraylılık indeksi deney sonuçları

	GRUP 1				GRUP 2				GRUP 3			
NO	I _{d1}	l _{d2}		NO	I _{d1}	I _{d2}		NO	I _{d1}	I _{d2}		
A1	99.65	99.41		A15	99.35	98.93		A30	99.50	99.23		
A2	99.61	99.31		A17	99.44	99.24		A33	99.53	99.30		
A3	99.50	99.22		A19	99.44	99.08		A34	99.55	99.33		
A4	99.58	99.22		A20	99.04	98.73		A35	99.55	99.31		
A5	99.42	98.96		A21	99.26	98.88		A36	99.58	99.27		
A8	99.64	99.30		A22	99.55	99.28		A38	99.64	99.39		
A9	99.65	99.44		A24	99.14	98.83		A39	99.60	99.41		
A10	99.46	99.05		A25	99.68	99.45		A40	99.61	99.39		
A12	99.50	99.00		A26	99.50	99.21		A41	99.60	99.41		
A13	99.46	99.12		A27	99.41	99.18		A42	99.63	99.43		
B1	99.47	99.07		B20	99.31	98.88		B33	99.46	99.15		
B2	99.54	99.32		B21	99.39	98.92		B35	99.34	98.98		
B5	99.13	98.81		B22	99.06	98.84		B36	99.33	98.98		
B11	99.36	98.94		B24	99.42	98.95		B37	99.66	99.42		
B12	99.43	99.11		B25	99.69	99.48		B38	99.54	99.27		
B14	93.16	93.12		B26	99.30	98.99		B39	99.44	99.17		
B15	99.44	99.08		B28	99.37	98.98		B42	99.64	99.38		
B16	99.32	99.09		B29	99.60	99.53		B43	99.50	99.16		
B18	99.33	98.81		B30	99.34	98.89		B45	99.54	99.23		
B19	99.41	99.12		B31	99.12	98.83		B46	98.96	98.56		
K1	99.52	99.04		K17	99.66	99.34		K36	99.61	99.33		
K3	99.41	99.10		K18	99.52	99.06		K37	99.61	99.33		
K4	99.47	99.20		K19	99.48	99.13		K38	99.37	98.89		
K5	99.33	98.93		K23	99.45	99.22		K39	99.51	99.18		
K6	99.45	99.10		K26	99.36	99.06		K40	99.48	99.14		
K8	99.58	99.13		K28	99.34	99.06		K41	99.37	98.98		
K9	99.66	99.27		K29	99.50	99.15		K42	99.58	99.35		
K10	99.38	98.89		K33	99.19	98.80		K43	99.66	99.39		
K11	99.33	98.86		K34	99.28	99.08		K44	99.57	99.24		
K16	99.52	99.07		K35	99.32	98.84		K45	99.59	99.31		

Çizelge 4.16. 40. döngü sonrası, grupların suda da ılmaya kar ı duraylılık indeksi deney sonuçları

5. TARTI MA

Antalya ve çevresindeki karbonatlı kayaçların ayrı ma tipleri ve derecelerini belirleyerek sınıflandırmak; ayrı ma veya ayrı manın kayaçların mühendislik davranı ına etkilerini ara tırmak, farklı mühendislik yapıları için yapı malzemesi olarak kullanılma olanaklarını irdelemek, gerek ayrı manın kentle me alanı seçimine etkisini ortaya koymak amacıyla yapılan bu çalı mada elde edilen bulguları a a ıdaki gibi özetlemek mümkündür.

lk olarak taze kayaç örneklerinin fiziksel ve mekanik özellikleri belirlenmi tir. Kuru birim a ırlık de erleri birbirine yakın olmakla birlikte, en yüksek de er ortalama Ermenek (Karaman) numunelerine aittir. Gözeneklilik acısından 24.25 ile de erlendirildi inde ise; Dö emealtı (Antalya) numuneleri ortalama 3.39 ile di erlerinden oldukça yüksek bir de ere sahiptir. Dö emealtı (Antalya) ve Ermenek (Karaman) numuneleri birbirine cok yakın bo luk oranına sahipken, Bucak (Burdur) numuneleri çok daha dü ük de erdedir. Her üç numune için doygun birim hacim a ırlık de erleri çok yakındır. A ırlıkça ve hacime su emme oranları oldukça farklı olmakla birlikte, en yüksek de er Dö emealtı (Antalya) numunelerinden elde edilmi tir (ortalama 1.39 ve 3.39). Ayrıca gözeneklilik (n) ile hem kuru birim hacim a ırlık ($_{k}$) hem de dovgun birim hacim a ırlık (d) arasında yapılan korelasyon sonucunda do rusal bir ili ki oldu u görülmü tür. Di er bir ifadeyle; gözeneklilik oranı arttıkça birim hacim a ırlık de erleri azalmaktadır.

% 14'lük MgSO₄, Na₂SO₄ ve NaCl tuz çözeltilerinden sonra benzer özellikler irdelenmi tir. Kütle de i imi her üç numune tipi için geçerlidir. Dö emealtı (Antalya) numunelerinde kütle artı 1 söz konusu iken, Bucak (Burdur) ve Ermenek (Karaman) numunelerinde kütle kaybı gözlenmi tir. Görünür gözeneklilik ise Dö emealtı (Antalya) numunelerinde azalma e ilimi gösterirken; Bucak (Burdur) ve Ermenek (Karaman) numunelerinde artı ile birlikte dalgalanma söz konusudur. Kütle artı ının ve görünür gözeneklili in bu de i iminin nedeninin kayaç yüzeyinde olu an tuz kristallenmesi oldu u dü ünülmektedir. A ırlıkça ve hacimce su emme e rileri burada da birbirine çok yakındır. Dö emealtı (Antalya) numunelerinde genel olarak bir azalma söz konusudur. Ermenek (Karaman) ve Bucak (Burdur) numunelerinde ise artı la birlikte dalgalanma mevcuttur. Dö emealtı (Antalya) traverteninin, Ermenek (Karaman) ve Bucak (Burdur) travertenlerinden farklı bir tepki verdi i, ayrı manın yanısıra tuz kristallenmesi gerçekle ti i, bunun da nedeninin kimyasal bile ime ba lı oldu u öngörülmü tür.

Örneklerin fiziksel ve mekanik özellikleri ile de i imlerini belirlemek için kullanılan yöntemlerden biri de P dalga yayılım hızının ölçülmesidir. P dalga yayılım hız ölçümleri, örneklerin çözeltilere yatırılmasından önce ve 40. döngü sonrasında olmak üzere 2 defa yapılmı tır. Tuz çözeltilerinde bekletilmeden önceki P dalga yayılım hız de erleri, 40. döngü sonrası elde edilen hız de erlerinden daha yüksek çıkmı tır.

Kayacın davranı ını etkileyen önemli parametrelerden biri olan tek eksenli basınç dayanım de erleri belirlenmi tir. Dö emealtı (Antalya) için ortalama 47.29, Bucak (Burdur) için ortalama 43.50 ve Ermenek (Karaman) için ortalama 40.19 MPa olarak belirlenmi tir. Bu sonuçlara göre; ISRM (1979)'a göre her üç grup numunenin de "orta-dü ük dayanımlı" oldu u görülmü tür (Ulusay,2001).

Tuz çözeltilerinin 40. döngüsünden sonra yapılan deneyde bu de erler her üç grup için 40 MPa'ın altına dü mü tür. Tek eksenli basınç dayanımının dü mesine ra men, ISRM (1979)'un aynı sınıfına dahildirler. Ayrıca ortalama tek eksenli basınç dayanımı %15.6 oranında azalmı tır. Bu arada en fazla dayanım kaybı; %16.8'lik oran ile NaCl tuzuna batırılan numunelerde gözlenmi tir. En az dayanım kaybı ise %14.4'lük oran ile Na₂SO₄ tuzuna batırılan numunelerde olmu tur. MgSO₄ tuzundaki dayanım kaybı ise %15.5'tir. Çizelge 5.1, Çizelge 5.2 ve Çizelge 5.3'de bu durum görülebilmektedir.

Suda da ılmaya kar ı duraylılık indeksi deneyi sonuçlarına göre ise her üç grubun numunelerinde da ılma dayanım de erlerinde ciddi bir fark görülmemi tir. Gerek kontrol numunelerinin, gerek 40. döngü sonrasında kullanılan numunelerin da ılma dayanım de erleri en az 98.39 olmu tur ve buna göre, da ılma dayanım sınıflaması "yüksek – çok yüksek" olarak belirlenmi tir.

DÖ EMEALTI (ANTALYA)											
Vontrol	Kontrol MaSO % fork No SO % fork NoCl % fork										
Kontrol	$MgSO_4$	% lark	$\operatorname{Na}_2 \operatorname{SO}_4$	% lark	NaCI	% lark					
62.75	38.36	38.86	31.71	49.46	67.93	-8.26					
47.04	43.67	7.16	42.32	10.03	46.74	0.63					
58.32	43.08	26.14	29.06	50.18	38.95	33.21					
52.77	35.46	32.80	25.23	52.19	43.54	17.48					
37.52	29.82	20.54	37.65	-0.34	37.44	0.22					
43.16	33.56	22.24	24.26	43.80	41.40	4.10					
32.72	29.27	10.55	63.59	-94.34	30.28	7.46					
45.14	33.94	24.81	47.68	-5.61	40.24	10.87					
50.24	39.80	20.79	39.71	20.96	17.48	65.21					
42.45	40.72	4.07	51.84	-22.12	24.47	42.36					
	Ortalama										
47.21	36.77	20.80	39.30	10.42	38.85	17.33					

Çizelge 5.1. Dö emealtı (Antalya) Tek eksenli basınç dayanım deney sonuçlarının kar ıla tırılması

Çizelge 5.2. Bucak (Burdur) Tel	k eksenli basınç	dayanım	deney	sonuçlarının
kar 11a tırılması				

BUCAK (BURDUR)								
Kontrol	MgSO ₄	% fark	Na ₂ SO ₄	% fark	NaCl	% fark		
30.28	41.31	-36.44	37.44	-23.64	38.95	-28.65		
39.42	32.72	16.99	34.53	12.39	48.09	-22.01		
37.52	44.30	-18.07	37.73	-0.56	23.88	36.36		
56.64	29.35	48.18	24.93	55.99	37.82	33.23		
45.27	44.22	2.33	25.40	43.89	36.52	19.33		
39.04	30.30	22.37	37.98	2.70	41.69	-6.80		
27.29	17.86	34.57	35.92	-31.64 29.27 -7.25				
46.87	50.91	-8.63	29.65	36.75	46.37	1.08		
48.26	34.91	27.66	41.69	13.61	31.25	35.25		
49.19	49.94	-1.54	49.40	-0.43	24.90	49.38		
Ortalama								
41.98	37.58	8.74	35.47	10.91	35.87	10.99		

ERMENEK (KARAMAN)							
Kontrol	MgSO ₄	% fark	Na ₂ SO ₄	% fark	NaCl	% fark	
29.65	27.08	8.66	41.69	-40.63	38.28	-29.12	
34.15	18.61	45.50	29.52	13.56	23.71	30.58	
36.13	27.67	23.43	33.94	6.06	24.34	32.63	
43.46	33.23	23.55	15.96	63.28	31.88	26.65	
40.55	30.95	23.68	14.87	63.34	25.01	38.32	
36.89	30.74	16.67	24.64	33.22	40.17	-8.90	
40.55	41.56	-2.49	42.32	-4.36	21.14	47.87	
44.60	30.03	32.67	25.10	43.72	25.94	41.83	
41.40	35.67	13.83	28.76	30.52	25.10	39.37	
30.74	34.70	-12.88	27.54	10.41	30.19	1.78	
Ortalama							
37.81	31.02	17.26	28.43	21.91	28.58	22.10	

Çizelge 5.3. Ermenek (Karaman)	Tek eksenli basınç	; dayanım de	eney sonuçlarının
kar 11a tırılması			
6. SONUÇ

Ülkenin önemli turizm merkezlerinden olan Antalya, nüfus artı 1 nedeniyle hızlı bir yapıla maya maruz kalmaktadır. ehrin büyük bir bölümünün üzerine kuruldu u; litolojik ve mühendislik özellikleri ile di er karbonatlı kayaçlardan ayrılan travertenin (tufa) gerek temel gerekse yapı malzemesi olarak kullanımı gittikçe yaygınla maktadır. Ancak ayrı manın traverten gibi karbonatlı kayaçların yapı malzemesi (kaplama, dolgu yada riprap gibi) olarak kullanılmasına ya da temel olma özelli ine etkisi de unutulmamalıdır. Bu çalı ma; Antalya ve çevresindeki travertenlerin ayrı ma (bozunma) tipleri ve derecelerini belirleyerek sınıflandırmak; ayrı ma veya bozunmanın kayaçıların mühendislik davranı ına etkilerini ara tırmak, farklı mühendislik yapıları için yapı malzemesi olarak kullanılma olanaklarını irdelemek, gerek ayrı manın kentle me alanı seçimine etkisini gerek kentle menin ayrı maya katkısını ortaya koymak amacıyla yapılmı tır. Bunun için Dö emealtı (Antalya), Ermenek (Karaman) ve Bucak (Burdur) bölgelerinden alınan numuneler kullanılmı tır. Önce taze kayaçların, sonrasında ise tuz çözeltilerinde bekletilen kayaçların indeks özellikleri ayrı ayrı ve kar ıla tırılmı tır. Kayaçların ayrı tırılması için üç farklı tuz belirlenmi kullanılmı tır; sodyum klorür (NaCl), magnezyum sülfat (MgSO₄) ve sodyum sülfat $(Na_2SO_4).$

Bu çalı madan elde edilen sonuçlar a a ıda sunulmu tur:

• Taze kayaç örneklerinin hem kuru hem doygun birim hacim a ırlıklarının gözeneklilik ile ters orantılı oldu u ortaya konmu tur. Bununla birlikte Dö emealtı (Antalya) travertenlerinin Bucak (Burdur) ve Ermenek (Karaman) travertenlerinden çok daha gözenekli oldu u belirlenmi tir. Bu durum, Dö emealtı (Antalya) travertenlerinin olu um ko ullarının ve ortamının di erlerinden farklı oldu unu göstermektedir.

• Tuz çözeltilerinde yapılan deneylerden sonra, her üç tuzda da sadece Dö emealtı (Antalya) travertenlerinin kütlesinde artı olurken, di er travertenlerin kütlelerinde azalma olmu tur. Böylece gözeneklerde olu an tuz çökelmelerinin ayrı madan daha etkin oldu u sonucuna varılmı tır.

• Di er taraftan, görünür gözeneklilik en çok Ermenek (Karaman) traverteninde azalmı tır. Bu da çözünen malzemenin gözenekleri doldurdu unu göstermektedir.

• Kuru birim hacim a ırlık özellikleri açısından her üç traverten her üç tuz çözeltisinde de benzer sonuçlar vermi tir.

• Gerek hacimce gerekse a ırlıkça su emme oranı Dö emealtı (Antalya) travertenlerinde her üç tuz çözeltisinde azalırken, di er travertenlerde özellikle Bucak (Burdur) numunelerinde, artmı tır. Bu da çökelmenin Dö emealtı (Antalya) travertenlerinde en fazla, Bucak (Burdur) travertenlerde ise en az oldu unu göstermektedir. • Doygun birim hacim a ırlık $MgSO_4$ tuzunda ki Bucak (Burdur) numuneleri dı ındaki tüm numunelerde dü ü e ilimi göstermi tir. Bu sonucun su emme oranı ile ilgili oldu u dü ünülmektedir.

• Bo luk oranı açısından her üç traverten her üç tuz çözeltisinde de benzer sonuçlar vermi tir; Bucak (Burdur) numunelerinde artmı, di erlerinde azalmı tır.

• Tuz çözeltilerinde bekletilmeden önceki P dalga yayılım hız de erleri, 40. döngü sonrası elde edilen hız de erlerinden daha yüksek çıkmı tır. Buna göre; tuz çözeltileri genellikle numunelerin gözeneklili ini arttırmakta, dolayısıyla ayrı maya neden olmaktadır. Bununla birlikte; numunelerde belli bir süre sonra ayrı manın tuz çökeliminden daha az etkili oldu u da görülmü tür.

