T.C. AKDENİZ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ANAKOL YILDIZLARININ KÜTLE PARLAKLIK BAĞINTISI VE ETKİN SICAKLIK DUYARLILIK PROBLEMİ

Gürkan ASLAN

YÜKSEK LİSANS TEZİ UZAY BİLİMLERİ VE TEKNOLOJİLERİ ANABİLİM DALI

2015

T.C. AKDENİZ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ANAKOL YILDIZLARININ KÜTLE PARLAKLIK BAĞINTISI VE ETKİN SICAKLIK DUYARLILIK PROBLEMİ

Gürkan ASLAN

YÜKSEK LİSANS TEZİ UZAY BİLİMLERİ VE TEKNOLOJİLERİ ANABİLİM DALI

Bu tez TÜBİTAK tarafından 114R072 nolu proje ile desteklenmiştir.

2015

T.C. AKDENİZ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ANAKOL YILDIZLARININ KÜTLE PARLAKLIK BAĞINTISI VE ETKİN SICAKLIK DUYARLILIK PROBLEMİ

Gürkan ASLAN

YÜKSEK LİSANS TEZİ UZAY BİLİMLERİ VE TEKNOLOJİLERİ ANABİLİM DALI

Bu tez 01/04/2016 tarihinde aşağıdaki jüri tarafından Oybirliği ile kabul edilmiştir.

Prof. Dr. Zeki EKER (Danışman)

Uti

Prof. Dr. Selçuk BİLİR

Att.

Doç. Dr. Hicran BAKIŞ

ÖZET

ANAKOL YILDIZLARININ KÜTLE PARLAKLIK BAĞINTISI VE ETKİN SICAKLIK DUYARLILIK PROBLEMİ

Gürkan ASLAN

Yüksek Lisans Tezi, Uzay Bilimleri ve Teknolojileri Anabilim Dalı Danışman: Prof. Dr. Zeki EKER Aralık 2015, 104 sayfa

Bu tez çalımasında, klasik metot olarak tanımlanan kütle-parlaklık bağıntısı (MLR) kullanarak yıldızın kütlesi (M) ve yarıçapından (R) Stefan-Boltzmann yasası çerçevesinde yıldızın etkin sıcaklığının hesaplanması konusu incelenmiş ve klasik metot ile hesaplanan etkin sıcaklıklardaki duyarlılık problemi araştırılmıştır. Anakol yıldızları için, XX. yüzyılın başlarında empirik olarak keşfedilen MLR bağıntısının günümüze kadar olan gelişimi özetlenmiştir. Klasik metot kullanılarak hesaplanmış etkin sıcaklıkların belirsizlik miktarına katkının sadece gözlemsel parametrelerin rastgele hatalarından gelmediği, daha çok log M – log L diyagramı üzerinde saçılmaya sebep olan yıldızların farklı kimyasal kompozisyonları ve değişen evrim durumlarının daha büyük belirsizliklere neden olduğunun önemine dikkat çekilmiştir. Ayrıca, metalisite ve evrim hatalarının, yıldızın log M – log L diyagramı üstündeki konumundan kaynaklanması sebebiyle rastgele değil, sistematik olması belirtilmiştir.

Bu sistematik belirsizliklerin hesaplanmasıyla düzeltilmesi bu tez çalışmasının temelini oluşturmaktadır. Yarı-empirik olarak önerdiğimiz, homojen sıkıştırma yöntemi (HSY) olarak adlandırdığımız bir metot geliştirilmiş, günümüzde M ve R değerleri en duyarlı 450 anakol yıldızına uygulanmıştır. Bu metodun kullanımı, geçerli bir MLR bağıntısından başka yıldızın anakol evrimi başlangıcında (ZAMS) ve sonunda (TAMS) teorik yarıçap ve etkin sıcaklık değerlerinin bilinmesini gerektirmektedir. HSY kullanılan MLR'lerden bağımsızdır, buna karşılık uygulamasında güçlü bir model bağımlılığı vardır. Bu nedenle anakol yıldızlarının ZAMS ve TAMS konumlarındaki teorik yarıçap (R) ve etkin sıcaklık (T_{eff}) değerleri için Bressan vd'nin (2012) evrim modelleri ve Eker vd'nin (2015) MLR bağıntıları tez çalışmasında kullanılmıştır. Kullanılan MLR bağıntıları katalizör gibi davranmaktadır; yani MLR bağıntısı olmadan HSY'nin uygulanması mümkün değildir. Fakat kullanılan MLR'nin elde edilen sonuca da hiç katkısı yoktur. Sonuçlar doğrudan kullanılan evrim modellerine bağımlılır.

Bu tez çalışmasında ortaya konan metot (HSY) sadece güvenilir, yani hatası çok küçük bir etkin sıcaklık (T_{eff}) ve bir ışınım gücü (L) hesaplamak için değil, aynı zamanda yıldız yapısı ve evrim modellerinin test edilmesi için de kullanılabilir. Tez çalışmasında kullanılan Eker vd'nin (2014) "Samanyolundaki Ayrık Örten Çift Çizgili Tayfsal Çift Yıldızlardan Toplanmış Yıldız Parametreleri Kataloğu" ndan seçilmiş Güneş komşuluğundaki 450 anakol yıldızının gözlemsel (yayınlanmış) sıcaklıkları için oluşturulan etkin sıcaklık hata histogramı %2-3 değerlerinde bir maksimum

göstermektedir. HSY ile hesaplanan etkin sıcaklıkların hataları M ve R'nin gözlemsel hatalarının etkin sıcaklıklara taşınmasıyle elde edilen hatalardır. Bu nedenle, HYS ile elde edilen etkin sıcaklıklar ve hataları gözlemsel sıcaklık ve hatalarından bağımsızdır. Bu tez çalışmasında 450 anakol yıldızı için hesaplanmış daha duyarlı sıcaklık hatalarından oluşturulan histogram %1'den küçük olan bir maksimum göstermektedir. 450 anakol yıldızı arasından M ve R değerleri %3 ve daha duyarlı olanlar seçilmiş ve MLR bağıntıları HSY ile güncellenmiştir. Daha duyarlı yeni hesaplanmış etkin sıcaklıklardan çıkartılmış bu yeni MLR bağıntıları ile klasik yöntem uygulandığında %3.5 duyarlılık düzeyinde etkin sıcaklıklar yıldızın M ve R'si kullanılarak elde edilebilir. Böylece bu tez çalışmasında daha duyarlı etkin sıcaklık hesaplama yöntemi (HSY) ile birlikte daha duyarlı MLR bağıntıları ortaya konmuştur.

ANAHTAR KELİMELER: Yıldız parametreleri, etkin sıcaklıklar, çift yıldızlar, tutulmalı çift yıdızlar, ayrık çift yıldızlar, tayfsal çift yıldızlar, yıldızlar, yıldız katalokları.

JÜRİ: Prof. Dr. Zeki EKER (Danışman) Prof. Dr. Selçuk BİLİR Doç. Dr. Hicran BAKIŞ

ABSTRACT

MAIN SEQUENCE MASS-LUMINOSITY RELATION AND A PROBLEM OF TEMPERATURE ACCURACY

Gürkan ASLAN

MSc Thesis in Space Sciences and Technologies Supervisor: Prof. Dr. Zeki EKER December 2015, 104 pages

In this thesis, the classical method, which is defined as computing effective temperatures of stars from its mass (M) and radius (R) using a mass-luminosity relation (MLR) according to the Stefan-Boltzmann law, were studied and the sources of the large uncertainty of computed effective temperatures were investigated. Different forms and evolution of MLR, which was discovered for main-sequence stars in early XXth Century, was summarized. Contributions to the uncertainty of the computed effective temperatures by the classical method are not due to only observational random errors. Actually, the main contribution comes from varying chemical compositions and evolutionary status of the stars. Unlike observational random errors, which are random, the uncertainty contributions originating from metallicity and evolution are systematic.

First computing, and later correcting of the systematic errors due to metalicity and evolution are the main problems of this study. A semi-empirical method, which were called Two Uniform Contractions (TUC), were developed and applied to 450 main sequence stars with most reliable M and R values. The method requires a massluminosity relation (MLR) and theoretical predictions of radius (R) and effective temperature (T_{eff}) for a star both at zero age main sequence (ZAMS) and at terminal age main sequence (TAMS). The introduced method (TUC) is independent of the MLR used, but strongly model dependent. Therefore, the stellar structure and evolution models of Bressan et al. (2012) were used to obtain for the theoretical predictions of R and T_{eff} at both ZAMS and TAMS together with the MLR's of Eker et al.(2015). The MLRs, which act as a catalyst, are necessary but have no effect on the final results.

The introduced method, in this thesis, is not only useful to provide reliable effective temperatures and luminosities but also useful to test stellar structure and evolution models. The present sample of main-sequence stars in the solar neighborhood, which are chosen from the "The Catalog of Stellar Parameters from the Detached Double-Lined Eclipsing Binaries in the Milky Way" of Eker et al. (2014), has an error histogram for the observed effective temperatures with a peak at 2-3%. The errors of the refined effective temperatures by the present method are the propagated errors of the observed masses and radii. That is, the refined temperatures and associated errors. The histogram of the refined temperature errors (450 stars) shows a peak at less than 1%. A refined sample of stars with masses and radii accurate up to 3% and their refined effective temperatures has been used in this study to improve the classical MLRs. One

may prefer, however, to use improved classical MLRs, which allows one to compute effective temperatures available as accurate as 3.5%. As a result, a new method of computing more reliable effective temperatures, which was called TUC, and new improved MLRs were presented.

KEYWORDS: Fundamental parameters, effective temperatures, binaries, eclipsing binaries, detached binaries, spectroscopic binaries and star catalogs.

COMMITTEE: Prof. Dr. Zeki EKER (Supervisor) Prof. Dr. Selçuk BİLİR Assoc. Prof. Dr. Hicran BAKIŞ

ÖNSÖZ

Tez konumun seçiminde bana yol gösteren, çalışmalarım boyunca öneri ve desteklerini esirgemeyen, engin bilgi ve tecrübelerinden yararlandığım değerli danışman hocam Prof. Dr. Zeki EKER'e teşekkürlerimi sunarım.

Tezimle ilgili görüş ve önerileriyle katkıda bulunan İstanbul Üniversitesi Fen Fakültesi Astronomi ve Uzay Bilimleri Bölümü öğretim üyesi Prof. Dr. Selçuk Bilir'e teşekkür ederim. Bu süreçte benden desteklerini ve yardımlarını esirgemeyen değerli yüksek lisans arkadaşlarım Saliha EREN'e ve Nurdan KARAPINAR'a, manevi desteklerini esirgemeyen yüksek lisans arkadaşlarım Mehmet ALPSOY'a, Doğan Tekay KÖSEOĞLU'na, Selen OY'a ve diğer tüm arkadaşlarıma teşekkürü bir borç bilirim. Ayrıca, TÜBİTAK'a tez çalışmama verdiği destekten dolayı teşekkür ederim.

Tüm eğitimim ve hayatım boyunca benim yanımda olan, güvenen, maddi ve manevi desteğini hiçbir zaman esirgemeyen aileme çok teşekkür ederim.

Son olarak, yoğun çalışmalarım sırasında bana her konuda sabır ve sevgiyle yardımcı olan ve hiçbir zaman desteğini esirgemeyen çok değerli eşim Nagihan ASLAN'a çok teşekkür ederim.

ÖZET	i
ABSTRACT	.iii
ÖNSÖZ	v
İÇİNDEKİLER	vi
SİMGELER ve KISALTMALAR DİZİNİ	vii
ŞEKİLLER DİZİNİ	. ix
ÇİZELGELER DİZİNİ	xi
1. GİRİŞ	1
2. KURAMSAL BİLGİLER VE KAYNAK TARAMALARI	3
2.1. Etkin Sıcaklık	3
2.2. Kütle-Parlaklık Bağıntısı (MLR)	5
2.3. Kütle-Yarıçap Bağıntısı (MRR)	8
2.4. MLR ve MRR İle İlgili Son Gelişmeler	. 10
2.5. Etkin Sıcaklık Duyarlılık Problemi	.12
3. MATERYAL VE ETKİN SICAKLIK HESAPLAMA YÖNTEMLERİ	.14
3.1. Materyal	.14
3.1.1. Teorik yıldız evrim modellerinin seçimi	.14
3.1.2. Anakol yıldızlarının seçimi	.15
3.2. Kütle ve Yarıçap Kullanarak T _{eff} Hesaplama Yöntemleri	.17
3.2.1. T _{eff} belirlemede klasik yöntem	. 20
3.2.2. Homojen sıkıştırma yöntemi (HSY)	. 22
3.2.3. Klasik yöntemin sebep olduğu yanlılık (bias)	. 23
3.2.4. Homojen sıkıştırma yöntemi (HSY) İle yanlılığın giderilmesi	.26
3.2.4.1. Sıkıştırma katsayıları	.27
4. BULGULAR VE TARTIŞMALAR	.33
4.1. Yeni MLR Bağıntıları	35
4.2. İyileştirilmiş, Hesaplanmış ve Yayınlanmış T _{eff} Karşılaştırması	. 38
4.3. İyileştirilmiş Sıcaklıklar Gözlemsel Sıcaklıklardan Bağımsız Mı?	.40
4.4. Yeni Metot ve Evrim Yolları	41
4.5. Kütle Kayıplı Evrim Modellerinin HYS Yöntemine Dâhil Edilmesi	43
4.5.1. Kütle kayıplı evrim modellerinde mTAMS çizgisinin hesaplanması	,44
5. SONUÇLAR	.48
6. KAYNAKLAR	50
7. EKLER	57
Ek 1: Bressan vd'nin (2012) evrim modellerine göre anakol yıldızları için	
anakol ömürlerinin başında (ZAMS) ve sonunda (TAMS) yıldız ışınım	
gücü (L), etkin sıcaklık (Teff) ve yarıçap (R) değerleri	57
Ek 2: Samanyolundaki Ayrık Örten Çift Çizgili Tayfsal Çift Yıldızlardan	
toplanmış Yıldız Parametreleri Kataloğu (Eker vd 2014)	. 59
Ek 3: Birinci ve ikinci sıkıştırma paramatreleri (CC1, CC2) ve bu	
parametrelerin hesaplandığı teorik kütle (M) ve limit sıcaklıklar	
Listesi (Z, T, Z', T')	. 82
Ek 4: Homojen Sıkıştırma Yöntemi (HSY) ile hesaplanmış sıcaklık ve	
hatalarının, yayınlanmış sıcaklık ve klasik yöntem sonuçlarıyla	
karşılaştırılması	. 84
OZGEÇMIŞ	