• Kayacın davranı ını etkileyen önemli parametrelerden biri olan tek eksenli basınç dayanım de erleri belirlenmi tir. Dö emealtı (Antalya) için ortalama 47.29, Bucak (Burdur) için ortalama 43.50 ve Ermenek (Karaman) için ortalama 40.19 MPa olarak belirlenmi tir. Bu sonuçlara göre; ISRM (1979)'a göre her üç grup numunenin de "orta-dü ük dayanımlı" oldu u görülmü tür (Ulusay,2001). Tuz çözeltilerinin 40. döngüsünden sonra yapılan deneyde bu de erler her üç grup için 40 MPa'ın altına dü mü tür. Buna göre, ortalama tek eksenli basınç dayanımı %15.6 oranında azalmı tır. Bu arada en fazla dayanım kaybı; %16.8'lik oran ile NaCl tuzuna batırılan numunelerde gözlenmi tir. En az dayanım kaybı ise %14.4'lük oran ile Na₂SO₄ tuzuna batırılan numunelerde olmu tur. MgSO₄ tuzundaki dayanım kaybı ise %15.5'tir.

• Suda da ılmaya kar ı duraylılık indeks deneyi sonuçlarında taze ve tuz çözeltisine batırılmı numuneler arasında önemli bir fark gözlenmemi tir.

Özetle; benzer litolojik özelliklere sahip olmasına ra men, farklı bölgelerdeki travertenler; bulundu u bölgeye, çökelimi sırasındaki suyun sıcaklık ya da pH gibi kimyasal özelliklerine ba lı olarak, farklı mühendislik özellikleri sergilemektedir. Gerek temel gerek yapı malzemesi olma durumunda, hem atmosferik ko ulların hem de deniz gibi tuzlu ortamın, kimi zaman çökelme kimi zaman çözünme nedeniyle ayrı maya yol açtı 1; ayrı manın travertenlerin dayanım ve ekonomik ömründe önemli rol alan mühendislik özelliklerine olumsuz etkileri oldu u sonucuna varılmı tır. Hangi amaçla kullanılırsa kullanılsın; ayrı ma potansiyelinin ara tırılması ve planlamanın bu potansiyelin göz önünde tutularak yapılması gerekmektedir.

7. KAYNAKLAR

- AKBULUT, A. 1980. E irdir Gölü güneyinde, Çandır (Sütçüler, İsparta) yöresindeki Batı Torosların Jeolojisi. *T.J.K. Bülteni* 23/1.
- AKÇAL, N., ACAR, M.H. 2013. Determination of The Physical and Mechanical Properties of Travertines in Antalya Province. Geoconference On Science and Technologies In Geology, Exploration and Mining, 2:55-102.
- AKIN, M. 2008. Eskipazar (Karabük) Travertenlerinin Bozunmasının Ara tırılması. Doktora tezi, Ankara Üniversitesi, Ankara, 292 s.
- ALTINLI, E. 1944. Antalya bölgesinin stratigrafik etüdü. Ü Fen Fakültesi Mecmuası, Seri: B, 9(3), 227-238.
- ANON, 1995. The description and classification of weathered rocks for engineering purposes, Working Party Report. Quarterly Journal of Engineering Geology, No. 28, pp. 207-242.
- ANON, 1977. The description of rock masses for engineering purposes, Working Party Report. Quarterly Journal of Engineering Geology, No. 10, pp. 355-388.

ANON M-1

http://www.mta.gov.tr/v2.0/bolgeler/konya/index.php?id=burdur_bolgesel_jeoloji

ANON M-2

http://www.mta.gov.tr/v2.0/bolgeler/konya/index.php?id=karaman_bolgesel_jeoloji

ANON M -3

http://www.kirman.info/wp-content/uploads/2010/12/GunlenmeTasinma.pdf

- ANTALYA L ÇEVRE DURUM RAPORU, 2011. Antalya Valili i Çevre ve ehircilik l Müdürlü ü.
- ARIKAN, F. 2002. Asidik volkanik kayaçlar için mühendislik amaçlı bozunma sınıflaması. Doktora tezi (basılmamıs), Hacettepe Üniversitesi, Ankara, 244 s.
- ASTM, 1994. Annual Book of ASTM Standards Construction: Soil and Rock, ASTM Publication, V.04.08, 978 p.
- ATABEY, E. 2004. Tufa ve Travertenlerin Genel Özellikleri, Sınıflaması, Depolanma Ortamları ve Antalya Tufa Çökelleri. Antalya' nın Jeolojisi ve Do al Afet Konferansları, 2-3 Aralık 2004, Antalya.
- AVIGAD, D., SANDLER, A., KOLODNER, K., STERN, R.J., McWILLAMS, M., MILLER, N. and BEYTH, M. 2005. Mass-production of Cambro–Ordovician quartz-rich sandstone as a consequence of chemical weathering of Pan-African

terranes: Environmental implications, *Earth and Planetary Science Letters*, 240, 818–826.

- AYDAR, C., DUMONT, J. F. 1979. Antalya Travertenlerinde Görülen Dizilimlerden Elde Edilen Landsat Görüntüleri Üzerinde Yapılan Gözlemler: Neotektonik ve Hidrojeoloji arasında olabilecek Ba ıntıların Tartı ması. *MTA Dergisi*, 92, 131-135, Ankara.
- BA AL, A., EKMEKÇ, M. 2000. Antalya Traverten Platosu Toprak Zonunun Akifere Koruyucu Örtü Olarak Do al Arındırma Özellikleri. Hacettepe Üniversitesi Yerbilimleri Uygulama ve Ara tırma Merkezi Bülteni, 22, 95-10.
- BEAVIS, F.C. 1985. Engineering Geology. Blackwell Publications.
- BELL, F.G. 1983. Engineering Properties of Soils and Rocks, 2nd Edition Butterworths.
- B LG N, A., ARSLAN, S., ENAY, Y., POLAT, S. 2012. Hasankeyf ve Yöresindeki Kayaçlardaki Ayrı ma ve Bu Ayrı manın Yerle im Alanına Olan Etkisi. Batman Üniversitesi Uluslararası Katılımlı Bilim ve Kültür Sempozyumu, 18-20 Nisan 2012 Batman.
- BLUMENTHALL, M.M. 1944B. Kayseri-Malatya arasındaki Toros'un Permokarboniferi, *MTA Dergisi*, 1/31, 105-133, Ankara.
- BLYTH, F.G. and FREITHER. 1987. " A Geology for Engineers". Arnold, London, 325 pp.
- BRUNN, J.F., DUMONT, J., GRAC ANSKY, P.C., GUTN C, M., JUTEAU, T., MARCOUX, J., MONOD, O., PO SSON, A. 1971. Outline of the geology of the western Taurides: Geology and history of Turkey. A.S. Campbell (ed.) Petroleum Exploration Soci. of Libya, 225-255, Tripoli.
- BURDUR L ÇEVRE DURUM RAPORU, 2009. Burdur Valili i 1 Çevre ve Orman Müdürlü ü.
- BURGER, D. 1990. The travertine complex of Antalya, southwest Turkey. Z. *Geomorph.*, 77, 25-46.
- CANMET, 1977b. Laboratory tests for design parameters. In: Pit Slope Manual of CANMET, Supplement 3-2, Canada Centre for Mineral and Energy Technology Report 77-26, 74 p.
- CHANDLER, R.J. 1972. Lias Clay :Weathering Processes and Their Effects on Shear Strength. *Geotechnique*. 22 pp403-431.

CHIGIRA, M. and OYAMA, T. 1999. Mechanism and effect of chemical weathering of sedimentary rocks, *Engineering Geology*, 55, 3–14.

- ÇAMLILAR, S. 2010. Antalya Bo açay Alüvyonların Mühendislik Özellikleri. Yüksek Lisans tezi, Süleyman Demirel Üniversitesi, Isparta.
- DARKOT, B., ER NÇ, S. 1951. Aksu Batısında Antalya traverten taraçaları, *st. Ün. Co r. Enst. Derg.*, *1*(2):.55-65.
- DEARMAN, W.R. 1974. Weathering classification in the characterisation of rock for engineering purposes in British practice. Bull. Int. Ass. Eng. Geo., No. 9, pp. 33-42.
- DEARMAN, W.R., BAYNES, F.J. and RFAN, T.Y. 1978. Engineering grading of weathered granite. *Engineering Geology*, 12: 345-374.
- D POVA, N. 1997. Konyaaltı (Antalya) bölgesindeki zemin davranı larının belirlenmesi. Yüksek lisans tezi, ODTÜ, Ankara.
- D POVA, N., DOYURAN, V. 2002. Antalya tufa çökellerinin çökme mekanizması. Orta Do u Teknik Üniversitesi, Doktora Tezi, Ankara, 197 s.
- D POVA, N., ACAR, M. H. 2003. Konyaaltı (Antalya) Liman Mahallesi kil zeminlerin ikincil sıkı abilirlik özelliklerinin belirlenmesi. XI. Ulusal Kil Sempozyumu, Ege ve Dokuz Eylül Üniversiteleri, zmir.
- D POVA, N., CANG R, B. 2011. Antalya li Yerle im Alanının Depremselli inin Ara tırılması, *Jeoloji Mühendisli i Dergisi* 35 (2).
- D POVA, N., YILDIRIM, M. 2005. Antalya Tufa Platolarının Olu umu ve Jeomorfolojik Özellikleri, *Jeoloji Mühendisli i Dergisi*, 29(2): 53-59.
- DS, 1985. Antalya-Kırkgöz kaynakları ve traverten platosu karst hidrojeolojik etüd raporu, DS Teknik Hizmetler ve Yeraltı Suları Dairesi Ba kanlı 1, Ankara.
- EHLEN, J. 2002. Some effects of weathering on joints in granitic rocks. *Catena*, 49, 91-109.
- EKMEKÇ, M., BA AL, A. 2000. Antalya Traverten platosu toprak zonunun hidrojeokimyasal özelliklerinin incelenmesi. Yüksek Lisans Tezi, Hacettepe Üniversitesi, Ankara, 79 s.
- ERDO AN, M. 2013. Burdur-A lasun Havzasının Hidrojeoloji ncelemesi. Yüksek Lisans tezi, stanbul Teknik Üniversitesi, stanbul
- ES RTGEN, T. 2009. Bucakkı la Bölgesinin(Karaman Güneybatısı- Orta Toroslar) Tektonik Evrimi. Yüksek Lisans tezi, Hacettepe Üniversitesi, Ankara.
- FOOKES, P.G. and HORSWILL, P. 1970. Discussion on the load deformation behaviour of the Middle Chalk at Mundford, Norfolk. In situ Investigations in Soils and Rocks, *British Geotechnical Society*, pp. 53-57, London.

- FOOKES, P.G., DEARMAN, W.R. and FRANKLIN, J. A. 1971. Some Engineering Aspects of Rock Weathering. *Quar. J. Eng. Geology*, 4:139-185.
- FOOKES, P.G., DEARMAN, W.R. and FRANKLIN, J.A. 1972. Some engineering aspects of weathering with field examples from Dartmoor and elsewhere. *Quarterly Journal of Engineering Geology*, 3:1-24.
- FORD, T.D. ve PEDLEY, H.M. 1996. A review of tufa and travertines deposits of the world. *Earth Sciences Reviews*, 41:117-175.
- FRANKLIN, J.A. and CHANDRA, R. 1972. The Slake Durability Test, Int. Journal of Rock Mech. Min. Sci., 325-341.
- GAMBLE, J.C. 1971. Durability-Plasticity Classification of Shales other Argillaceous Rocks, Ph. D. Thesis, University of Ilinois, USA.
- GLOVER, C.P. and ROBERTSON, A.H.F. 1998. Role of regional extension and uplift in the Plio- Pleistocene evolution of the Aksu Basin, SW Turkey, *Journal of Geological Society*, London, 155:365-387.
- GLOVER, C., ROBERTSON, A.H.F. 2003. Origin of tufa (cool-water carbonate) and related terraces in the Antalya area, SW Turkey. *Geological Journal*, 38:329-359.
- GÖKÇEO LU C., ZORLU K., CERYAN S., NEFESL O LU, H.A. 2009. A comparative study on indirect determination of degree of weathering of granites from some physical and strength parameters by two soft computing techniques, *Materials Characterization*, 60:1317-1327.
- GÖKDEN Z, S. 1981. Recherches Geologiques Dans Les Taurides Occidentoles Entre Karaman Et Ermenek, Turquie, Le titre de doctour 3 eme cycle, Universite de Paris-Sud Centre D'orsay, 202.
- GÖRMÜ, M. ve ÖZKUL, M. 1995. Gönen-Atabey (Isparta) ve A lasun (Burdur) arasındaki Bölgenin Stratigrafisi, S.D.Ü. Fen Bilimleri Enstitüsü Derg., 1:23-45, Isparta.
- GÜNAY, Y., BÖLÜKBA I, S., YOLDEM R, O. 1982. Beyda larının Stratigrafisi ve Yapısı. Turkiye Altıncı Petrol Kongresi, 91- 101, Ankara.
- I DIR, I., GÖZLER, M. Z., ERGÜL, E. 1972. Fethiye-P23a3 ve P23c1 paftalarının jeolojisi. MTA Raporu, 6526 (yayınlanmamı), 24, Ankara.
- ILGAR, A. 2004. Zorunlu Regresyon, Transgresyon ve Sediman Getiriminin, Havza Kenarı Çökelme Sistemlerinin Sedimantolojik ve stif Stratigrafik Geli imi Üzerindeki Kontrolü, Ermenek Havzası (Orta Toroslar), *MTA Dergisi* 128:49-78.

- ILLIEV, G.I. 1967. An Attempt to Estimate the Degree of Weathering of Intrusive Rocks From Their Physico-Mechanical Properties. ISRM, 1st Rock Mechanics Congress.
- ISRM, 1978. Suggested method for the quantitative description of discontinuities in rock mass. Geo. 10, Standard of Lab. and field test., Int. Jour. Rock Mec. Min. Sct. Jeomec., Abs.Tr.V.15, pp. 319-368.
- ISRM, 1981. Rock characterization, testing and monitoring. International Society of Rock Mechanics Suggested Methods, Pergamon Press, 211 pp., Oxford.
- ISRM, 2007. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006. R. Ulusay and J.A. Hudson (eds.), Ankara. 628 pp.
- NAN, N. 1980. Antalya Travertenleri. MTA Raporu, No: 7175.
- NAN, A., U UR, M. 1981. Konya-Hadim (Kızılgeris)-Bozkır (Küçüksu) ve Antalya-Gazipasa (Muzvadi-Berem) yörelerindeki çinko-kursun cevherlesmelerine ait jeoloji raporu: MTA Enst, Maden Etüd Rp: 1754, 56 s, (yayımlanmamı).
- SMA LOV, T., ÖZÇEL K M., ENER, E. 2005. Evsel Sıvı Atıkların Yerle im Alanındaki Travertenlerin Geoteknik Özelliklerine Etkisi, Antalya Yöresinin n aat Mühendisli i Sorunları Kongresi, 22-24 Eylül 2005,s. 432- 440, Antalya.
- JOHNSON, R.B. and DEGRAFF, J.V. 1988. "Principles of Engineering Geology" John Willey & Sons.
- KAHRAMAN, S. 2002. Estimating the P-Wave Velocity Value of intact Rock From ndirect Laboratuary Measurements, *International Journal of Rock Mechanics and Minig Sciences*, 39:723-728.
- KAHRAMAN, S., GÜNAYDIN, O. and FENER, M. 2005. Determination of some physical properties of travertines from ultrasonic measurement. Proceedings of 1st International Symposium on Travertine, Özkul, M., Yagız, S. and Jones, B. (eds.), pp. 231-234, Denizli.
- KALAFATCIO LU, A. 1973. Antalya körfezi batı kısmının jeolojisi. MTA Dergisi, 81:82-131.
- KARAMAN L ÇEVRE DURUM RAPORU, 2011. Karaman Valili i Çevre ve ehircilik l Müdürlü ü.
- KARAMAN, K., C HANG R, F., ERÇIKDI, B., KES MAL, A. 2012. Kireçta larının A ırlıkça Su Emme Yüzdelerine Göre Bir Ayrı ma Sınıflaması. *stanbul Yerbilimleri Dergisi*, 24(2):119-128.