İÇİNDEKİLER

SİMGELER VE KISALTMALAR DİZİNİ

<u>Simgeler</u>

$^{1}_{1}H$	Hidrojen (proton)
${}^{2}_{1}D$	Ağır hidrojen (döteryum)
$\frac{1}{\overline{\nu}}$	Parcacıkların ortalama hızları
а	Cift sistemin varı-hüvük eksen uzunluğu
$\mathbf{B}_{u}(\mathbf{T})$	Kara cisim ısık siddeti
$\mathbf{D}_{\mathcal{V}}(1)$	Isik hizi
F	Fnerii
E	Demir bolluğu
G	Vercekimi Sahiti
h	Planck Sabiti
II Ho	Halum
	Doltzmann Sabiti
K V	Doltzinann Saolu Kalada
К I	
L	
Lo	Işinim gücü (Güneş için)
log g	Yüzey çekim ivmesinin logaritması
m	Bir parçacığın kütlesi
Mo	Güneş kütlesi
Μ	Kütle
\mathbf{M}_1	Baş yıldızın kütlesi
M_2	Yoldaş yıldızın kütlesi
M_{bol}	Bolometrik parlaklık
M_v	Görsel mutlak parlaklık
0	Derece
Р	Perivot
Ro	Günes varicani
R	Korelasvon katsavisi
R	Yarıcan
Т	Sıcaklık
T T _{eff}	Ftkin Sıcaklık
	Klasik kütle parlaklık bağıntışındaki (L a Ma) üş değeri
u «(2000)	Enoch 2000 join Uluglararagi Gälggörö Dafarang Sigtaminda (ICDS) sağ
<i>a</i> (2000)	epoch 2000 için Olusialalası Gokyuzu Keleralis Sisteminde (ICKS) sag
0+	
β'	Pozitif beta işimasında ortaya çıkan radyasyon (pozitif yuklu elektron)
δ(2000)	Epoch 2000 için Uluslararası Gökyüzü Referans Sisteminde (ICRS) dik
	açıklık
ΔL	L değerindeki belirsizlik (hata)
ΔM	M değerindeki belirsizlik (hata)
ΔR	R değerindeki belirsizlik (hata)
ΔT_{eff}	T _{eff} değerindeki belirsizlik (hata)
ν	Frekans
π	Pi sayisi
σ	Standart sapma

<u>Kısaltmalar</u>

CC1	Birinci Homojen Sıkıştırma Katsayısı
CC2	İkinci Homojen Sıkıştırma Katsayısı
DEBCat	Soutworth'un (2012) Ayrık Örten Çift Yıldızlar Kataloğu
H-R	Hertzsprung Russell Diyagramı
HSY	Homojen Sıkıştırma Yöntemi
LTE	Yerel Termodinamik Denge
MLR	Kütle-Parlaklık Bağıntısı
MRR	Kütle-Yarıçap Bağıntısı
mTAMS	Modifiye edilmiş TAMS
SB1	Tek Çizgili Tayfsal Çift
SB2	Çift Çizgili Tayfsal Çift
TAMS	Anakolda Son Evre
ZAMS	Anakolda İlk Evre

ŞEKİLLER DİZİNİ

Şekil 2.1.	Hertzsprung (1923) çalışmasına göre kütle-mutlak parlaklık grafiği	.6
Şekil 2.2.	Mclaughin'in (1927) kütleye karşı mutlak (bolometrik) parlaklık grafiği	. 8
Şekil 2.3.	Gimenez ve Zamorano'nun (1985) kütle-yarıçap bağıntısı	.9
Şekil 3.1.	Kütle – yarıçap (log M – log R) diyagramında tez çalışması için gerekli anakol yıldızlarının seçilmesi. Tez çalışmasına dâhil edilmeyen yıldızlar (+) ve (×) ile gösterilmiştir	16
Şekil 3.2.	Eker vd'ne (2015) göre kütle-parlaklık grafiği. Alttaki dört panel üstteki panelde dikey çizgilerle sınırlanmış kütle aralıklarındaki verilere fit edilmiş lineer fonksiyonları göstermektedir	19
Şekil 3.3.	Klasik metot ile M ve R değerlerinden hesaplanmış etkin sıcaklıkların (T _{eff}) log M – log T _{eff} diyagramında dağılımı	25
Şekil 3.4.	AL Scl yıldızının baş bileşeni ZAMS ve TAMS çizgilerini Z, Z', T ve T' noktalarında kesen dikey doğru üstündedir. İlk sıkıştırmada T' noktası, ikinci sıkıştırmada Z noktası referans alınmıştır	27
Şekil 3.5.	CG Cyg yıldızının baş bileşeninin konumu düşey çizgi üstünde T_x İle işaretlenmiştir. CC2 değeri M < 1.15 M ₀ olan yıldızlarda negatiftir. Buradaki T _x değeri klasik metot ile CG Cyg için hesaplanan sıcaklık değeridir	30
Şekil 3.6.	Homojen Sıkıştırma Yöntemi uygulamasında birinci sıkıştırmadan sonra 450 anakol yıldızının log M – log T _{eff} diyagramı üstündeki dağılımı. İlk düzeltmeden sonra yıldızlar düzgün bir şekilde aşağı kaymıştır	31
Şekil 3.7.	Homojen Sıkıştırma Yöntemi uygulamasında ikinci sıkıştırmadan sonra 450 anakol yıldızının log M – log T _{eff} diyagramı üstündeki dağılımı. İkin- ci düzeltmeden sonra yıldızlar düzgün bir şekilde yukarı kaymıştır	32
Şekil 4.1.	Kütle ve yarıçap duyarlılığı %3 ve daha iyi olan 281 tane anakol yıldızının log M – log L diyagramı üzerinde değılımı. (+) iyileştirilmiş lüminositeler, (o) ise yayınlanmış lüminosite değerleridir. Kırılma noktaları M = 1.05, 2.4 ve 7 M ₀ 'tir	35
Şekil 4.2.	Yayınlanmış (üst), hesaplanmış (orta) ve iyileştirilmiş (alt) etkin sıcaklıkların karşılaştırılması. Yayınlanmış ve hesaplanmış sıcaklıklar kıyaslama yapılabilmek için sırasıyla 0.4 ve 0.8 dex kaydırılmıştır	38
Şekil 4.3.	Yayınlanmış (üst), hesaplanmış (orta) ve iyileştirilmiş (alt) H – R diyagramlarının karşılaştırılması	39

Şekil 4.4.	Kütlenin fonksiyonu olarak TAMS yarıçapları (R). Artı (+) işareti ile gösterilen noktaların koordinatları Çizelge 4.3'ten alınmıştır. logaritmadan kurtarılan Güneş birimindeki TAMS yarıçaplarına beşinci dereceden fit edilen polinom fonksiyonu düz çizgi (—) ile gösterilmiştir	45
Şekil 4.5.	Kütlenin fonksiyonu olarak TAMS etkin sıcaklıkları (T_{eff}). Artı (+) işareti ile gösterilen noktaların koordinatları Çizelge 4.3'ten alınmıştır. logaritmadan kurtarılan Kelvin birimindeki TAMS yarıçaplarına ikinci dereceden fit edilen polinom fonksiyonu düz çizgi (—) ile gösterilmiştir	45
Şekil 5.1.	İyileştirilmiş etkin sıcaklıkların göreli hataları ile yayınlanmış etkin sıcaklıkların göreli hatalarının karşılaştırılması. 1 ile gösterilen düşük 2 ile gösterilen orta, 3 ile gösterilen büyük, 4 ile gösterilen çok büyük kütleli yıldızların göreli hatalarının karşılaştırılması. a-) Eker vd (2015) tarafından klasik metotla elde edilen sonuçlar b-) Bu çalışmadaki yeni yöntemle elde edilen sonuçlar	48

ÇİZELGELER DİZİNİ

Çizelge 2.1. Russell vd (1923) tarafından hazırlanmış mutlak parlaklık ve kütle arasındaki bağıntıyı ortaya koyan veriler	7
Çizelge 2.2. Kütle – parlaklık – yarıçap arasındaki bağıntılar hakkında son çeyrek yüzyıl içindeki çalışmaların karşılaştırılması	.11
Çizelge 3.1. Eker vd'ne (2015) göre faklı kütle aralıklarında MLR bağıntıları	. 17
Çizelge 3.2. Eker vd'ne (2015) göre kütle parlaklık diyagramı üzerindeki standart saçılmalar ve göreli belirsizlikler	. 22
Çizelge 4.1. Eker vd (2015) tarafından hesaplanan MLR'ler ile yeni hesaplanmış MLR'lerin karşılaştırılması	.37
Çizelge 4.2. Eker vd (2015) tarafından elde edilen kütle parlaklık bağıntısındaki hata ve standart sapmalar ile bu tez çalışmasında elde edilen hata ve standart sapmaların karşılaştırılması	. 37
Çizelge 4.3. Kütle kayıplı Güneş metal bolluğundaki PARSEC evrim modellerinde (Bressan vd 2012) ZAMS ve TAMS değerlerinin karşılaştırılması	. 43
Çizelge 4.4. Kütlenin fonksiyonu olarak TAMS evresinde kütle kaybeden yıldızların PARSEC modellerine göre yarıçap [R=R(M)] ve sıcaklık [T _{eff} =T(M)] fonksiyonu fit parametreleri	.46

1. GİRİŞ

Yıldızlar, evreni görünür kılan, teleskoplarla veya gözle gördüğümüz galaksi içi ve galaksi ötesi gök cisimlerini şekillendiren en temel nesnelerdir. Güneş'in bir yıldız ve yıldızlarında birer Güneş olduklarını bugün biliyoruz. Uzay dediğimiz boşlukta, bir yıldızı oluşturan kütleyi kendi çekim kuvvetiyle bir arada tutan evrensel çekim kuvvetidir. Buna karşılık yıldızın kendi çekim kuvvetiyle büzülüp kendi üstüne çökmesini engelleyen kuvvet ise gaz basıncıdır.

Özellikle ifade edilirse yıldızları mekanik olarak bir bütün halinde dengede tutan bu olaya *hidrostatik denge* adı verilir. Hidrostatik denge yanında, yıldızlarda hüküm süren başka dengeler de vardır: Termal denge, ışınım dengesi, yerel termodinamik denge ve enerji dengesi gibi. Bize en yakın yıldız olan güneşimizden biliyoruz ki; Dünya'da hayatın devam etmesi Güneş'ten gelen enerjiye bağlıdır. Bugün kullandığımız fosil yakıtlar (petrol, kömür) yıllar önce toprak altında depolanmış Güneş enerjileridir.

Yıldızlar radyasyon yoluyla enerji kaybettiklerinden, dengede kalabilmek için enerji üretmek durumundadırlar. Aksi takdirde zamanla mevcut enerjilerini tüketerek soğuma durumuyla karşı karşıya kalırlar ve bu durum ömürlerinin sonu olur.

Yıldızların enerji kaynağı, 20. yüzyıl başlarına kadar bilinmiyordu. Einstein'ın 1905'te yayınlanan meşhur formülü E=mc² (Einstein 1905) çözüme doğru atılan ilk adım olsa da, o günlerde henüz hiç kimsenin maddenin enerjiye nasıl çevrildiği veya çevrileceği hakkında bilgisi yoktu. Ancak, periyodik tablodaki elementlerin göreli ağırlıklarını duyarlı olarak belirleyen Aston'un (1920) sonuçlarını gören Eddington'un (1920) yorumuyla yıldızların merkezinde hidrojeni helyuma dönüştüren nükleer reaksiyonların olduğu ve reaksiyona giren çıkan arasında %0.7 oranında bir kayıp bulunduğu ve bununda Einstein'ın öngördüğü şekilde E=mc² bağıntısına göre enerjiye dönüştüğü öngörülmüştür.