- KARAMAN, M. E. 1990. Isparta güneyinin temel jeolojik özellikleri. TJK Bülteni, 33, 57-67, Ankara.
- KAZANCI, N., ÖZKAN, H., ALKAN, A., EROL, O. 1986. Burdur Havzası Pleyistosen deltayik kuvars kumlarının yüzey özellikleri, Elektron mikroskop uygulaması: *Do a*, 10(3):255 266.
- KILIÇ, R. and YAVUZ, S. 1994. Relationships between geotechnical properties of the Antalya travertine (Turkey). Bull. of the Int. Ass. of Engineering Geology, 50: 43-50.
- KIERSCH, G.A. and TREACHER, R.C. 1955. Investigations aerial and engineering geology- Folsom Dam Project, Central California. *Econ. Geology*, 50(3):271-310.
- KNILL, J.L. and JONES, K.S. 1965. The recording and interpretation of geological conditions in the foundations of the Roseires, Kariba and Latiyan Dams. *Geotechnique*, 15(1): 94-124.
- KO UN, E., SARIGÜL, A. 2006. Antalya Tufalarında Farklı Tip Giysili Tane Olu umları: Pizolitler ve Onkolitler.
- KO UN, E., SARIGÜL, A., VAROL, B. 2005. Antalya Tufalarının Litofasiyes Özellikleri. *MTA Dergisi*, 130:57-70.
- KU ÇU, M., VARKAL, M. 1991. Çamlık (Bucak-Burdur) travertenlerinin jeolojisi ve mermer olarak kullanılabilirli inin ara tırılması. Yüksek Lisans Tezi, Akdeniz Üniversitesi, Antalya, 48s.
- KUN, N. ve TÜRKMEN, F. 2003. Burdur Bucak çevresi travertenlerinin jeolojik özellikleri, Türkiye IV. Mermer Sempozyumu, Bildiriler Kitabı, 19: 257 266.
- LALE, T. 2005. Antalya Travertenlerinin Jeolojisi ve Tektonik Özellikleri. AÜ Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 48s.
- LEFEVRE, R. 1967. Nouvel element de la geologie du Taurus Lyccien Les nappesd Antalya (Turquie), *C.R.A.S.* 263:1365-1368.
- LITTLE, A.L. 1969. The engineering classification of residual tropical soils. Proc. of 7th Int. Conf. Soil Mech. and Found. Eng., 1:1-10, Mexico.
- MOYE, D.G. 1955. Engineering geology for Snowy Mountain scheme. *Journal Inst. of Engineers*, 27:287-298.
- NIEHOFF, W. 1960. Mut 126/1 numaralı harita paftasının revizyon neticeleri hakkında rapor: M.T.A. Der. Rap., No. 3390, Ankara, (yayımlanmamı).
- MTA, 2002. Türkiye Jeoloji Haritası, Konya paftası, 1/500.000 ölçekli, Jeoloji Etütleri Dairesi, Ankara.

- NOSSIN, J.J. 1989. Spot stereo interpretation in karst terrain, Southern Turkey, ITC Journal, 2.
- OLIVIER, H.J. 1979. A New Engineering Geological Rock Durability Classification. *Eng. Geology.*, 14:255-279.
- OLLIER, CD. 1969. Weathering, Oliver & Boyd Publication, Edinburgh.
- OLLIER, C. 1984. Weathering, Geomorphology Texts. Ed. K.M. Clayton, Longman, London and New York, 270 p.
- ÖZÇEL K, M. ve KARAGÜZEL, R. 1992. Antalya Yerle im Merkezi 18L-19L Paftaları Mühendislik Jeolojisi Haritası, 7. Mühendislik Haftası 25-29 Mayıs 1992, Isparta.
- ÖZÇEL K, M. 2015a. Effect of wastewater on building foundation in karst travertine areas in Antalya, Turkey. *Bulletin of Engineering Geology and Environment*. DOI 10.1007/s10064-014-0695-4.
- ÖZÇEL K, M. 2015b. Foundation investigation and design in a karst terrain for the Antalya Aquarium complex, Turkey. *Quarterly Journal of Engineering Geology and Hydrogeology*, DOI:10.1144/qjegh2014-044.
- ÖZHAN, A. 1990. Görmel Barajı (Ermenek, GD-Konya) Kuvvet Tünel Güzergahının Mühendislik Jeolojisi ncelemesi, *Jeoloji Mühendisli i Dergisi*, s.5-10, Ankara.
- ÖZVAN, B. 2010. Süreksizlik Düzlemlerinde Ayrı manın Pürüzlülük Üzerindeki Etkisi. Yüksek Lisans tezi, Çukurova Üniversitesi,
- PAREJAS, E. 1942. Sandıklı, Burdur, Dinar, Isparta ve E ridir bölgesinde yapılan jeolojik löveler hakkında rapor : MTA Rap., 7131 (yayımlanmamı), Ankara.
- PENCK, W. 1918. Die Tektonischen Grundzuge west Eiszeitalter, Leipzig.
- PERRY, H.R. 1986. Engineering Geology; An Environmental Approach. Elsevier.
- PHILLIPSON, A. 1918. Kleinasien, Handbuch der Regionalen Geologie, 2/2. Carl Winters Universitä^{*}tsbuchhandlung: Heidelberg.
- RICHARDS, L.R. 1972. Classification of Weathering of Near Surface Jointed Rock. PhD Thesis, Royal School at Mines.Imperial College, London, England, 165 P.
- RILEM, 1980. Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods. Commission 25-PEM, Material and Structures, 13:175-253.
- PLATEN, J.D. 1971. Stratigraphie Division of the Neogene and Oldest Pleistocene in Soutwest Anatolia. Nevsl., Stratigraphy, 1(3): 19-22.

- POISSON, A. 1977. Recheiches Geologive Dans Les Taurides Accidentales (Turguie) These Presente a Cuniversite de Paris Sude (Centre Dorsay) No'd'ordre, 1902, Orsay.
- POISSON, A., YA MURLU, F., BOZCU, M. ve ENTÜRK, M. 2003. New insights on the tectonic setting and evolution around the apex of the Isparta Angle (SW Turkey), *Geol. J.* 38: 257-282.
- PRICE, D.G. 1993. A suggested method for the classification of rock mass weathering by a rating system. *Quart. Journal of Engineering Geology*, 26 (1): 69-76.
- PRICE, D.G. 1995. Weathering and weathering process. *Quarterly Journal of Engineering Geology*, 28:243-252.
- RUXTON, B.P. and BERRY, L. 1957. Weathering of granite and associated erosional features in Hong Kong. *Bull. Geol. Soci. America*, 68: 1263-1292.
- SÜMER, E. 2001. Karaman'ın Güneybatısının Jeoloji ncelemesi ve Mermer Yatakları. Yüksek Lisans Tezi, Selçuk Üniversitesi, Konya.
- ALLI, R. 2008. Ermenek Barajı ve HES Gövde Kazısı Patlatmalarının ncelenmesi. Yüksek Lisans tezi, Çukurova Üniversitesi, Adana.
- ENEL, M., DALKILIÇ, H., GED K, ., SERDARO LU, M., BÖLÜKBA I, S., MET N, S., ESENTÜRK, K., B LG N, A., Z., U UZ, M. F., KORUCU, M., ÖZGÜL, N. 1992. E irdir Yenisarbademli- Gebiz ve Geris- Köprülü (Isparta-Antalya) arasında kalan alanların jeolojisi. MTA- TPAO Raporu, No: 3132 (yayınlanmamı), Ankara.
- ENEL, M., GED K, ., DALKILIÇ, H., SERDARO LU, M., B LG N, A.Z., U UZ, M.F., BÖLÜKBA I, A.S., KORUCU, M., ÖZGÜL, N. 1996. Isparta Büklümü do usunda otokton ve allokton birimlerin stratigrafisi (Batı Toroslar). *MTA Dergisi*, 118:111-160.
- TU RUL, A. 1995. Niksar yöresindeki bazaltların mühendislik özelliklerine ayrı manın etkileri, Doktora Tezi (basılmamı), stanbul Üniversitesi, stanbul, s 168.
- TU RUL, A. 2004. The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey, *Engineering Geology*, 75:215-227.
- TU RUL, A. and ZAR F, .H. 2000. The influence of weathering on the geological and geomechanical characteristics of the sandstone in Istanbul, Turkey, *Environmental and Engineering Geoscience*. 5(4): 403-412.
- TU RUL, A. stanbul Üniversitesi, Mühendislik Fakültesi, Jeoloji Mühendisli i Bölümü. Jeolojiye Giri, "Ayrı ma ve Erozyon.", Ders Notu.

- TURKINGTON, V. A. and PARADISE, T. R. 2005. Sandstone weathering: a century of research and innovation, *Geomorphology*, 67(1-2): 229-253.
- TSE, 1978. Do al Yapı Ta larının Muayene ve Deney Metotları. Türk Standartları Enstitüsü, 16 s.
- ULUSAY, R. 2001.Uygulamalı Jeoteknik Bilgiler, 5. Baskı, Ankara, 127 s.
- ULUSAY, R., GÖKÇEO LU, C. ve B NAL, A. 2011. Kaya Mekani i Laboratuvar Deneyleri. Hacettepe Üniversitesi, Mühendislik Fakültesi, Jeoloji Mühendisli i, 3. Baskı., Ankara.
- UZER ULV, A. 2006. Konyaaltı(Antalya) Lagün Killerinin Teorik ve Deneysel ncelenmesi. Doktora Tezi, Selçuk Üniversitesi, Konya.
- ÜNVER, B. ve ÜNAL, M. 1995. Kayaların Bozunma Özelliklerinin Yerüstü Kazıları ve Yeraltı Açıklıklarının Duraylılı ına Etkisi, *Madencilik*, 34(3):15-29.
- YALÇIN, A. ve ÖZÇEL K M. 2004. Kurna Deresi (Burdur) travertenlerinin fizikomekanik özellikleri ve yapı tası olarak kullanılabilirlikleri, Bölgesel Kaya Mekani i Sempozyumu, Sivas, Türkiye.
- YALÇINKAYA, S., ERG N, A., AF AR, Ö. P. VE TANER, K. 1986. Batı Torosların jeolojisi, Isparta Projesi Raporu: Maden Tetkik Arama Genel Müdürlü ü (Yayınlanmamı).
- ZAKHAROVA, E.A., POKROVSKY, O.S., DUPRÉ, A.B., GAILLARDET, J., EFIMOVA, L.E. 2007. Chemical weathering of silicate rocks in Karelia region and Kola peninsula, NW Russia: Assessing the effect of rock composition, wetlands and vegetation, *Chemical Geology* 242:255–277.
- WALTHAM, A.C. 1994. Foundation of Engineering Geology, Blackie Academic & Professional, Chapman & Hall, 88 p.

ÖZGEÇM

Muzaffer ORHAN, 1982 yılında Mu la'da do du. lk, orta ve lise e itimini Mu la 'da tamamladı. 2002 yılında girdi i Akdeniz Üniversitesi Mühendislik Fakültesi Jeoloji Mühendisli i Bölümü'nden 2007 yılında "Jeoloji Mühendisi" ünvanını alarak mezun oldu. 2011 yılında Akdeniz Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisli i Anabilim Dalı'nda yüksek lisans ö renimine ba ladı. u an, zmir ehircilik l Müdürlü ü'nde Jeoloji Çevre ve Mühendisi olarak görev yapmaktadır.

Ek-1a. DÖ EMEALTI (ANTALYA)							
ÖRNEK NO.	χ_k (kN/m ³)	n (%)	e (%)	$\chi_{\rm d}$ (kN/m ³)	A_w	H_w	
1	23.95	3.81	0.0396	24.33	1 56	3.81	
2	23,93	4.00	0.0417	24,53	1,50	4 00	
3	23.96	2.78	0.0286	24.23	1,02	2.78	
4	24.30	3.78	0.0393	24.67	1.53	3.78	
5	22.92	5.62	0.0596	23.47	2.41	5.62	
6	24.85	2,02	0.0206	25.05	0.80	2.02	
7	24,28	2,46	0,0252	24,52	0,99	2,46	
8	24,00	3,46	0,0358	24,34	1,41	3,46	
9	23,95	4,39	0,0459	24,38	1,80	4,39	
10	22,74	6,35	0,0678	23,37	2,74	6,35	
11	24,41	3,21	0,0331	24,73	1,29	3,21	
12	22,91	2,72	0,0280	23,17	1,16	2,72	
13	24,38	3,11	0,0321	24,68	1,25	3,11	
14	24,51	2,22	0,0227	24,73	0,89	2,22	
15	23,98	3,30	0,0342	24,30	1,35	3,30	
16	24,12	3,19	0,0330	24,44	1,30	3,19	
17	24,00	3,50	0,0363	24,34	1,43	3,50	
18	24,61	2,21	0,0226	24,83	0,88	2,21	
19	23,75	3,59	0,0372	24,10	1,48	3,59	
20	23,59	3,93	0,0409	23,98	1,64	3,93	
21	23,74	3,68	0,0383	24,10	1,52	3,68	
22	24,41	3,45	0,0357	24,75	1,39	3,45	
23	24,31	2,84	0,0293	24,59	1,15	2,84	
24	24,31	2,79	0,0287	24,58	1,12	2,79	
25	24,14	3,19	0,0330	24,36	1,30	3,19	
26	24,30	3,61	0,0374	24,65	1,46	3,61	
27	24,04	3,16	0,0326	24,35	1,29	3,16	
28	23,73	3,72	0,0387	24,10	1,54	3,72	
29	24,51	2,29	0,0234	24,73	0,92	2,29	
30	23,91	3,25	0,0336	24,23	1,33	3,25	
31	24,66	3,64	0,0378	25,02	1,45	3,64	
32	24,69	2,41	0,0247	24,92	0,96	2,41	
33	24,26	2,49	0,0255	24,50	1,01	2,49	
34	23,91	2,44	0,0250	24,15	1,00	2,44	
35	23,85	4,98	0,0524	24,34	2,05	4,98	
36	24,03	3,53	0,0366	24,38	1,44	3,53	
<u> </u>	24,35	2,33	0,0239	24,58	0,94	2,33	
<u> </u>	23,58	4,20	0,0438	25,99	1,/5	4,20	
39	24,09	5,88	0,0404	24,47	1,58	3,88	
40	23,23	4,31	0,0431	23,03	1,82	4,31	
41	24,23	5,95 0 7 0	0,0410	24,04	1,39	5,95	
42	∠4,07	2,12	0,0279	24,33	1,11	2,12	