Bu öngörü de yeterli olmamıştır. Yıldız içyapı denklemlerinin çözülebilmesi öncelikle nötronun keşfini beklemek zorunda kalmıştır. Nötron 1932 yılında, James Chadwick tarafından keşfedilmiştir (Chadwick 1933). Daha sonra, 1938 yılında Hans Bethe ve Von Weizsacher proton-proton zinciri reaksiyonlarından önce CNO çevrimi ile enerji üretilebileceğini göstermişlerdir (Clayton 1968). Proton-proton zincirinin enerji üretiminde daha önce iki protonun (${}_{1}^{1}H$) birleşip iki helyum (${}_{2}^{2}He$) yani du-proton yapması düşünülmüş, ancak bu reaksiyon enerji üretimine uygun görülmemiştir. Çünkü üretilen helyumun bu izotopu kararsızdır ve hemen iki protona bozulmaktadır. Ama 1939 yılında Hans Bethe proton-proton reaksiyonunda protonlardan birinin beta (β^+) bozulmasına uğradığını sonuçta enerji veren (ekzotermik) bir reaksiyon ile döteryum (${}_{1}^{2}D$) üretileceğini söylemesiyle doğru proton-proton çevriminin de yıldızlarda enerji mekanizması olduğu ortaya konmuştur (Bethe 1939).

Bugün artık biliyoruz ki, bir yıldızın içyapısını ve evrim yolunu belirleyen iki tane serbest parametre vardır. Bu parametreler yıldızın başlangıçta sahip olduğu kütlesi

ve kimyasal kompozisyonudur. Anakol öncesi evrim yıldız oluşumuyla ilgilidir. Sıfır yaş anakolu (ZAMS) yıldızın termal ve hidrostatik dengeye ulaşıp çekirdeğinde nükleer reaksiyonların enerji üretmeye başladığı andır. Yıldızın başlangıç kütlesi ve kimyasal yapısı, sadece anakol evrimi boyunca değil anakol sonrası evrim aşamalarında da yıldızın yapısını belirler. Sonuçta yıldızın yarıçapı, ışıma gücü ve etkin sıcaklığı evrim modellerinin belirlediği parametrelerdir ve yıldız çekirdeğindeki nükleer yakıtın zamanla değişimine bağlı olarak içyapı denklemlerinin eşzamanlı çözümleri ile elde edilirler.

Teorik yıldız içyapı ve evrim modellerini test etmek ancak duyarlı gözlemlerle belirlenen kütle (M), yarıçap (R), ve etkin sıcaklık (T_{eff}) ölçümlerine bağlıdır. Astrofizik teorilerini test etmekte kullanılan en duyarlı gözlemsel parametreler ayrık örten çift çizgili tayfsal çift (SB2) yıldız gözlemlerinden gelmektedir (Eker vd 2014).

Bu tez çalışmasında, Eker vd (2014) tarafından yayınlanan Ayrık Örten Çift Çizgili Tayfsal Çift Yıldızlardan Toplanmış Yıldız Parametreleri Kataloğundaki gözlemsel parametreler kullanılmıştır. Bu parametreler yardımıyla, anakol yıldızları için Stefan-Boltzmann yasasına dayalı etkin sıcaklık belirleme yöntemi açıklanmış ve kataloktaki yıldızlara uygulanmıştır. Sonuçlar, literatürdeki sıcaklıklarla karşılaştırılarak açıklanan yöntemin üstünlükleri belirlenmiştir.

2. KURAMSAL BİLGİLER VE KAYNAK TARAMALARI

2.1. Etkin Sıcaklık

Sıcaklık, mikro âlemdeki parçacıkların ortalama kinetik enerjilerini gösteren ancak, makro âlemde ölçülebilen bir büyüklüktür. İstatistik fizik sıcaklığı, parçacıkların ortalama kinetik enerjilerine bağlı olarak aşağıdaki formülasyon ile tarif eder:

$$\frac{1}{2}m\overline{v^2} = \frac{3}{2}kT.$$
 (2.1)

Gazın aynı tür parçaçıklardan oluştuğunu düşünürsek, bu denklemde m tek bir parçacığın kütlesini, $\overline{v^2}$ parçacıkların hızlarının karelerinin ortalamasını, k Boltzman sabitini, T taneciklerin oluşturduğu gazın sıcaklığını ifade etmektedir. Bu formül ile hesaplanan sıcaklığa *kinetik sıcaklık* adı verilir.

Yıldızları da birer cisim kabul edebiliriz. Ancak, yıldızlar bildiğimiz cisimlerden çok daha büyüktürler. Gazların ve cisimlerin sıcaklığı olduğu gibi yıldızların da sıcaklığı vardır. Ancak bir grup molekül için tanımlanan sıcaklık, yakınındaki başka grup molekülün sıcaklığından farklı olabilir. İki grubu oluşturan parçacıklar termal olarak etkileşiyor ise sıcak olandan soğuk olana enerji akışı olur. Bu akış termodinamik denge durumunda sona erer. Yani, her iki grup molekül, veya iki cisim, artık aynı sıcaklığa ulaşmışlardır. Kara cisim üstüne düşen tüm dalga boylarındaki ışığı tamamen soğuran ideal bir kavram olarak tarif edilmiştir. Kara cisim termodinamik denge durumunda soğurduğu radyasyon enerjisi kadar enerjiyi radyasyon olarak salması gerekmektedir. Aksi takdirde kara cismin sıcaklığı devamlı artmak veya azalmak durumundadır. Kara cismin tüm dalga boylarında yaydığı ışınım Planck fonksiyonu ile ifade edilmektedir.

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1}$$
(2.2)

Burada $B_v(T)$ kara cismin yüzeyinden uzaya dağılan ışık şiddeti, h Planck sabiti, c ışık hızı, k Boltzmann sabiti, v ışınımın frekansı, T Kelvin biriminde kara cismin sıcaklığıdır.

Kara cisim dış ortamla termodinamik denge içinde tarif edildiği gibi kendi içinde de termodinamik denge şartını sağlar. Yani kara cismi bir cisim gibi hayal ettiğimizde, cismin merkezinde, yüzeyinde ve her yerinde sıcaklıklar T değerini almaktadır. Bu durumda da kara cismin içindeki herhangi bir noktadan diğerine net enerji transferi söz konusu olamaz. Kara cismin sıcaklığını muhafaza etmesi için yaydığı enerji kadar enerjiyi soğurması gerekir. Aksi takdirde termodinamik denge şartı sağlanmaz.

Yıldızlar iki önemli sebepten dolayı kara cisimden farklıdır.

1) Yıldızlar farklı fotosfer derinliklerindeki sıcaklıklarına göre tüm dalga boylarında uzaya radyasyon yayar. Ancak kaybettiği enerjinin karşılığını geri alamaz.

2) Yıldızların merkezlerindeki sıcaklıklar, yüzeylerindeki sıcaklıklardan çok büyüktür.

Yıldızdan uzaya kaçan radyasyon enerjisi (fotonlar) fotosferin farklı bölgelerinden çıkmaktadır. Yerel termodinamik denge durumunda (LTE) fotosferin belli bölgesinden çıkan fotonlar fotosferin o bölgedeki sıcaklığına bağlı olarak yukarıda verdiğimiz denklem 2.2 ile ifade edilen frekans dağılımını gösterirler. Fotosferin derinlerinden kaçan fotonlar daha sıcak, fotosferin üst tabakalarından kaçanlar ise göreli olarak daha soğuk ortamdan gelen fotonlardır. Bu durumda yıldızın fotosferinden uzaya kaçan radyasyonun tamamını temsil edecek bir sıcaklık tarif etmemiz gerekmektedir. Bu sıcaklık yıldızın etkin sıcaklığıdır.

Bu sıcaklık tüm dalga boylarını temsil edeceği için denklem 2.2'nin tüm dalga boylarında integre edilmesi ile yıldızın birim yüzeyinden birim zamanda yayılan tüm dalga boylarındaki radyasyonun sıcaklığa bağımlılığı ortaya çıkar:

$$\int_0^\infty B_\nu(T) \, d\nu = \frac{\sigma T^4}{\pi}.\tag{2.3}$$

Denklem 2.3'teki entegrasyon sonucu bize kara cismin birim yüzeyinden tüm uzaya tüm dalga boylarında yayılan enerjinin (kara cisim yüzey akısı = σT^4) sıcaklığın dördüncü kuvvetiyle orantılı olduğunu söyler. Formüldeki σ =5.67 x 10⁻⁸Wm⁻²K⁻⁴ Stefan-Boltzmann sabiti olarak bilinmektedir. Akının π 'ye bölünmesi sol tarafın intensiteye eşit olduğunu ifade eder. σT^4 birim zamanda birim yüzeyden tüm dalga boylarında tüm uzaya kaçan enerji (akı) ise, yıldız kadar büyük bir kara cisim veya yıldızı bir kara cisim gibi düşünürsek ışınım veya ışıtma gücü (lüminosite) kavramını üretmiş oluruz:

$$L = 4\pi R^2 \sigma T_{eff}^4. \tag{2.4}$$

Burada L yıldızın ışınım gücünü, R ise yarıçapını ifade etmektedir. Böylece, ışınım gücü yıldızdan tüm uzaya birim zamanda tüm dalga boylarında kaçan radyasyon enerjisini (ışıma gücünü) ifade eder. Bu sayede yıldız yüzeyinden birim zamanda tüm dalga boylarında kaçan enerjiyi temsil eden tek bir sıcaklık (etkin sıcaklık- T_{eff}) tarif edilmektedir.

Bu durumda etkin sıcaklık (T_{eff}) bir yıldızı kara cisim ile özdeşleştiren bir sıcaklıktır. Yıldızın birim zamanda tüm dalga boylarındaki ışınımına eşit miktarda ışınım yayan kara cismin sıcaklığı yıldız için etkin sıcaklık olarak tarif edilmiştir. Ancak, yıldızın etkin sıcaklığını belirlemek için tüm dalga boylarında (veya tüm frekanslarda) gözlem yapmaya gerek yoktur. Bu iş için belli başlı fotometrik sistemler geliştirilmiştir.

Uygun seçilmiş en az iki farklı filtre ile yapılan gözlemlerden etkin sıcaklık belirlemek mümkündür. Ancak yıldızın tüm dalga boylarındaki enerji dağılımı kara

cisimden biraz farklı olduğu için bu yöntem ile belirlenen sıcaklıklara *renk sıcaklığı* adı verilir.

Yıldızın etkin sıcaklığını tek bir filtre ile tahmin etmek de mümkündür. Bu yöntem ile bulunan sıcaklığa parlaklık sıcaklığı adı verilir. Bu yöntemin çalışması 2.2 formülünde $B_{\nu}(T)$ 'nin tek filtre ile yapılan gözlemlerden belirlenmesine bağlıdır. Renk sıcaklığı ve parlaklık sıcaklığı belirleme yöntemlerinin dayanak noktaları, yıldızın ışıma gücünün dalga boyu (veya frekans) dağılımının Planck fonksiyonu (Denklem 2.2) ile temsil edilebilmesidir.

Yıldız sıcaklığını belirlemede kullanılan yöntemler renk sıcaklığı ve parlaklık sıcaklığı ile sınırlı değildir. Yıldız tayfları kullanılarak, fotosferdeki belli başlı elementlere ait tayf çizgileri ve Boltzmann yasası ile hesaplanan uyartılma sıcaklıkları, ayrıca aynı elementin farklı iyonlaşma çizgileri kullanılarak Saha denkleminden hesaplanan iyonlaşma sıcaklıkları sıcaklık belirleme yöntemleri arasında olduğu bilinmektedir.

Şimdiye kadar sözü edilen kinetik, renk, parlaklık, uyartılma ve iyonlaşma sıcaklıkları aynı yıldız için birbirinden farklı olabilir. Etkin sıcaklıkta dâhil bütün bu sıcaklıkların birbirine eşit olması termodinamik denge durumunda mümkündür. Ayrıca farklı gözlem yöntemleri ile ölçülen yıldız sıcaklıklarının etkin sıcaklıkla aynı olması, gözlem ve hesaplarda kullanılan kalibrasyonların doğru olmasına da bağlıdır.

2.2. Kütle-Parlaklık Bağıntısı (MLR)

Teorik astrofizikte yıldız içyapı denklemlerinin 1940'lardan sonra çözülmesiyle anlaşılmıştır ki, yıldızın kimyasal kompozisyonun bilinmesi şartıyla, kütle yıldızların diğer tüm parametrelerini belirleyen tek parametredir. Yani yıldızların çapları, sıcaklıkları, ışıtmaları, anakol yaşamları, evrim yolları ve içyapıyla ilgili diğer tüm özellikleri kütleye bağlıdır.

Doğanın bir yasası olarak karşımıza çıkan, kütle-ışıtma gücü bağıntısı (MLR) teorik hesaplardan çok seneler önce 20. yüzyılın başlarında birbirlerinden habersiz olarak Hertzsprung (1923) ve Russell vd (1923) tarafından empirik olarak yani gözlem sonuçlarına dayalı olarak keşfedilmiştir. Şekil 2.1'de Hertzsprung (1923) tarafından önerilen kütle-parlaklık bağıntısı grafik olarak gösterilmiştir.