Ek-1b. BUCAK (BURDUR)							
ÖRNEK NO.	(kN/m^3)	n (%)	e (%)	(kN/m^3)	A _w (%)	H _w (%)	
1	24,08	1,45	0,0147	24,22	0,59	1,45	
2	24,31	1,07	0,0108	24,42	0,43	1,07	
3	24,24	0,93	0,0094	24,33	0,38	0,93	
4	24,33	0,59	0,0060	24,39	0,24	0,59	
5	23,66	1,68	0,0170	23,82	0,69	1,68	
6	24,05	1,00	0,0101	24,15	0,41	1,00	
7	24,37	0,43	0,0043	24,41	0,17	0,43	
8	24,98	0,31	0,0031	25,01	0,12	0,31	
9	25,13	0,07	0,0007	25,14	0,03	0,07	
10	24,77	0,16	0,0016	24,79	0,06	0,16	
11	23,50	2,51	0,0257	23,75	1,05	2,51	
12	24,39	0,59	0,0059	24,45	0,24	0,59	
13	25,05	0,47	0,0047	25,10	0,18	0,47	
14	24,02	1,37	0,0139	24,15	0,56	1,37	
15	24,48	0,36	0,0036	24,51	0,14	0,36	
16	24,60	0,32	0,0032	24,63	0,13	0,32	
17	24,13	1,09	0,0110	24,24	0,44	1,09	
18	24,73	0,41	0,0042	24,77	0,16	0,41	
19	25,19	0,16	0,0016	25,20	0,06	0,16	
20	23,24	2,01	0,0205	23,43	0,85	2,01	
21	24,30	0,83	0,0083	24,38	0,33	0,83	
22	24,22	0,96	0,0097	24,31	0,39	0,96	
23	24,74	0,27	0,0027	24,76	0,11	0,27	
24	23,60	1,61	0,0163	23,75	0,67	1,61	
25	24,92	0,79	0,0079	25,00	0,31	0,79	
26	24,34	1,06	0,0107	24,44	0,43	1,06	
27	24,65	0,97	0,0098	24,75	0,39	0,97	
28	23,99	1,83	0,0186	24,17	0,75	1,83	
29	24,87	0,90	0,0090	24,96	0,35	0,90	
30	24,09	1,51	0,0153	24,23	0,62	1,51	
31	24,07	0,47	0,0047	24,11	0,19	0,47	
32	24,77	0,04	0,0004	24,77	0,02	0,04	
33	24,13	1,08	0,0109	24,23	0,44	1,08	
34	24,65	0,72	0,0072	24,73	0,28	0,72	
35	23,81	1,75	0,0179	23,98	0,72	1,75	
36	22,88	1,59	0,0161	23,03	0,68	1,59	
37	24,33	0,55	0,0055	24,38	0,22	0,55	
38	24,22	1,46	0,0148	24,37	0,59	1,46	
39	24,22	0,52	0,0052	24,27	0,21	0,52	
40	24,97	0,30	0,0030	25,00	0,12	0,30	
41	24,21	0,85	0,0086	24,30	0,35	0,85	
42	24,05	0,51	0,0051	24,10	0,21	0,51	
43	23,86	1,06	0,0107	23,96	0,44	1,06	
44	24,74	1,26	0,0128	24,87	0,50	1,26	
45	24,25	0,88	0,0089	24,34	0,36	0,88	
46	22,92	3,31	0,0343	23,25	1,42	3,31	

Ek-1c. ERMENEK (KARAMAN)							
ÖRNEK NO.	$\frac{\chi_k}{(kN/m^3)}$	n (%)	e (%)	$\frac{\chi_d}{(kN/m^3)}$	A _w (%)	H _w (%)	
1	24.02	1.56	0.0406	24.17	0.64	1.56	
2	24 50	0.89	0.0225	24 59	0.36	0.89	
3	23.42	2.07	0.0560	23.62	0.87	2.07	
4	23,88	2.55	0.0695	23,02	1.05	2,57	
5	23,60	2,35	0.0571	23.90	0.89	2,33	
6	24 20	1 45	0.0373	23,30	0.59	1 45	
7	24.65	1,12	0.0341	24.78	0.49	1,12	
8	23.99	1.64	0.0438	24.15	0.67	1.64	
9	24.50	1.12	0.0299	24.61	0.45	1.12	
10	23.84	1.44	0.0363	23.98	0.59	1.44	
11	23.69	2.16	0.0582	23.90	0.89	2.16	
12	24.68	1.28	0.0331	24.81	0.51	1.28	
13	24.61	1.41	0.0384	24.75	0.56	1.41	
14	24.82	1.29	0.0341	24.95	0.51	1.29	
15	24.57	1.64	0.0428	24.73	0.65	1.64	
16	23.76	1.82	0.0471	23.93	0.75	1.82	
17	24,59	1,34	0.0363	24,73	0,54	1,34	
18	24.13	1.53	0.0395	24.28	0.62	1.53	
19	23,92	1,87	0,0504	24,10	0,77	1,87	
20	24,31	2,03	0,0549	24,51	0,82	2,03	
21	24,63	1,13	0,0288	24,74	0,45	1,13	
22	24,08	2,33	0,0627	24,31	2,88	7,06	
23	23,70	1,48	0,0384	23,85	0,61	1,48	
24	24,64	0,88	0,0225	24,73	0,35	0,88	
25	24,81	1,20	0,0320	24,92	0,48	1,20	
26	23,44	1,91	0,0482	23,62	0,80	1,91	
27	24,80	0,96	0,0256	24,89	0,38	0,96	
28	24,00	1,30	0,0331	24,13	0,53	1,30	
29	24,47	1,82	0,0471	24,65	0,73	1,82	
30	24,69	1,79	0,0471	24,86	0,71	1,79	
31	24,76	1,00	0,0267	24,85	0,40	1,00	
32	24,75	1,61	0,0428	24,91	0,64	1,61	
33	24,15	1,13	0,0288	24,27	0,46	1,13	
34	24,39	1,65	0,0438	24,55	0,66	1,65	
35	23,55	0,66	0,0173	23,61	0,27	0,66	
36	24,61	1,44	0,0384	24,76	0,58	1,44	
37	24,36	0,93	0,0246	24,45	0,37	0,93	
38	23,85	1,87	0,0504	24,04	0,77	1,87	
39	23,89	1,54	0,0395	24,04	0,63	1,54	
40	24,03	1,54	0,0384	24,18	0,63	1,54	
41	24,53	1,57	0,0406	24,69	0,63	1,57	
42	23,87	1,98	0,0515	24,07	0,81	1,98	
43	24,14	0,89	0,0235	24,23	0,36	0,89	
44	24,13	1,61	0,0428	24,29	0,65	1,61	
45	25,00	1,73	0,0438	25,17	0,68	1,73	

	Ek-2a. 10. DÖNGÜ(MgSO4)								
ÖRNEK NO.	$\frac{\chi_k}{(kN/m^3)}$	n (%)	e (%)	$\frac{\chi_d}{(kN/m^3)}$	A _w (%)	H _w (%)			
A1	24,05	1,84	0,0188	24,23	0,75	1,84			
A2	24,32	1,67	0,0169	24,48	0,67	1,67			
A3	24,07	0,94	0,0095	24,16	0,38	0,94			
A4	24,42	1,63	0,0166	24,58	0,66	1,63			
A5	23,00	3,29	0,0340	23,32	1,40	3,29			
A8	24,12	1,67	0,0170	24,29	0,68	1,67			
A9	24,08	2,10	0,0214	24,28	0,85	2,10			
A10	22,80	4,58	0,0480	23,25	1,97	4,58			
A12	22,96	1,60	0,0162	23,11	0,68	1,60			
A13	24,45	1,43	0,0146	24,60	0,58	1,43			
B1	24,02	1,30	0,0132	24,14	0,53	1,30			
B2	24,22	1,78	0,0181	24,40	0,72	1,78			
B5	23,53	0,95	0,0096	23,62	0,40	0,95			
B11	23,56	1,47	0,0149	23,70	0,61	1,47			
B12	24,33	0,82	0,0083	24,41	0,33	0,82			
B14	24,04	1,95	0,0199	24,23	0,80	1,95			
B15	24,40	0,79	0,0080	24,48	0,32	0,79			
B16	24,52	1,44	0,0146	24,66	0,57	1,44			
B18	24,67	0,54	0,0054	24,72	0,21	0,54			
B19	25,16	0,66	0,0067	25,22	0,26	0,66			
K1	23,91	1,60	0,0163	24,07	0,66	1,60			
K3	23,14	3,01	0,0311	23,44	1,28	3,01			
K4	23,76	2,04	0,0208	23,96	0,84	2,04			
K5	23,54	2,26	0,0231	23,76	0,94	2,26			
K6	24,16	1,49	0,0152	24,30	0,61	1,49			
K8	23,92	1,65	0,0167	24,08	0,67	1,65			
K9	24,45	1,08	0,0109	24,56	0,43	1,08			
K10	23,73	1,81	0,0185	23,91	0,75	1,81			
K11	23,72	1,42	0,0144	23,86	0,59	1,42			
K16	23,67	1,66	0,0168	23,83	0,69	1,66			

Ek-2a. 20. DÖNGÜ(MgSO4)								
ÖRNEK NO.	$\frac{\chi_k}{(kN/m^3)}$	n (%)	e (%)	$\frac{\chi_d}{(kN/m^3)}$	A _w (%)	H _w (%)		
A1	24,07	2,13	0,0217	24,28	0,87	2,13		
A2	24,32	1,78	0,0182	24,50	0,72	1,78		
A3	24,07	1,18	0,0119	24,19	0,48	1,18		
A4	24,43	2,07	0,0211	24,63	0,83	2,07		
A5	23,00	4,57	0,0479	23,45	1,95	4,57		
A8	24,14	1,67	0,0170	24,31	0,68	1,67		
A9	24,10	2,42	0,0248	24,33	0,98	2,42		
A10	22,81	5,09	0,0537	23,31	2,19	5,09		
A12	22,94	2,06	0,0211	23,14	0,88	2,06		
A13	24,47	1,39	0,0141	24,60	0,56	1,39		
B1	24,03	1,30	0,0132	24,16	0,53	1,30		
B2	24,24	1,78	0,0181	24,42	0,72	1,78		
B5	23,54	2,44	0,0250	23,78	1,02	2,44		
B11	23,58	1,54	0,0157	23,73	0,64	1,54		
B12	24,36	1,02	0,0103	24,46	0,41	1,02		
B14	24,05	1,91	0,0195	24,24	0,78	1,91		
B15	24,43	0,95	0,0096	24,53	0,38	0,95		
B16	24,54	1,24	0,0125	24,67	0,49	1,24		
B18	24,68	0,62	0,0063	24,74	0,25	0,62		
B19	25,14	0,55	0,0055	25,20	0,21	0,55		
K1	23,93	1,76	0,0179	24,11	0,72	1,76		
K3	23,11	3,05	0,0315	23,40	1,30	3,05		
K4	23,76	2,51	0,0257	24,01	1,04	2,51		
K5	23,56	2,34	0,0239	23,79	0,97	2,34		
K6	24,19	1,45	0,0147	24,33	0,59	1,45		
K8	23,93	1,76	0,0179	24,10	0,72	1,76		
K9	24,44	1,00	0,0101	24,53	0,40	1,00		
K10	23,72	1,65	0,0168	23,89	0,68	1,65		
K11	23,75	1,42	0,0144	23,89	0,59	1,42		
K16	23,65	1,74	0,0177	23,82	0,72	1,74		

Ek-2a. 30. DÖNGÜ(MgSO4)								
ÖRNEK NO.	$\frac{\chi_k}{(kN/m^3)}$	n (%)	e (%)	$\frac{\chi_d}{(kN/m^3)}$	A _w (%)	H _w (%)		
A1	24,06	1,56	0,0159	24,21	0,64	1,56		
A2	24,32	1,55	0,0157	24,47	0,62	1,55		
A3	24,06	0,78	0,0079	24,14	0,32	0,78		
A4	24,44	1,15	0,0117	24,55	0,46	1,15		
A5	23,02	3,45	0,0357	23,35	1,47	3,45		
A8	24,14	1,40	0,0142	24,27	0,57	1,40		
A9	24,08	1,85	0,0189	24,26	0,76	1,85		
A10	22,80	4,15	0,0433	23,21	1,79	4,15		
A12	22,94	1,48	0,0150	23,09	0,63	1,48		
A13	24,46	1,16	0,0117	24,57	0,46	1,16		
B1	24,03	1,15	0,0117	24,14	0,47	1,15		
B2	24,23	1,38	0,0140	24,37	0,56	1,38		
B5	23,51	2,82	0,0290	23,79	1,18	2,82		
B11	23,58	1,08	0,0109	23,68	0,45	1,08		
B12	24,37	0,71	0,0071	24,44	0,28	0,71		
B14	24,05	1,41	0,0143	24,19	0,58	1,41		
B15	24,45	0,63	0,0064	24,52	0,25	0,63		
B16	24,53	1,24	0,0125	24,65	0,49	1,24		
B18	24,69	0,50	0,0050	24,73	0,20	0,50		
B19	25,14	0,47	0,0047	25,19	0,18	0,47		
K1	23,93	1,84	0,0188	24,11	0,75	1,84		
K3	23,09	3,01	0,0311	23,39	1,28	3,01		
K4	23,75	2,27	0,0233	23,98	0,94	2,27		
K5	23,57	2,18	0,0223	23,78	0,91	2,18		
K6	24,19	1,33	0,0135	24,32	0,54	1,33		
K8	23,93	1,65	0,0167	24,09	0,67	1,65		
K9	24,44	0,92	0,0093	24,53	0,37	0,92		
K10	23,72	1,69	0,0172	23,89	0,70	1,69		
K11	23,76	1,42	0,0144	23,90	0,59	1,42		
K16	23,65	1,62	0,0164	23,81	0,67	1,62		

Ek-2a. 40. DÖNGÜ(MgSO4)								
ÖRNEK NO.	$\frac{\chi_k}{(kN/m^3)}$	n (%)	e (%)	$\frac{\chi_d}{(kN/m^3)}$	A _w (%)	H _w (%)		
A1	24,05	2,13	0,0217	24,26	0,87	2,13		
A2	24,30	2,58	0,0265	24,55	1,04	2,58		
A3	24,04	1,41	0,0143	24,18	0,58	1,41		
A4	24,41	1,99	0,0203	24,60	0,80	1,99		
A5	22,98	4,97	0,0523	23,47	2,12	4,97		
A8	24,13	1,90	0,0194	24,31	0,77	1,90		
A9	24,06	1,17	0,0118	24,17	0,48	1,17		
A10	22,78	5,41	0,0571	23,32	2,33	5,41		
A12	22,94	1,87	0,0190	23,12	0,80	1,87		
A13	24,45	1,63	0,0166	24,62	0,66	1,63		
B1	24,01	1,90	0,0193	24,20	0,78	1,90		
B2	24,20	2,21	0,0226	24,42	0,90	2,21		
B5	23,46	3,54	0,0367	23,81	1,48	3,54		
B11	23,58	1,50	0,0153	23,72	0,63	1,50		
B12	24,35	1,22	0,0123	24,47	0,49	1,22		
B14	24,03	1,99	0,0203	24,22	0,81	1,99		
B15	24,43	1,03	0,0104	24,54	0,41	1,03		
B16	24,51	1,60	0,0162	24,67	0,64	1,60		
B18	24,67	0,87	0,0088	24,76	0,35	0,87		
B19	25,14	0,51	0,0051	25,19	0,20	0,51		
K1	23,92	2,20	0,0225	24,13	0,90	2,20		
K3	23,07	3,80	0,0395	23,44	1,61	3,80		
K4	23,74	2,98	0,0307	24,03	1,23	2,98		
K5	23,54	2,77	0,0285	23,81	1,15	2,77		
K6	24,16	1,77	0,0181	24,34	0,72	1,77		
K8	23,92	1,72	0,0175	24,09	0,71	1,72		
K9	24,42	1,23	0,0125	24,55	0,49	1,23		
K10	23,71	2,02	0,0206	23,91	0,84	2,02		
K11	23,75	1,81	0,0185	23,93	0,75	1,81		
K16	23,65	2,10	0,0215	23,85	0,87	2,10		

Ek-2b. 10. DÖNGÜ(Na₂SO₄)								
ÖRNEK NO.	$\frac{\chi_k}{(kN/m^3)}$	n (%)	e (%)	$\frac{\chi_d}{(kN/m^3)}$	A _w (%)	H _w (%)		
A15	24,08	2,34	0,0239	24,31	0,95	2,34		
A17	24,13	1,85	0,0188	24,31	0,75	1,85		
A19	23,89	2,30	0,0236	24,12	0,95	2,30		
A20	23,72	3,06	0,0316	24,02	1,26	3,06		
A21	23,80	3,00	0,0309	24,09	1,24	3,00		
A22	24,52	1,82	0,0186	24,70	0,73	1,82		
A24	24,41	1,35	0,0137	24,54	0,54	1,35		
A25	24,26	1,68	0,0171	24,43	0,68	1,68		
A26	24,41	2,83	0,0291	24,69	1,14	2,83		
A27	24,16	2,04	0,0208	24,36	0,83	2,04		
B20	23,12	2,25	0,0230	23,34	0,95	2,25		
B21	24,29	1,16	0,0117	24,40	0,47	1,16		
B22	24,07	2,13	0,0218	24,28	0,87	2,13		
B24	23,49	2,14	0,0219	23,70	0,90	2,14		
B25	24,96	0,87	0,0088	25,05	0,34	0,87		
B26	24,30	1,14	0,0115	24,41	0,46	1,14		
B28	23,89	3,38	0,0350	24,22	1,39	3,38		
B29	24,79	1,33	0,0134	24,92	0,52	1,33		
B30	24,03	2,04	0,0208	24,23	0,83	2,04		
B31	24,02	0,97	0,0098	24,12	0,40	0,97		
K17	24,53	1,23	0,0124	24,65	0,49	1,23		
K18	24,09	1,65	0,0168	24,25	0,67	1,65		
K19	23,90	1,64	0,0166	24,06	0,67	1,64		
K23	23,61	2,77	0,0285	23,88	1,15	2,77		
K26	23,30	2,33	0,0239	23,53	0,98	2,33		
K28	23,92	1,92	0,0195	24,11	0,79	1,92		
K29	24,42	2,10	0,0214	24,62	0,84	2,10		
K33	24,06	1,69	0,0172	24,23	0,69	1,69		
K34	24,35	1,37	0,0139	24,49	0,55	1,37		
K35	23,19	2,83	0,0292	23,47	1,20	2,83		

Ek-2b. 20. DÖNGÜ(Na ₂ SO ₄)								
ÖRNEK NO.	$\frac{\chi_k}{(kN/m^3)}$	n (%)	e (%)	$\frac{\chi_d}{(kN/m^3)}$	A _w (%)	H _w (%)		
A15	24,14	1,93	0,0197	24,33	0,79	1,93		
A17	24,15	1,89	0,0193	24,33	0,77	1,89		
A19	23,92	2,19	0,0223	24,14	0,90	2,19		
A20	23,69	3,42	0,0354	24,02	1,41	3,42		
A21	23,78	3,36	0,0348	24,11	1,39	3,36		
A22	24,53	1,59	0,0161	24,68	0,63	1,59		
A24	24,44	1,23	0,0125	24,56	0,50	1,23		
A25	24,31	1,29	0,0131	24,44	0,52	1,29		
A26	24,41	2,67	0,0274	24,67	1,07	2,67		
A27	24,19	1,96	0,0200	24,38	0,80	1,96		
B20	23,14	2,89	0,0298	23,42	1,23	2,89		
B21	24,30	1,20	0,0121	24,41	0,48	1,20		
B22	24,07	2,01	0,0205	24,26	0,82	2,01		
B24	23,50	2,26	0,0231	23,72	0,94	2,26		
B25	24,99	0,87	0,0088	25,08	0,34	0,87		
B26	24,35	1,14	0,0115	24,46	0,46	1,14		
B28	23,92	2,27	0,0232	24,14	0,93	2,27		
B29	24,79	1,40	0,0142	24,92	0,56	1,40		
B30	24,05	1,96	0,0200	24,25	0,80	1,96		
B31	24,02	1,01	0,0102	24,12	0,41	1,01		
K17	24,53	1,38	0,0140	24,66	0,55	1,38		
K18	24,10	1,61	0,0164	24,26	0,66	1,61		
K19	23,92	1,91	0,0195	24,11	0,78	1,91		
K23	23,61	2,33	0,0238	23,84	0,97	2,33		
K26	23,31	2,46	0,0252	23,55	1,03	2,46		
K28	23,94	1,79	0,0183	24,11	0,74	1,79		
K29	24,43	1,82	0,0185	24,61	0,73	1,82		
K33	24,10	1,53	0,0156	24,25	0,62	1,53		
K34	24,36	1,53	0,0156	24,51	0,62	1,53		
K35	22,85	6,56	0,0702	23,49	2,82	6,56		

	Ek-2b. 30. DÖNGÜ(Na ₂ SO ₄)								
ÖRNEK NO.	$\frac{\chi_k}{(kN/m^3)}$	n (%)	e (%)	$\frac{\chi_d}{(kN/m^3)}$	A _w (%)	H _w (%)			
A15	24,13	1,77	0,0181	24,30	0,72	1,77			
A17	24,10	2,09	0,0213	24,31	0,85	2,09			
A19	23,91	2,07	0,0211	24,12	0,85	2,07			
A20	23,68	3,14	0,0324	23,98	1,30	3,14			
A21	23,72	3,12	0,0322	24,02	1,29	3,12			
A22	24,51	1,59	0,0161	24,66	0,63	1,59			
A24	24,42	1,11	0,0113	24,53	0,45	1,11			
A25	24,28	1,21	0,0123	24,40	0,49	1,21			
A26	24,41	2,17	0,0222	24,63	0,87	2,17			
A27	24,16	1,73	0,0176	24,33	0,70	1,73			
B20	23,15	2,41	0,0247	23,38	1,02	2,41			
B21	24,28	0,99	0,0100	24,38	0,40	0,99			
B22	24,01	1,93	0,0197	24,20	0,79	1,93			
B24	23,48	2,07	0,0211	23,68	0,86	2,07			
B25	24,99	0,83	0,0084	25,07	0,33	0,83			
B26	24,33	0,95	0,0096	24,43	0,38	0,95			
B28	23,91	2,35	0,0240	24,14	0,96	2,35			
B29	24,77	1,25	0,0126	24,89	0,49	1,25			
B30	24,05	1,81	0,0185	24,22	0,74	1,81			
B31	24,01	0,82	0,0082	24,09	0,33	0,82			
K17	24,53	1,27	0,0128	24,65	0,51	1,27			
K18	24,07	1,82	0,0185	24,25	0,74	1,82			
K19	23,91	1,56	0,0158	24,06	0,64	1,56			
K23	23,64	2,13	0,0217	23,85	0,88	2,13			
K26	23,27	2,25	0,0230	23,49	0,95	2,25			
K28	23,92	1,96	0,0200	24,11	0,80	1,96			
K29	24,42	1,61	0,0164	24,57	0,65	1,61			
K33	24,08	1,41	0,0143	24,22	0,57	1,41			
K34	24,37	1,30	0,0131	24,49	0,52	1,30			
K35	23,17	2,76	0,0283	23,44	1,17	2,76			

	Ek-2b. 40. DÖNGÜ(Na ₂ SO ₄)								
ÖRNEK NO.	$\frac{\chi_k}{(kN/m^3)}$	n (%)	e (%)	$\frac{\chi_d}{(kN/m^3)}$	A _w (%)	H _w (%)			
A15	24,12	0,52	1,30	24,17	0,21	0,52			
A17	24,13	2,40	6,10	24,37	0,98	2,40			
A19	23,89	3,24	8,30	24,21	1,33	3,24			
A20	23,66	3,46	8,70	24,00	1,43	3,46			
A21	23,72	3,28	8,10	24,04	1,36	3,28			
A22	24,50	2,26	5,70	24,72	0,90	2,26			
A24	24,38	1,75	4,40	24,56	0,70	1,75			
A25	24,28	1,37	3,50	24,41	0,55	1,37			
A26	24,35	3,69	9,00	24,71	1,49	3,69			
A27	24,15	2,54	6,60	24,40	1,03	2,54			
B20	23,11	3,09	7,70	23,41	1,31	3,09			
B21	24,26	1,45	3,50	24,40	0,59	1,45			
B22	23,96	2,53	6,30	24,21	1,04	2,53			
B24	23,45	3,18	8,30	23,76	1,33	3,18			
B25	24,98	1,03	2,60	25,08	0,40	1,03			
B26	24,30	1,52	4,00	24,45	0,61	1,52			
B28	23,86	2,87	7,20	24,14	1,18	2,87			
B29	24,76	1,52	3,90	24,91	0,60	1,52			
B30	24,00	2,27	6,00	24,22	0,93	2,27			
B31	23,97	1,28	3,30	24,09	0,52	1,28			
K17	24,52	1,46	3,80	24,66	0,58	1,46			
K18	24,07	2,34	5,80	24,30	0,95	2,34			
K19	23,89	2,22	5,70	24,11	0,91	2,22			
K23	23,55	3,33	8,30	23,88	1,39	3,33			
K26	23,25	2,91	7,00	23,54	1,23	2,91			
K28	23,90	2,28	5,60	24,13	0,94	2,28			
K29	24,39	2,18	5,40	24,61	0,88	2,18			
K33	24,07	1,77	4,40	24,25	0,72	1,77			
K34	24,36	2,08	5,30	24,56	0,84	2,08			
K35	23,15	3,57	9,20	23,50	1,51	3,57			

Ek-2c. 10. DÖNGÜ(NaCI)								
ÖRNEK NO.	(kN/m^3)	n (%)	e (%)	$\frac{\chi_d}{(kN/m^3)}$	A _w (%)	H _w (%)		
A30	24,01	2,56	0,0263	24,27	1,05	2,56		
A33	24,28	1,74	0,0177	24,45	0,70	1,74		
A34	23,93	2,01	0,0205	24,13	0,82	2,01		
A35	23,91	3,48	0,0361	24,25	1,43	3,48		
A36	24,12	2,23	0,0229	24,34	0,91	2,23		
A38	23,67	2,44	0,0250	23,91	1,01	2,44		
A39	24,20	2,53	0,0260	24,45	1,03	2,53		
A40	23,41	2,91	0,0300	23,70	1,22	2,91		
A41	24,33	2,77	0,0285	24,61	1,12	2,77		
A42	24,13	1,34	0,0136	24,27	0,54	1,34		
B33	24,03	1,47	0,0149	24,17	0,60	1,47		
B35	23,72	2,56	0,0262	23,97	1,06	2,56		
B36	22,70	2,94	0,0303	22,99	1,27	2,94		
B37	24,24	1,10	0,0111	24,35	0,45	1,10		
B38	24,20	1,99	0,0204	24,40	0,81	1,99		
B39	24,09	1,83	0,0187	24,27	0,75	1,83		
B42	23,83	2,12	0,0217	24,04	0,87	2,12		
B43	23,74	1,77	0,0180	23,91	0,73	1,77		
B45	24,18	1,25	0,0127	24,30	0,51	1,25		
B46	22,71	6,26	0,0668	23,33	2,71	6,26		
K36	24,55	1,45	0,0147	24,70	0,58	1,45		
K37	24,29	1,24	0,0125	24,41	0,50	1,24		
K38	23,73	2,03	0,0207	23,93	0,84	2,03		
K39	23,77	2,03	0,0207	23,97	0,84	2,03		
K40	23,92	2,37	0,0243	24,15	0,97	2,37		
K41	24,44	2,14	0,0218	24,65	0,86	2,14		
K42	23,74	2,83	0,0291	24,01	1,17	2,83		
K43	24,05	1,16	0,0117	24,16	0,47	1,16		
K44	24,04	1,53	0,0155	24,19	0,62	1,53		
K45	24,83	2,56	0,0263	25,08	1,01	2,56		

	Ek-2c. 20. DÖNGÜ(NaCI)					
ÖRNEK NO.	$\frac{\chi_k}{(kN/m^3)}$	n (%)	e (%)	$\frac{\chi_d}{(kN/m^3)}$	A _w (%)	H _w (%)
A30	24,02	1,58	0,0161	24,18	0,65	1,58
A33	24,28	2,21	0,0226	24,50	0,89	2,21
A34	23,92	2,74	0,0282	24,19	1,12	2,74
A35	23,90	3,73	0,0387	24,26	1,53	3,73
A36	24,19	1,37	0,0139	24,32	0,56	1,37
A38	23,68	3,36	0,0348	24,01	1,39	3,36
A39	24,19	3,09	0,0319	24,49	1,25	3,09
A40	23,40	3,30	0,0341	23,72	1,38	3,30
A41	24,32	3,57	0,0371	24,67	1,44	3,57
A42	24,16	1,14	0,0116	24,27	0,46	1,14
B33	24,06	1,85	0,0189	24,24	0,76	1,85
B35	23,71	2,29	0,0234	23,94	0,95	2,29
B36	22,70	3,09	0,0319	23,00	1,34	3,09
B37	24,24	0,91	0,0091	24,33	0,37	0,91
B38	24,21	2,79	0,0286	24,48	1,13	2,79
B39	24,05	1,60	0,0162	24,21	0,65	1,60
B42	23,83	2,12	0,0217	24,04	0,87	2,12
B43	23,75	2,01	0,0205	23,95	0,83	2,01
B45	24,18	1,10	0,0111	24,29	0,45	1,10
B46	22,64	6,39	0,0682	23,26	2,77	6,39
K36	24,55	1,33	0,0135	24,68	0,53	1,33
K37	24,28	1,12	0,0113	24,39	0,45	1,12
K38	23,73	2,11	0,0215	23,94	0,87	2,11
K39	23,79	1,95	0,0199	23,98	0,80	1,95
K40	23,92	2,04	0,0208	24,12	0,84	2,04
K41	24,45	2,42	0,0248	24,69	0,97	2,42
K42	23,75	2,83	0,0291	24,03	1,17	2,83
K43	24,05	1,51	0,0153	24,20	0,61	1,51
K44	24,05	1,77	0,0180	24,22	0,72	1,77
K45	24,82	2,93	0,0302	25,11	1,16	2,93

	Ek-2c. 30. DÖNGÜ(NaCI)					
ÖRNEK NO.	$\frac{\chi_k}{(kN/m^3)}$	n (%)	e (%)	$\frac{\chi_d}{(kN/m^3)}$	A _w (%)	H _w (%)
A30	24,02	1,58	0,0161	24,17	0,65	1,58
A33	24,33	1,36	0,0138	24,47	0,55	1,36
A34	23,91	2,05	0,0210	24,12	0,84	2,05
A35	23,88	3,93	0,0409	24,27	1,61	3,93
A36	24,18	1,73	0,0176	24,35	0,70	1,73
A38	23,69	2,60	0,0267	23,95	1,07	2,60
A39	24,19	2,53	0,0260	24,43	1,03	2,53
A40	23,39	2,84	0,0292	23,67	1,19	2,84
A41	24,32	2,65	0,0272	24,58	1,07	2,65
A42	24,18	0,83	0,0083	24,27	0,34	0,83
B33	24,07	1,39	0,0141	24,20	0,57	1,39
B35	23,73	2,17	0,0222	23,94	0,90	2,17
B36	22,68	2,67	0,0274	22,94	1,15	2,67
B37	24,26	0,71	0,0071	24,33	0,29	0,71
B38	24,23	1,96	0,0200	24,42	0,79	1,96
B39	24,05	1,56	0,0158	24,20	0,63	1,56
B42	23,85	1,53	0,0156	24,00	0,63	1,53
B43	23,74	1,30	0,0132	23,87	0,54	1,30
B45	24,20	1,07	0,0108	24,30	0,43	1,07
B46	22,56	6,91	0,0743	23,24	3,01	6,91
K36	24,55	1,29	0,0131	24,68	0,52	1,29
K37	24,29	1,27	0,0129	24,41	0,51	1,27
K38	23,74	1,87	0,0191	23,92	0,77	1,87
K39	23,78	2,07	0,0212	23,98	0,86	2,07
K40	23,92	2,04	0,0208	24,12	0,84	2,04
K41	24,44	2,26	0,0231	24,66	0,91	2,26
K42	23,76	2,18	0,0223	23,98	0,90	2,18
K43	24,06	1,20	0,0121	24,18	0,49	1,20
K44	24,05	1,77	0,0180	24,22	0,72	1,77
K45	24,82	2,81	0,0289	25,09	1,11	2,81