Yatay eksen logaritmik olarak yıldızların Güneş biriminde kütlesini, dikey eksen yıldızların mutlak parlaklığını göstermektedir. Kadir eşeli arttıkça, yıldız daha sönük anlamına geldiğinden, düşey eksende daha küçük sayı daha parlak anlamına gelir. Sonuçta, Şekil 2.1'de kütlenin büyümesiyle, yıldız mutlak parlaklıklarının arttığı görülmektedir. Her bir yıldız nokta ile belirtilmiştir. Şekilde iki nokta arasını birleştiren çizgiler, çift yıldız bileşenlerini ifade etmektedir. Şekilde içi boş daire Güneş'i göstermektedir.

Şekil 2.1. Hertzsprung (1923) çalışmasına göre Kütle- Mutlak Parlaklık grafiği

Görüldüğü gibi, Şekil 2.1'in hazırlanması için yıldız kütlelerinin ve mutlak parlaklıklarının bilinmesi gerekmektedir. Astrofizikte en duyarlı kütle ölçümü, çift yıldız gözlemlerinden gelmektedir. Çift yıldızın dolanma periyodu (P) ve iki bileşen arasındaki uzaklık (a) belli ise,

$$\frac{a^3}{P^2} = \frac{G}{4\pi^2} (M_1 + M_2).$$
(2.5)

Şeklinde ifade edilen Kepler'in üçüncü yasası ile sistemin toplam kütlesi hesaplanabilmektedir. Sistem çift çizgili tayfsal çift yıldız ise (SB2), ölçülen yıldız tayflarından her bir bileşenin kütle merkezine göre Doppler kaymasının tespit edilmesiyle kütlelerin göreli oranları da bilinebilmektedir. Sistem görsel çift yıldız sistemi ise, gözlemlerden her bir bileşenin kütle merkezine olan uzaklığı hesaplanabilir. Kütle merkezine uzaklıkların oranından bileşen yıldızların kütle oranı bulunur. Böylece bileşenlerin ayrı ayrı kütleleri hesaplanabilir.

Bir yıldızın mutlak parlaklığının bilinmesi, yıldızın uzaklığının veya paralaksının bilinmesi anlamına gelir. Görsel çift yıldızların açısal olarak ölçülen ayrıklığından, sistemin uzaklığı belli ise, iki yıldızın arasındaki gerçek uzaklık, yani a değeri hesaplanabilir.

20. yüzyıl başlarında uzaklığı ve ayrı ayrı bileşenlerinin kütlesi hesaplanabilen çift yıldızların sayısı az olduğu için, Şekil 2.1 üstündeki yıldız sayısı sınırlıdır. Hertzsprung (1923) bu çalışma için sadece 14 tane görsel çift yıldızın verisini kullanabilmiştir.

Russell vd (1923) tarafından yapılan çalışmada ise farklı olarak 327 görsel çiftin hipotetik paralaksı kullanılarak, belirli tayf türü aralığındaki yıldızların mutlak parlaklıkları hesaplanmıştır. Hesaplanan bu mutlak parlaklıklar ile yıldızların ortalama kütlesi kıyaslanmıştır. Çizelge 2.1'de görüldüğü gibi dinamik paralakstan hesaplanan mutlak parlaklığın (M₁) sayısal değerinde artış varken (dördüncü kolon), ortalama kütle değeri azalmaktadır (son kolon). Böylece Russell vd (1923) de yıldızların kütlesi ile mutlak parlaklıkları arasında bir bağıntının varlığına işaret etmektedirler.

Çizelge	2.1.	Russell	vd	(1923)	tarafından	hazırlanmış,	mutlak	parlaklık	ve	kütle
		arasında	aki b	ağıntıyı	ortaya koya	an veriler				

							Mean
Spec.	No.	Weight	M_1	M1-M	s/h1	Res.	Mass
O8-B2	. 10	7	1.2	+1.31	0.54	-0.02	6.2
B3-B8	. 8	51/2	+0.5	+1.24	0.56	— .07	5.6
B ₂ -A ₁	. 35	31	+1.2	+0.61	0.75	+ .09	2.4
gGgM	. 28	19	+1.2	+0.67	0.73	+ .07	2.5
gFgG	. 31	251/2	+1.6	+0.96	0.64	.04	3.8
A ₂ -A ₄	. 29	30	+2.0	+0.55	0.78	+ .07	2.1
A5-A9	. 35	361/2	+2.5	+0.50	0.80	+ .06	2.0
F ₀ -F ₃	. 17	18	+3.2	+0.69	0.73	02	2.6
F₄-F₅	. 24	291/2	+3.3	+0.40	0.83	+ .07	1.7
dFs-dFs	. 28	29	+4.4	+0.68	0.73	.08	2.5
dF ₂ -dG ₀	. 25	31	+4.3	+0.39	0.84	+ .03	1.7
dG₁-dG₅	. 24	251/2	+5.2	+0.63	0.75	09	2.4
$dG_6-dK_1 \dots$. 25	26	+5.6	+0.56	0.77	09	2.2
dK2-dK6	. 21	24	+6.5	+0.25	0.89	01	1.4
dK7-dM6	. 7	71/2	+9.2	+0.01	1.00	— .02	1.0
dA-dF	. 2	3	+10.8	-0.32	1.16	+ .07	0.6

Russell vd (1923) ve Hertzsprung'un (1923) çalışmalarında sadece görsel çift yıldızlar kullanılmıştır. Kütle - parlaklık ilişkisi için örten çift yıldızlar daha sonra kullanılmaya başlanmıştır. Örneğin Eddington'un bu konudaki çalışmalarına bakıldığında, Eddington (1926) tarafından yalnızca 13 örten çift ile birlikte 29 görsel çift ve 5 Cepheid yıldızının kullanıldığını görüyoruz. Aynı yıllara yakın bir başka çalışmada ise, 31 tanesi çift çizgili tayfsal çift yıldız (SB2) ve 17 tanesi tek çizgili tayfsal çift yıldız (SB1) olmak üzere toplamda 48 tane aynı zamanda tutulma gösteren tutulmalı çift yıldızlar Mclaughlin (1927) tarafından kullanılmıştır. Mclaughlin bu yıldızların görünen (visual) mutlak parlaklıklarını bolometrik mutlak parlaklıklara çevirmiş ve bunları kütlenin fonksiyonu olarak kütle-bolometrik parlaklık diyagramında

Şekil 2.2. Mclaughlin'in (1927) kütleye karşı mutlak (bolometrik) parlaklık grafiği

işaretlemiştir. Mclaughlin'in (1927) verileri ve bir eğri ile gösterilen kütle parlaklık bağıntısı Şekil 2.2'de gösterilmiştir.