	Ek-2c. 40. DÖNGÜ(NaCI)					
ÖRNEK NO.	$\frac{\chi_k}{(kN/m^3)}$	n (%)	e (%)	$\frac{\chi_d}{(kN/m^3)}$	A _w (%)	H _w (%)
A30	24,08	1,66	0,02	24,25	0,68	1,66
A33	24,37	1,23	0,01	24,49	0,50	1,23
A34	23,92	2,01	0,02	24,12	0,82	2,01
A35	23,89	3,89	0,04	24,27	1,60	3,89
A36	24,17	2,08	0,02	24,38	0,84	2,08
A38	23,67	2,18	0,02	23,88	0,90	2,18
A39	24,17	2,93	0,03	24,46	1,19	2,93
A40	23,38	3,76	0,04	23,75	1,58	3,76
A41	24,31	2,97	0,03	24,60	1,20	2,97
A42	24,18	1,77	0,02	24,35	0,72	1,77
B33	24,09	1,47	0,01	24,23	0,60	1,47
B35	23,72	3,05	0,03	24,02	1,26	3,05
B36	22,67	3,05	0,03	22,97	1,32	3,05
B37	24,26	1,26	0,01	24,38	0,51	1,26
B38	24,20	2,15	0,02	24,41	0,87	2,15
B39	24,02	1,75	0,02	24,20	0,72	1,75
B42	23,85	1,69	0,02	24,02	0,69	1,69
B43	23,75	1,93	0,02	23,94	0,80	1,93
B45	24,18	1,18	0,01	24,29	0,48	1,18
B46	22,56	7,32	0,08	23,28	3,18	7,32
K36	24,55	1,45	0,01	24,70	0,58	1,45
K37	24,29	1,12	0,01	24,40	0,45	1,12
K38	23,72	2,19	0,02	23,93	0,90	2,19
K39	23,78	2,48	0,03	24,03	1,02	2,48
K40	23,91	2,17	0,02	24,13	0,89	2,17
K41	24,43	2,62	0,03	24,68	1,05	2,62
K42	23,75	2,87	0,03	24,03	1,18	2,87
K43	24,05	1,20	0,01	24,17	0,49	1,20
K44	24,04	1,77	0,02	24,21	0,72	1,77
K45	24,80	3,34	0,03	25,13	1,32	3,34

]	Ek-3. DÖ EMEALTI (ANTALYA) (LKSEL)				
önnen	BOY	P - Dalgasının	P - Dalgasının		
ORNEK	(L, m)	Etkin lerleme	Yayılma Hızı		
NO.		Zamanı (Tp,µs)	(Vp, m/s)		
1	0,105	18,40	5707		
2	0,106	18,40	5761		
3	0,107	17,90	5978		
4	0,106	18,30	5792		
5	0,105	18,10	5801		
6	0,106	17,90	5922		
7	0,106	17,90	5922		
8	0,108	18,70	5775		
9	0,104	17,70	5876		
10	0,107	18,80	5691		
11	0,100	17,30	5780		
12	0,108	17,60	6136		
13	0,105	17,70	5932		
14	0,106	17,90	5922		
15	0,104	17,40	5977		
16	0,110	19,20	5729		
17	0,107	18,80	5691		
18	0,100	17,20	5814		
19	0,108	17,90	6034		
20	0,106	18,70	5668		
21	0,104	18,30	5683		
22	0,106	18,20	5824		
23	0,102	16,40	6220		
24	0,106	17,80	5955		
25	0,108	18,20	5934		
26	0,102	17,80	5730		
27	0,109	18,60	5860		
28	0,110	18,70	5882		
29	0,103	17,70	5819		
30	0,104	16,90	6154		
31	0,108	18,30	5902		
32	0,107	17,90	5978		
33	0,099	15,90	6226		
34	0,098	17,20	5698		
35	0,104	17,40	5977		
36	0,107	18,20	5879		
37	0,114	19,70	5787		
38	0,110	19,30	5699		
39	0,106	18,80	5638		
40	0,110	19,00	5789		
41	0,105	17,40	6034		
42	0,107	18,80	5691		

BOY NO. P - Dalgasmm Etkin lerleme Zaman (Tp,js) P - Dalgasmm Yayılma Hız (Vp, m/s) 1 0,113 18,90 5979 2 0,106 18,40 5761 3 0,108 19,90 5427 4 0,106 18,30 5792 5 0,110 19,80 5556 6 0.105 18,80 5585 7 0,107 17,90 5978 8 0,110 19,20 5729 9 0,115 20,90 5505 12 0,107 17,90 5866 11 0,109 19,80 5505 12 0,107 17,40 6149 14 0,110 17,40 6149 14 0,110 17,80 5683 18 0,101 17,30 5838 19 0,108 17,80 5607 22 0,105 18,30 5738 24 0,101 19,40	Ek-3. BUCAK (BURDUR) (LKSEL)				
ORNEK NO. (L, m) Etkin lerleme Zamani (Tp,µs) Yayılma Hızı (Vp, m/s) 1 0.113 18,90 5979 2 0.106 18,40 5761 3 0.108 19,90 5427 4 0.106 18,30 5792 5 0.110 19,80 5556 6 0.107 17,90 5978 8 0.110 19,20 5729 9 0.115 20,90 5502 10 0.105 17,90 5866 11 0.109 19,80 5505 12 0.107 18,20 5879 13 0.107 17,40 6149 14 0.110 17,60 6250 16 0.105 17,80 5838 19 0.108 17,80 5668 20 0.105 18,20 5769 21 0.102 17,90 5698 22 0.105 18,30	ÖDNEV	BOY	P - Dalgasının	P - Dalgasının	
NO. Zaman (Tp,µs) (Vp, m/s) 1 0,113 18,90 5979 2 0,106 18,40 5761 3 0,108 19,90 5427 4 0,106 18,30 5792 5 0,110 19,80 5556 6 0,105 18,80 5585 7 0,107 17,90 5978 8 0,110 19,20 5729 9 0,115 20,90 5502 10 0,105 17,90 5866 11 0,109 19,80 5505 12 0,107 17,40 6149 14 0,110 17,60 6250 16 0,105 17,80 5889 17 0,104 18,30 5668 19 0,105 17,80 5838 19 0,105 17,70 5932 23 0,105 17,70 5932 24	ORNEK	(L, m)	Etkin lerleme	Yayılma Hızı	
1 0,113 18,90 5979 2 0,106 18,40 5761 3 0,108 19,90 5427 4 0,106 18,30 5792 5 0,110 19,80 5556 6 0,105 18,80 5585 7 0,107 17,90 5978 8 0,110 19,20 5729 9 0,115 20,90 5502 10 0,105 17,90 5866 11 0,107 18,20 5879 13 0,107 17,40 6149 14 0,110 18,40 5978 15 0,110 17,60 6250 16 0,105 17,80 5889 17 0,104 18,30 5663 19 0,108 17,80 6067 20 0,105 18,30 5738 24 0,105 17,70 5932 <td< th=""><th>NO.</th><th></th><th>Zamanı (Tp,µs)</th><th>(Vp, m/s)</th></td<>	NO.		Zamanı (Tp,µs)	(Vp, m/s)	
2 0,106 18,40 5761 3 0,108 19,90 5427 4 0,106 18,30 5792 5 0,110 19,80 5556 6 0,105 18,80 5585 7 0,107 17,90 5978 8 0,110 19,20 5729 9 0,115 20,90 5502 10 0,105 17,90 5866 11 0,109 19,80 5505 12 0,107 18,20 5879 13 0,107 17,40 6149 14 0,110 17,60 6250 16 0,105 17,80 5889 17 0,104 18,30 5683 18 0,101 17,30 5838 19 0,102 17,70 5932 23 0,105 18,30 5738 24 0,101 19,40 5670 <t< th=""><th>1</th><th>0,113</th><th>18,90</th><th>5979</th></t<>	1	0,113	18,90	5979	
3 0,108 19,90 5427 4 0,106 18,30 5792 5 0,110 19,80 5556 6 0,105 18,80 5585 7 0,107 17,90 5978 8 0,110 19,20 5729 9 0,115 20,90 5502 10 0,105 17,90 5866 11 0,109 19,80 5505 12 0,107 18,20 5879 13 0,107 17,40 6149 14 0,110 18,40 5978 15 0,110 17,60 6250 16 0,105 17,80 5889 17 0,104 18,30 56683 18 0,101 17,30 5838 19 0,108 17,80 6067 20 0,105 18,20 5769 21 0,102 17,90 5936	2	0,106	18,40	5761	
4 0,106 18,30 5792 5 0,110 19,80 5556 6 0,105 18,80 5585 7 0,107 17,90 5978 8 0,110 19,20 5729 9 0,115 20,90 5502 10 0,105 17,90 5866 11 0,109 19,80 5505 12 0,107 18,20 5879 13 0,107 17,40 6149 14 0,110 18,40 5978 15 0,110 17,60 6250 16 0,105 17,80 5889 17 0,104 18,30 5683 18 0,101 17,30 5838 19 0,108 17,80 6067 20 0,105 18,20 5769 21 0,102 17,90 5698 22 0,105 18,30 5738	3	0,108	19,90	5427	
5 0,110 19,80 5556 6 0,105 18,80 5585 7 0,107 17,90 5978 8 0,110 19,20 5729 9 0,115 20,90 5502 10 0,105 17,90 5866 11 0,109 19,80 5505 12 0,107 18,20 5879 13 0,107 17,40 6149 14 0,110 17,60 6250 16 0,105 17,80 5899 17 0,104 18,30 5683 18 0,101 17,30 5838 19 0,108 17,80 6067 20 0,105 18,20 5769 21 0,102 17,70 5932 23 0,105 18,30 5738 24 0,110 19,40 5670 25 0,107 17,90 5936	4	0,106	18,30	5792	
6 0,105 18,80 5585 7 0,107 17,90 5978 8 0,110 19,20 5729 9 0,115 20,90 5502 10 0,105 17,90 5866 11 0,107 18,20 5879 13 0,107 17,40 6149 14 0,110 18,40 5978 15 0,110 17,60 6250 16 0,105 17,80 5899 17 0,104 18,30 5683 18 0,101 17,30 5838 19 0,108 17,80 6067 20 0,105 18,20 5769 21 0,102 17,90 5982 22 0,105 17,70 5932 23 0,105 18,30 5738 24 0,110 19,40 5670 25 0,107 17,90 5978	5	0,110	19,80	5556	
7 0,107 17,90 5978 8 0,110 19,20 5729 9 0,115 20,90 5502 10 0,105 17,90 5866 11 0,109 19,80 5505 12 0,107 18,20 5879 13 0,107 17,40 6149 14 0,110 18,40 5978 15 0,110 17,60 6250 16 0,105 17,80 5899 17 0,104 18,30 5683 18 0,101 17,30 5838 19 0,108 17,80 6067 20 0,105 18,20 5769 21 0,102 17,90 5698 22 0,105 18,30 5738 24 0,110 19,40 5670 25 0,107 17,90 5936 27 0,113 19,30 5855	6	0,105	18,80	5585	
8 0,110 19,20 5729 9 0,115 20,90 5502 10 0,105 17,90 5866 11 0,109 19,80 5505 12 0,107 18,20 5879 13 0,107 17,40 6149 14 0,110 18,40 5978 15 0,110 17,60 6250 16 0,105 17,80 5899 17 0,104 18,30 5683 18 0,101 17,30 5838 19 0,108 17,80 6067 20 0,105 18,20 5769 21 0,102 17,90 5698 22 0,105 18,30 5738 24 0,110 19,40 5670 25 0,107 17,90 5936 27 0,113 19,30 5855 28 0,106 18,80 5745	7	0,107	17,90	5978	
9 0,115 20,90 5502 10 0,105 17,90 5866 11 0,109 19,80 5505 12 0,107 18,20 5879 13 0,107 17,40 6149 14 0,110 18,40 5978 15 0,110 17,60 6250 16 0,105 17,80 5889 17 0,104 18,30 5683 18 0,101 17,30 5838 19 0,108 17,80 6067 20 0,105 18,20 5769 21 0,102 17,90 5698 22 0,105 18,30 5738 24 0,110 19,40 5670 25 0,107 17,90 5936 27 0,113 19,30 5855 28 0,106 18,80 5638 29 0,108 17,80 6067	8	0,110	19,20	5729	
10 0,105 17,90 5866 11 0,109 19,80 5505 12 0,107 18,20 5879 13 0,107 17,40 6149 14 0,110 18,40 5978 15 0,110 17,60 6250 16 0,105 17,80 5899 17 0,104 18,30 5683 18 0,101 17,30 5838 19 0,108 17,80 6067 20 0,105 18,20 5769 21 0,102 17,90 5698 22 0,105 18,30 5738 24 0,110 19,40 5670 25 0,107 17,90 5936 27 0,113 19,30 5855 28 0,106 18,80 5638 29 0,108 17,80 6067 30 0,111 19,40 5722	9	0,115	20,90	5502	
11 0,109 19,80 5505 12 0,107 18,20 5879 13 0,107 17,40 6149 14 0,110 18,40 5978 15 0,110 17,60 6250 16 0,105 17,80 5899 17 0,104 18,30 5683 18 0,101 17,30 5838 19 0,108 17,80 6067 20 0,105 18,20 5769 21 0,102 17,90 5698 22 0,105 18,30 5738 24 0,110 19,40 5670 25 0,107 17,90 5936 27 0,113 19,30 5855 28 0,106 18,80 5638 29 0,108 17,80 6067 30 0,111 19,40 5722 31 0,108 18,80 5745	10	0,105	17,90	5866	
12 0,107 18,20 5879 13 0,107 17,40 6149 14 0,110 18,40 5978 15 0,110 17,60 6250 16 0,105 17,80 5899 17 0,104 18,30 5683 18 0,101 17,30 5838 19 0,108 17,80 6067 20 0,105 18,20 5769 21 0,102 17,90 5698 22 0,105 18,30 5738 24 0,110 19,40 5670 25 0,107 17,90 5936 27 0,113 19,30 5855 28 0,106 18,80 5638 29 0,108 17,80 6067 30 0,111 19,40 5722 31 0,108 18,80 5745 32 0,100 16,70 5988	11	0,109	19,80	5505	
13 0,107 17,40 6149 14 0,110 18,40 5978 15 0,110 17,60 6250 16 0,105 17,80 5899 17 0,104 18,30 5683 18 0,101 17,30 5838 19 0,108 17,80 6067 20 0,105 18,20 5769 21 0,102 17,90 5698 22 0,105 18,30 5738 24 0,110 19,40 5670 25 0,107 17,90 5936 27 0,113 19,30 5855 28 0,106 18,80 5638 29 0,108 17,80 6067 30 0,111 19,40 5722 31 0,108 18,80 5745 32 0,100 16,70 5988 33 0,109 18,20 5989	12	0,107	18,20	5879	
14 0,110 18,40 5978 15 0,110 17,60 6250 16 0,105 17,80 5899 17 0,104 18,30 5683 18 0,101 17,30 5838 19 0,108 17,80 6067 20 0,105 18,20 5769 21 0,102 17,90 5698 22 0,105 18,30 5738 24 0,110 19,40 5670 25 0,107 17,90 5978 26 0,111 18,70 5936 27 0,113 19,30 5855 28 0,106 18,80 5638 29 0,108 17,80 6067 30 0,111 19,40 5722 31 0,108 18,80 5745 32 0,100 16,70 5988 33 0,109 18,20 5989	13	0,107	17,40	6149	
15 0,110 17,60 6250 16 0,105 17,80 5899 17 0,104 18,30 5683 18 0,101 17,30 5838 19 0,108 17,80 6067 20 0,105 18,20 5769 21 0,102 17,90 5698 22 0,105 18,30 5738 24 0,110 19,40 5670 25 0,107 17,90 5936 26 0,111 18,70 5936 27 0,113 19,30 5855 28 0,106 18,80 5638 29 0,108 17,80 6067 30 0,111 19,40 5722 31 0,108 18,80 5745 32 0,100 16,70 5988 33 0,109 18,20 5989 34 0,100 16,80 5952	14	0,110	18,40	5978	
16 0,105 17,80 5899 17 0,104 18,30 5683 18 0,101 17,30 5838 19 0,108 17,80 6067 20 0,105 18,20 5769 21 0,102 17,90 5698 22 0,105 18,30 5738 24 0,110 19,40 5670 25 0,107 17,90 5936 27 0,113 19,30 5855 28 0,106 18,80 5638 29 0,108 17,80 6067 30 0,111 19,40 5722 31 0,108 18,80 5745 32 0,100 16,70 5988 33 0,109 18,20 5989 34 0,100 16,80 5952 35 0,110 19,20 5729 36 0,107 18,90 5661	15	0,110	17,60	6250	
17 0,104 18,30 5683 18 0,101 17,30 5838 19 0,108 17,80 6067 20 0,105 18,20 5769 21 0,102 17,90 5698 22 0,105 18,30 5738 24 0,110 19,40 5670 25 0,107 17,90 5936 26 0,111 18,70 5936 27 0,113 19,30 5855 28 0,106 18,80 5638 29 0,108 17,80 6067 30 0,111 19,40 5722 31 0,108 18,80 5745 32 0,100 16,70 5988 33 0,109 18,20 5989 34 0,100 16,80 5952 35 0,110 19,20 5729 36 0,107 18,90 5661	16	0,105	17,80	5899	
18 0,101 17,30 5838 19 0,108 17,80 6067 20 0,105 18,20 5769 21 0,102 17,90 5698 22 0,105 17,70 5932 23 0,105 18,30 5738 24 0,110 19,40 5670 25 0,107 17,90 5978 26 0,111 18,70 5936 27 0,113 19,30 5855 28 0,106 18,80 5638 29 0,108 17,80 6067 30 0,111 19,40 5722 31 0,108 18,80 5745 32 0,100 16,70 5988 33 0,109 18,20 5989 34 0,100 16,80 5952 35 0,110 19,20 5729 36 0,107 18,90 5661	17	0,104	18,30	5683	
19 0,108 17,80 6067 20 0,105 18,20 5769 21 0,102 17,90 5698 22 0,105 17,70 5932 23 0,105 18,30 5738 24 0,110 19,40 5670 25 0,107 17,90 5978 26 0,111 18,70 5936 27 0,113 19,30 5855 28 0,106 18,80 5638 29 0,108 17,80 6067 30 0,111 19,40 5722 31 0,108 18,80 5745 32 0,100 16,70 5988 33 0,109 18,20 5989 34 0,100 16,80 5952 35 0,110 19,20 5729 36 0,107 18,90 5661 38 0,112 19,30 5803	18	0,101	17,30	5838	
20 0,105 18,20 5769 21 0,102 17,90 5698 22 0,105 17,70 5932 23 0,105 18,30 5738 24 0,110 19,40 5670 25 0,107 17,90 5978 26 0,111 18,70 5936 27 0,113 19,30 5855 28 0,106 18,80 5638 29 0,108 17,80 6067 30 0,111 19,40 5722 31 0,108 18,80 5745 32 0,100 16,70 5988 33 0,109 18,20 5989 34 0,100 16,80 5952 35 0,110 19,20 5729 36 0,107 18,90 5661 38 0,112 19,30 5803 39 0,106 18,20 5824	19	0,108	17,80	6067	
21 0,102 17,90 5698 22 0,105 17,70 5932 23 0,105 18,30 5738 24 0,110 19,40 5670 25 0,107 17,90 5978 26 0,111 18,70 5936 27 0,113 19,30 5855 28 0,106 18,80 5638 29 0,108 17,80 6067 30 0,111 19,40 5722 31 0,108 18,80 5745 32 0,100 16,70 5988 33 0,109 18,20 5989 34 0,100 16,80 5952 35 0,110 19,20 5729 36 0,107 18,90 5661 38 0,112 19,30 5803 39 0,106 18,20 5824 40 0,112 18,80 5745	20	0,105	18,20	5769	
22 $0,105$ $17,70$ 5932 23 $0,105$ $18,30$ 5738 24 $0,110$ $19,40$ 5670 25 $0,107$ $17,90$ 5978 26 $0,111$ $18,70$ 5936 27 $0,113$ $19,30$ 5855 28 $0,106$ $18,80$ 5638 29 $0,108$ $17,80$ 6067 30 $0,111$ $19,40$ 5722 31 $0,108$ $18,80$ 5745 32 $0,100$ $16,70$ 5988 33 $0,109$ $18,20$ 5989 34 $0,100$ $16,80$ 5952 35 $0,110$ $19,20$ 5729 36 $0,107$ $18,90$ 5661 38 $0,112$ $19,30$ 5803 39 $0,106$ $18,20$ 5824 40 $0,112$ $18,80$ 5745 41 $0,108$ $18,30$ 5775 41 $0,108$ $18,30$ 5778 43 $0,107$ $18,30$ 5780 44 $0,100$ $17,30$ 5780	21	0,102	17,90	5698	
23 0,105 18,30 5738 24 0,110 19,40 5670 25 0,107 17,90 5978 26 0,111 18,70 5936 27 0,113 19,30 5855 28 0,106 18,80 5638 29 0,108 17,80 6067 30 0,111 19,40 5722 31 0,108 18,80 5745 32 0,100 16,70 5988 33 0,109 18,20 5989 34 0,100 16,80 5952 35 0,110 19,20 5729 36 0,109 18,30 5956 37 0,107 18,90 5661 38 0,112 19,30 5803 39 0,106 18,20 5824 40 0,112 18,80 5745 41 0,108 18,80 5745	22	0,105	17,70	5932	
24 0,110 19,40 5670 25 0,107 17,90 5978 26 0,111 18,70 5936 27 0,113 19,30 5855 28 0,106 18,80 5638 29 0,108 17,80 6067 30 0,111 19,40 5722 31 0,108 18,80 5745 32 0,100 16,70 5988 33 0,109 18,20 5989 34 0,100 16,80 5952 35 0,110 19,20 5729 36 0,109 18,30 5956 37 0,107 18,90 5661 38 0,112 19,30 5803 39 0,106 18,20 5824 40 0,112 18,80 5745 42 0,105 18,30 5738 43 0,107 18,30 5738	23	0,105	18,30	5738	
25 0,107 17,90 5978 26 0,111 18,70 5936 27 0,113 19,30 5855 28 0,106 18,80 5638 29 0,108 17,80 6067 30 0,111 19,40 5722 31 0,108 18,80 5745 32 0,100 16,70 5988 33 0,109 18,20 5989 34 0,100 16,80 5952 35 0,110 19,20 5729 36 0,107 18,90 5661 37 0,107 18,90 5661 38 0,112 19,30 5803 39 0,106 18,20 5824 40 0,112 18,80 5957 41 0,108 18,80 5745 42 0,105 18,30 5738 43 0,107 18,30 5780	24	0,110	19,40	5670	
26 $0,111$ $18,70$ 5936 27 $0,113$ $19,30$ 5855 28 $0,106$ $18,80$ 5638 29 $0,108$ $17,80$ 6067 30 $0,111$ $19,40$ 5722 31 $0,108$ $18,80$ 5745 32 $0,100$ $16,70$ 5988 33 $0,109$ $18,20$ 5989 34 $0,100$ $16,80$ 5952 35 $0,110$ $19,20$ 5729 36 $0,109$ $18,30$ 5956 37 $0,107$ $18,90$ 5661 38 $0,112$ $19,30$ 5803 39 $0,106$ $18,20$ 5824 40 $0,112$ $18,80$ 5745 42 $0,105$ $18,30$ 5745 43 $0,107$ $18,30$ 5847 44 $0,100$ $17,30$ 5780	25	0,107	17,90	5978	
27 $0,113$ $19,30$ 5855 28 $0,106$ $18,80$ 5638 29 $0,108$ $17,80$ 6067 30 $0,111$ $19,40$ 5722 31 $0,108$ $18,80$ 5745 32 $0,100$ $16,70$ 5988 33 $0,109$ $18,20$ 5989 34 $0,100$ $16,80$ 5952 35 $0,110$ $19,20$ 5729 36 $0,109$ $18,30$ 5956 37 $0,107$ $18,90$ 5661 38 $0,112$ $19,30$ 5803 39 $0,106$ $18,20$ 5824 40 $0,112$ $18,80$ 5957 41 $0,108$ $18,80$ 5745 42 $0,105$ $18,30$ 5738 43 $0,107$ $18,30$ 5847 44 $0,100$ $17,30$ 5780	26	0,111	18,70	5936	
28 0,106 18,80 5638 29 0,108 17,80 6067 30 0,111 19,40 5722 31 0,108 18,80 5745 32 0,100 16,70 5988 33 0,109 18,20 5989 34 0,100 16,80 5952 35 0,110 19,20 5729 36 0,109 18,30 5956 37 0,107 18,90 5661 38 0,112 19,30 5803 39 0,106 18,20 5824 40 0,112 18,80 5957 41 0,108 18,80 5745 42 0,105 18,30 5738 43 0,107 18,30 5847 44 0,100 17,30 5780	27	0,113	19,30	5855	
29 $0,108$ $17,80$ 6067 30 $0,111$ $19,40$ 5722 31 $0,108$ $18,80$ 5745 32 $0,100$ $16,70$ 5988 33 $0,109$ $18,20$ 5989 34 $0,100$ $16,80$ 5952 35 $0,110$ $19,20$ 5729 36 $0,109$ $18,30$ 5956 37 $0,107$ $18,90$ 5661 38 $0,112$ $19,30$ 5803 39 $0,106$ $18,20$ 5824 40 $0,112$ $18,80$ 5745 41 $0,108$ $18,80$ 5745 42 $0,107$ $18,30$ 5738 43 $0,107$ $18,30$ 5780 44 $0,100$ $17,30$ 5780	28	0,106	18,80	5638	
30 $0,111$ $19,40$ 5722 31 $0,108$ $18,80$ 5745 32 $0,100$ $16,70$ 5988 33 $0,109$ $18,20$ 5989 34 $0,100$ $16,80$ 5952 35 $0,110$ $19,20$ 5729 36 $0,109$ $18,30$ 5956 37 $0,107$ $18,90$ 5661 38 $0,112$ $19,30$ 5803 39 $0,106$ $18,20$ 5824 40 $0,112$ $18,80$ 5957 41 $0,108$ $18,80$ 5745 42 $0,105$ $18,30$ 5738 43 $0,107$ $18,30$ 5780 44 $0,100$ $17,30$ 5780	29	0,108	17,80	6067	
31 $0,108$ $18,80$ 5745 32 $0,100$ $16,70$ 5988 33 $0,109$ $18,20$ 5989 34 $0,100$ $16,80$ 5952 35 $0,110$ $19,20$ 5729 36 $0,109$ $18,30$ 5956 37 $0,107$ $18,90$ 5661 38 $0,112$ $19,30$ 5803 39 $0,106$ $18,20$ 5824 40 $0,112$ $18,80$ 5957 41 $0,108$ $18,80$ 5745 42 $0,105$ $18,30$ 5738 43 $0,107$ $18,30$ 5847 44 $0,100$ $17,30$ 5780	30	0,111	19,40	5722	
32 $0,100$ $16,70$ 5988 33 $0,109$ $18,20$ 5989 34 $0,100$ $16,80$ 5952 35 $0,110$ $19,20$ 5729 36 $0,109$ $18,30$ 5956 37 $0,107$ $18,90$ 5661 38 $0,112$ $19,30$ 5803 39 $0,106$ $18,20$ 5824 40 $0,112$ $18,80$ 5957 41 $0,108$ $18,80$ 5745 42 $0,105$ $18,30$ 5738 43 $0,107$ $18,30$ 5847 44 $0,100$ $17,30$ 5780	31	0,108	18,80	5745	
33 $0,109$ $18,20$ 5989 34 $0,100$ $16,80$ 5952 35 $0,110$ $19,20$ 5729 36 $0,109$ $18,30$ 5956 37 $0,107$ $18,90$ 5661 38 $0,112$ $19,30$ 5803 39 $0,106$ $18,20$ 5824 40 $0,112$ $18,80$ 5957 41 $0,108$ $18,80$ 5745 42 $0,105$ $18,30$ 5738 43 $0,107$ $18,30$ 5847 44 $0,100$ $17,30$ 5780	32	0,100	16,70	5988	
34 $0,100$ $16,80$ 5952 35 $0,110$ $19,20$ 5729 36 $0,109$ $18,30$ 5956 37 $0,107$ $18,90$ 5661 38 $0,112$ $19,30$ 5803 39 $0,106$ $18,20$ 5824 40 $0,112$ $18,80$ 5957 41 $0,108$ $18,80$ 5745 42 $0,105$ $18,30$ 5738 43 $0,107$ $18,30$ 5847 44 $0,100$ $17,30$ 5780	33	0,109	18,20	5989	
35 $0,110$ $19,20$ 5729 36 $0,109$ $18,30$ 5956 37 $0,107$ $18,90$ 5661 38 $0,112$ $19,30$ 5803 39 $0,106$ $18,20$ 5824 40 $0,112$ $18,80$ 5957 41 $0,108$ $18,80$ 5745 42 $0,105$ $18,30$ 5738 43 $0,107$ $18,30$ 5847 44 $0,100$ $17,30$ 5780	<u> </u>	0,100	16,80	5952	
36 $0,109$ $18,30$ 3936 37 $0,107$ $18,90$ 5661 38 $0,112$ $19,30$ 5803 39 $0,106$ $18,20$ 5824 40 $0,112$ $18,80$ 5957 41 $0,108$ $18,80$ 5745 42 $0,105$ $18,30$ 5738 43 $0,107$ $18,30$ 5847 44 $0,100$ $17,30$ 5780	35	0,110	19,20	5056	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30 27	0,109	10,30	5661	
36 0,112 19,30 3805 39 0,106 18,20 5824 40 0,112 18,80 5957 41 0,108 18,80 5745 42 0,105 18,30 5738 43 0,107 18,30 5847 44 0,100 17,30 5780	3/	0,107	10,90	5802	
37 0,100 18,20 3824 40 0,112 18,80 5957 41 0,108 18,80 5745 42 0,105 18,30 5738 43 0,107 18,30 5847 44 0,100 17,30 5780	30 20	0,112	19,50	5824	
40 0,112 18,80 5957 41 0,108 18,80 5745 42 0,105 18,30 5738 43 0,107 18,30 5847 44 0,100 17,30 5780	39 10	0,100	10,20	5024	
42 0,105 18,30 5745 42 0,105 18,30 5738 43 0,107 18,30 5847 44 0,100 17,30 5780	40 /1	0,112	18.80	57/5	
43 0,100 10,30 5738 44 0,100 17,30 5780 45 0,114 10,60 5016	41	0,100	18 30	5738	
44 0,107 13,30 5847 45 0,114 10,00 5780	42	0,107	18.30	58/7	
45 0.114 10.00 5700	43	0,107	17.30	5780	
	45	0.11/	19.60	5816	

F	Ek-3. ERMENEK (KONYA) (LKSEL)				
ÖDNEK	BOY	P - Dalgasının	P - Dalgasının		
NO	(L, m)	Etkin lerleme	Yayılma Hızı		
NO.		Zamanı (Tp,µs)	(Vp , m /s)		
1	0,105	18,30	5738		
2	0,104	17,40	5977		
3	0,108	18,60	5806		
4	0,107	18,30	5847		
5	0,106	18,20	5824		
6	0,104	17,80	5843		
7	0,116	18,80	6170		
8	0,108	18,20	5934		
9	0,109	18,80	5798		
10	0,102	16,90	6036		
11	0,107	17,40	6149		
12	0,115	17,70	6497		
13	0,110	18,80	5851		
14	0,108	18,40	5870		
15	0,105	17,70	5932		
16	0,104	17,60	5909		
17	0,110	18,80	5851		
18	0,104	17,70	5876		
19	0,108	18,80	5745		
20	0,108	18,30	5902		
21	0,104	17,90	5810		
22	0,107	18,30	5847		
23	0,105	18,20	5769		
24	0,105	16,90	6213		
25	0,108	17,90	6034		
26	0,101	15,90	6352		
27	0,110	18,80	5851		
28	0,103	17,70	5819		
29	0,104	17,40	5977		
30	0,105	18,40	5707		
31	0,109	18,8	5798		
32	0,107	18,3	5847		
33	0,105	17,2	6105		
34	0,107	18,8	5691		
35	0,109	17,9	6089		
36	0,108	16,4	6585		
37	0,109	18,6	5860		
38	0,108	18,8	5745		
39	0,104	17,8	5843		
40	0,101	17,2	5872		
41	0,104	17,9	5810		
42	0,104	17,7	5876		
43	0,109	18,2	5989		
44	0,107	18,7	5722		
45	0,102	18,3	5574		

Ek-3. 1. GRUP (40. DÖNGÜ SONRASI)				
ÖRNEK NO.	BOY (L, m)	P - Dalgasının Etkin lerleme Zamanı (Tp,µs)	P - Dalgasının Yayılma Hızı (Vp, m/s)	
A1	0,107	18,90	5661	
A2	0,107	18,40	5815	
A3	0,107	19,40	5515	
A4	0,107	19,90	5377	
A5	0,107	20,30	5271	
A8	0,107	19,90	5377	
A9	0,107	18,90	5661	
A10	0,107	19,70	5431	
A12	0,107	18,90	5661	
A13	0,107	20,30	5271	
B1	0,107	19,30	5544	
B2	0,107	17,90	5978	
B5	0,107	18,80	5691	
B11	0,107	19,30	5544	
B12	0,107	18,40	5815	
B14	0,107	19,30	5544	
B15	0,107	17,90	5978	
B16	0,107	17,90	5978	
B18	0,107	16,90	6331	
B19	0,107	17,90	5978	
K1	0,107	18,80	5691	
K3	0,107	19,70	5431	
K4	0,107	18,80	5691	
K5	0,107	18,80	5691	
K6	0,107	17,90	5978	
K8	0,107	18,80	5691	
K9	0,107	18,90	5661	
K10	0,107	18,20	5879	
K11	0,107	18,90	5661	
K16	0,107	18,30	5847	

	Ek-3. 2. GRUP (40. DÖNGÜ SONRASI)				
ÖRNEK NO.	BOY (L, m)	P - Dalgasının Etkin lerleme Zamanı (Tp,µs)	P - Dalgasının Yayılma Hızı (Vp, m/s)		
A15	0,107	19,90	5377		
A17	0,107	20,40	5245		
A19	0,107	18,80	5691		
A20	0,107	22,30	4798		
A21	0,107	22,80	4693		
A22	0,107	21,80	4908		
A24	0,107	19,90	5377		
A25	0,107	19,90	5377		
A26	0,107	22,60	4735		
A27	0,107	20,30	5271		
B20	0,107	18,80	5691		
B21	0,107	18,40	5815		
B22	0,107	18,30	5847		
B24	0,107	21,30	5023		
B25	0,107	18,40	5815		
B26	0,107	19,30	5544		
B28	0,107	18,90	5661		
B29	0,107	18,90	5661		
B30	0,107	20,40	5245		
B31	0,107	18,90	5661		
K17	0,107	20,40	5245		
K18	0,107	20,00	5350		
K19	0,107	21,90	4886		
K23	0,107	21,20	5047		
K26	0,107	21,70	4931		
K28	0,107	20,40	5245		
K29	0,107	20,20	5297		
K33	0,107	21,30	5023		
K34	0,107	20,40	5245		
K35	0,107	22,20	4820		

Ek-3. 3. GRUP (40. DÖNGÜ SONRASI)				
ÖRNEK NO.	BOY (L, m)	P - Dalgasının Etkin lerleme Zamanı (Tp,µs)	P - Dalgasının Yayılma Hızı (Vp, m/s)	
A30	0,107	18,80	5691	
A33	0,107	18,40	5815	
A34	0,107	18,80	5691	
A35	0,107	18,80	5691	
A36	0,107	20,20	5297	
A38	0,107	21,30	5023	
A39	0,107	21,40	5000	
A40	0,107	20,90	5120	
A41	0,107	21,30	5023	
A42	0,107	20,40	5245	
B33	0,107	18,90	5661	
B35	0,107	19,90	5377	
B36	0,107	19,30	5544	
B37	0,107	18,40	5815	
B38	0,107	19,90	5377	
B39	0,107	18,90	5661	
B42	0,107	18,80	5691	
B43	0,107	18,00	5944	
B45	0,107	19,90	5377	
B46	0,107	18,30	5847	
K36	0,107	18,80	5691	
K37	0,107	19,80	5404	
K38	0,107	19,80	5404	
K39	0,107	18,80	5691	
K40	0,107	18,30	5847	
K41	0,107	18,40	5815	
K42	0,107	18,80	5691	
K43	0,107	19,80	5404	
K44	0,107	20,20	5297	
K45	0,107	19,40	5515	

E	Ek-4. KONTROL NUMUNELER				
ÖRNEK	YEN LME	TEK EKSENL			
NO.	YÜKÜ (F, kN)	SIKI MA DAYANIMI			
		(† _с , Мра)			
A6	149,00	62,75			
A7	111,70	47,04			
A11	138,50	58,32			
A14	125,30	52,77			
A16	89,10	37,52			
A18	102,50	43,16			
A23	77,70	32,72			
A28	107,20	45,14			
A29	119,30	50,24			
A31	100,80	42,45			
A32	118,40	49,86			
A37	108,10	45,52			
B3	71,90	30,28			
B4	93,60	39,42			
B6	89,10	37,52			
B7	134,50	56,64			
B8	107,50	45,27			
B9	92,70	39,04			
B10	64,80	27,29			
B13	111,30	46,87			
B17	114,60	48,26			
B23	116,80	49,19			
B27	118,90	50,07			
B32	130,50	54,96			
B34	120,00	50,53			
B40	104,60	44,05			
B41	89,10	37,52			
B44	92,90	39,12			
K2	70,40	29,65			
K7	81,10	34,15			
K12	85,80	36,13			
K13	103,20	43,46			
K14	96,30	40,55			
K15	87,60	36,89			
K20	96,30	40,55			
K21	105,90	44,60			
K22	98,30	41,40			
K24	73,00	30,74			
K25	130,50	54,96			
K27	78,00	32,85			
K30	109,20	45,99			
K31	101,60	42,79			
K32	114,40	48,17			

	Ek-4. 1. GRUP(MgSO ₄)				
ÖRNEK	YEN LME	TEK EKSENL			
NO.	YÜKÜ (F, kN)	SIKI MA DAYANIMI			
		(† _с , Мра)			
A1	91,10	38,36			
A2	103,70	43,67			
A3	102,30	43,08			
A4	84,20	35,46			
A5	70,80	29,82			
A8	79,70	33,56			
A9	69,50	29,27			
A10	80,60	33,94			
A12	94,50	39,80			
A13	96,70	40,72			
B1	98,10	41,31			
B2	77,70	32,72			
B5	105,20	44,30			
B11	69,70	29,35			
B12	105,00	44,22			
B14	71,70	30,30			
B15	42,40	17,86			
B16	120,90	50,91			
B18	82,90	34,91			
B19	118,60	49,94			
K1	64,30	27,08			
K3	44,20	18,61			
K4	65,70	27,67			
K5	78,90	33,23			
K6	73,50	30,95			
K8	73,00	30,74			
K9	98,70	41,56			
K10	71,30	30,03			
K11	84,40	35,67			
K16	82,40	34,70			

	Ek-4. 2. GRUP(Na_2SO_4)				
ÖRNEK NO.	YEN LME YÜKÜ (F, kN)	TEK EKSENL SIKI MA DAYANIMI († _c , Mpa)			
A15	75,30	31,71			
A17	100,50	42,32			
A19	69,00	29,06			
A20	59,90	25,23			
A21	89,40	37,65			
A22	57,60	24,26			
A24	151,00	63,59			
A25	112,80	47,68			
A26	94,30	39,71			
A27	123,10	51,84			
B20	88,90	37,44			
B21	82,00	34,53			
B22	89,60	37,73			
B24	59,20	24,93			
B25	60,10	25,40			
B26	90,20	37,98			
B28	85,30	35,92			
B29	70,40	29,65			
B30	99,00	41,69			
B31	117,30	49,40			
K17	99,00	41,69			
K18	70,10	29,52			
K19	80,60	33,94			
K23	37,90	15,96			
K26	35,30	14,87			
K28	58,50	24,64			
K29	100,50	42,32			
K33	59,60	25,10			
K34	68,30	28,76			
K35	65,40	27,54			
Ek-4. 3. GRUP(NaCI)					
---------------------	-------------------------	--	--		
ÖRNEK NO.	YEN LME YÜKÜ (F, kN)	TEK EKSENL SIKI MA DAYANIMI († _c , Mpa)			
A30	161,30	67,93			
A33	111,00	46,74			
A34	92,50	38,95			
A35	103,40	43,54			
A36	88,90	37,44			
A38	98,30	41,40			
A39	71,90	30,28			
A40	95,20	40,24			
A41	41,50	17,48			
A42	58,10	24,47			
B33	92,50	38,95			
B35	114,20	48,09			
B36	56,70	23,88			
B37	89,80	37,82			
B38	86,40	36,52			
B39	99,00	41,69			
B42	69,50	29,27			
B43	110,10	46,37			
B45	74,20	31,25			
B46	58,70	24,90			
K36	90,90	38,28			
K37	56,30	23,71			
K38	57,80	24,34			
K39	75,70	31,88			
K40	59,40	25,01			
K41	95,40	40,17			
K42	50,20	21,14			
K43	61,60	25,94			
K44	59,60	25,10			
K45	71,70	30,19			

			1 DÖNCÜ	2 DÖNGÜ
NO	KAP	KAP+NUMUNE	KAP+NIMUNE	KAP+NIMUNE
K11	30	461.4	458 5	456 5
K9	30	469.7	468.2	466.5
	30	403.3	402.0	401.1
K1	30	404.2	402,0	400.6
R1	30	406.4	402,4	402.9
Δ13	30	400,4	491.9	490.3
R14	30	495.1	463.3	463.1
<u> </u>	30	447.1	445.6	405,1
R7	30	308.1	396 /	395.6
	30	403.9	402.6	401.8
K6	30	409,7	402,0	406.3
K8	30	363.9	362.5	361.0
K16	30	492.0	/89.8	/87.7
A5	30	492,0	432,8	420.3
A 10	30	420,5	422,1	416.8
	30	420,3	418,4	416,6
K5	30	431.2	428.5	426.9
R5 R5	30	398.3	395.1	393.9
B12	30	<u> </u>	445.0	443.7
B12	30	/59.8	456.9	445,7 A5A 7
K3	30	385.9	383.8	382.7
R16	30	414.2	411.6	410.7
B10	30	414,2	472.3	470.7
R10	30	437 7	435.3	<u> </u>
K10	30	417.8	415.4	413.5
<u>A3</u>	30	454.0	451.0	450.7
	30	412.8	<u>411 2</u>	409.8
A4 R11	30	380 5	387.2	385 7
	30		420.5	100,1 107 5
н12 КЛ	30	431,3	427,5	427,5

Ek-5. SUDA DA ILMAYA KAR I DURAYLILIK NDEKS DENEY

Ek-5. SUDA DA ILMAYA KAR I DURAYLILIK NDEKS DENEY				
GRUP 2(Na ₂ SO ₄)		UP 2(Na ₂ SO ₄)	1.DÖNGÜ	2.DÖNGÜ
NO	KAP	KAP+NUMUNE	KAP+NUMUNE	KAP+NUMUNE
K33	30	387,4	384,5	383,1
K28	30	391,2	388,8	387,8
B22	30	400,8	397,3	396,5
B29	30	430,0	428,4	428,1
K23	30	376,6	374,7	373,9
B24	30	392,0	389,9	388,2
K19	30	411,1	409,1	407,8
A24	30	413,0	409,7	408,5
B25	30	414,2	413,0	412,2
B26	30	417,1	414,4	413,2
K29	30	406,6	404,7	403,4
A26	30	369,7	368,0	367,0
B21	30	390,2	388,0	386,3
K18	30	421,9	420,0	418,2
A15	30	386,0	383,7	382,2
B31	30	371,0	368,0	367,0
A20	30	438,1	434,2	432,9
K26	30	422,6	420,1	418,9
A22	30	389,4	387,8	386,8
A27	30	470,7	468,1	467,1
A19	30	389,5	387,5	386,2
B28	30	392,8	390,5	389,1
A17	30	425,9	423,7	422,9
A21	30	379,0	376,4	375,1
B20	30	361,7	359,4	358,0
K17	30	380,7	379,5	378,4
K35	30	383,4	381,0	379,3
A25	30	375,6	374,5	373,7
B30	30	436,2	433,5	431,7
K34	30	430,8	427,9	427,1

Г

-

GRUP 3(NaCI)		UP 3(NaCI)	1.DÖNGÜ	2.DÖNGÜ
NO	KAP	KAP+NUMUNE	KAP+NUMUNE	KAP+NUMUNE
B38	30,0	358,5	357,0	356,1
K40	30,0	436,9	434,8	433,4
K39	30,0	420,6	418,7	417,4
A38	30,0	421,8	420,4	419,4
B39	30,0	403,9	401,8	400,8
A41	30,0	450,7	449,0	448,2
B42	30,0	449,4	447,9	446,8
B37	30,0	408,1	406,8	405,9
K43	30,0	437,0	435,6	434,5
A40	30,0	391,1	389,7	388,9
K41	30,0	442,4	439,8	438,2
B33	30,0	455,7	453,4	452,1
A30	30,0	408,0	406,1	405,1
B36	30,0	344,3	342,2	341,1
K42	30,0	293,3	292,2	291,6
K37	30,0	419,4	417,9	416,8
A35	30,0	407,1	405,4	404,5
B35	30,0	361,8	359,6	358,4
A42	30,0	465,8	464,2	463,3
K45	30,0	422,4	420,8	419,7
B46	30,0	412,8	408,8	407,3
A34	30,0	342,5	341,1	340,4
K36	30,0	461,3	459,6	458,4
K44	30,0	400,1	398,5	397,3
A36	30,0	411,5	409,9	408,7
A33	30,0	388,0	386,3	385,5
K38	30,0	380,1	377,9	376,2
B45	30,0	460,9	458,9	457,6
A39	30,0	403,1	401,6	400,9
B43	30,0	433,8	431,8	430,4

Ek-5. SUDA DA ILMAYA KAR I DURAYLILIK NDEKS DENEY				
KONTROL NUMUNELER			1. DÖNGÜ	2. DÖNGÜ
NO	KAP	KAP+NUMUNE	KAP+NUMUNE	KAP+NUMUNE
K21	31,0	404,7	403,2	402,2
K13	31,0	418,3	417,1	415,5
B6	31,0	389,9	388,5	387,2
K15	31,0	389,3	388,0	387,2
A28	31,0	396,0	394,4	392,7
K30	31,0	382,4	380,7	379,3
A29	31,0	369,3	367,2	365,5
A11	31,0	358,9	357,0	355,8
B40	31,0	407,7	406,0	404,9
B3	31,0	390,2	386,5	384,4
B17	31,0	362,0	360,1	358,6
K31	31,0	428,0	426,1	424,5
B9	31,0	392,1	391,4	390,3
B34	31,0	337,1	334,4	332,8
B7	31,0	381,6	380,2	379,3
B32	31,0	364,4	363,5	362,8
A37	31,0	341,1	340,2	339,6
A16	31,0	357,0	356,1	355,2
B44	31,0	361,4	360,1	359,2
K14	31,0	384,0	382,7	381,9
B4	31,0	390,4	388,6	387,2
A23	31,0	382,0	380,2	379,1
B23	31,0	382,3	381,1	380,1
K20	31,0	389,2	387,5	386,4
A32	31,0	446,4	443,6	441,9
A18	31,0	393,7	392,8	391,9
A14	31,0	434,0	432,0	430,6
K2	31,0	386,8	385,4	384,3
K12	31,0	396,6	368,1	367,3
K27	31,0	425,8	424,0	422,7
B41	31,0	404,9	402,8	401,1
B27	31,0	405,7	404,1	403,1
K24	31,0	365,7	364,0	363,3
K25	31,0	433,2	430,4	429,0
A6	31,0	469,9	467,5	465,7
K32	31,0	389,9	387,3	386,0
K22	31,0	400,5	399,1	398,0
A7	<u>31,0</u>	360,8	359,9	359,1
B13	51,0	394,0	392,5	391,8
B10	<u>31,0</u>	453,8	452,9	451,6
B 8	31,0	359,1	358,0	356,9
A31	31,0	300,1	364,0	362,6
К7	31,0	442,6	441,0	439,9