Kütle-ışınım gücü ile ilgili çalışmalar daha kaliteli gözlem ve artan veri miktarı ile devam etmiş birçok araştırmacı yıldız kütlesi ile parlaklığı arasındaki bağıntıları yeni gözlemler ile zenginleştirmişlerdir. Bunlardan bazıları şunlardır: Kuiper (1938), Petrie (1950a,b), Strand ve Hall (1954), Eggen (1956), Cester vd (1983), Henry ve McCarthy (1993). Özellikle duyarlı yıldız parametrelerinin gözlemlerden elde edilmesinin önemine dikkat çeken Popper'in (1967,1980) çalışmaları bağıntının daha da geliştirilmesinde önemli rol oynamıştır.

2.3. Kütle-Yarıçap Bağıntısı (MRR)

Yıldızlar yaklaşık olarak, ömürlerinin %90'ını H-R diyagramında anakol olarak tanımlanan bölgede geçirirler (Clayton 1968). Sol üst taraftan, yani sıcak OB türü yıldızlar bölgesinden, sol alt köşeye doğru, yani soğuk M türü cüce yıldızlar bölgesine doğru uzanan kısmen dar bölge için hem teorik hem gözlemsel sonuçlarla ortaya konan kütle parlaklık bağıntısı (MLR) bazı astronomlara örnek oldu ve onları kütle-yarıçap bağıntısını (MRR) gözlemsel olarak araştırmaya sevk etti.

Şekil 2.3. Gimenez ve Zamorano'nun (1985) kütle-yarıçap bağıntısı

Nasıl ki ışınım gücü (L), dolayısıyla yıldızın mutlak parlaklığı, teorik olarak kütleye ve yıldızın kimyasal kompozisyonuna bağlıdır, aynı düşünce ile yıldızın yarıçapı da kütleye bağlı olması gerekir. Yarıçap (R), ışınım gücü (L) gibi yıldız içyapı denklemlerinden elde edilen parametredir. Kütle-parlaklık bağıntısında olduğu gibi, anakol yıldızları için kütle ve yarıçap arasında da empirik bir bağıntının varlığından söz etmek mümkün olabilir.

Ancak, anakol yıldızlarının kütle-yarıçap ilişkisini (MRR) gösteren gözlemsel araştırmalar 20. yüzyılın ortalarından sonra literatürde görülmeye başlanmıştır. İlk çalışmaları yayınlayanların arasında McCrea (1950); Plaut (1953); Huang ve Struve (1956); Lacy (1977, 1979); Kopal (1978) ve Patterson (1984) gibi araştırmacıların çalışmaları göze çarpmaktadır. Gimenez ve Zamorano'nun (1985) MRR bağıntısının oluşturulmasında 5 tane ayrıcalıklı yani bileşenleri aynı zamanda görsel çift yıldız olan tayfsal çift yıldız, 14 tane görsel çift yıldız ve 12 tane OB türü çift yıldızın gözlemlerinden elde edilen kütleler ve yarıçaplar kullanılmıştır. Gimenez ve Zamorano'nun (1985) kütle yarıçap bağıntısı Şekil 2.3'te görülmektedir.

Zamanına kadar en duyarlı ölçümleri toplayan Harmanec (1988) 31 ayrık, 7 yarı ayrık ve 9 değen ve değmeye yakın (near-contact) çift yıldız gözlemlerinden elde edilen kütle, yarıçap, bolometrik parlaklık ve sıcaklıkları kullanıp, temel yıldız parametreleri (kütle, yarıçap ve bolometrik parlaklık) ile yıldız etkin sıcaklıkları arasındaki bağıntıları incelemiştir. Bundan sonra gelen birçok çalışmada, örneğin Demircan ve Kahraman (1991), tarafından kütle-yarıçap (MRR), kütle-parlaklık (MLR) bağıntıları birlikte araştırılmıştır. Ancak, kütlesi ve yarıçapı en duyarlı elde edilen ayrık örten tayfsal çift yıldızların sayısı güvenilir bir istatistiğe yetmediği için MRR ve MLR bağıntılarının araştırılmasında yarı değen ve OB türü değen, ve değmeye yakın (near contact) çift yıldızların gözlemleri de çalışmalara dahil edilmiştir.

Şüphesiz, duyarlı, güvenilir MLR ve MRR bağıntısı elde etmek için, duyarlı yapılmış güvenilir gözlemlerden elde edilmiş yıldız parametrelerine ihtiyaç vardır. En güvenilir yıldız parametreleri, ayrık örten aynı zamanda çift çizgili tayfsal çift yıldızlardan gelmektedir. Hem örten değişen ışık eğrisi ve hem SB2 türü dikine hız eğrisi olan bu sistemlerin, dikine hız ve ışık eğrisinin eş zamanlı çözümleri günümüz teknolojisinde en güvenilir kütle ve yarıçap ölçümlerini sağlamaktadır. SB2 türü, tayfsal ve örten değişen yıldızların çalışmalarına daha fazla ağırlık veren son dönem çalışmalarının ayrıcalıklı bir önemi vardır. Bu nedenle etkin sıcaklık duyarlılık probleminin daha iyi anlaşılması için son dönem çalışmalarına ayrı bir bölüm ayırmak anlamlı olacaktır.

2.4. MLR ve MRR İle İlgili Son Gelişmeler

Ayrık örten, SB2 türü tayfsal çift yıldızların ışık ve dikine hız eğrilerinin eş zamanlı çözümlerinden elde edilmiş, kütlesi ve yarıçap %2 duyarlılık sınırları içinde kalan astrofiziksel öneme sahip yıldız parametrelerini Andersen (1991) toplamıştır. Andersen'in (1991) listesinde 90 yıldız (45 ayrık çift) vardır. Henry ve McCarthy (1993) yakın kızılötesi J (1.25µm), H (1.6µm) ve K (2.2µm) dalgaboylarında 0.08 ile 1 M_{\odot} kütle aralığındaki yıldızların MLR bağıntısını incelemek için Dördüncü Görsel Çift Yıldızlar kataloğundan (Worley ve Heintz 1983) seçilen bileşenleri anakolda olan 37 tane görsel çift yıldızın kütlesini kullandılar. Kütle üst limiti 2 M_{\odot} 'e kadar yükseltilen görsel dalga boylarındaki MLR bağıntısını araştırmak için Henry ve McCarthy (1993) visual/speckle çift yıldız verilerine, Andersen (1991) ve Popper'dan (1980) alınan 24 çift yıldızın verilerini de eklediler. Gorda ve Svechnikov (1998) duyarlılığı %2-3'den daha iyi olan yıldız yarıçapları ve kütlelerini, bileşenleri anakolda olan 112 tutulmalı çift yıldızın mutlak parametreleri ile birlikte listelediler. Bunları kütle mutlak parlaklık ve kütle yarıçap bağıntılarını incelemek için kullandılar.

İbanoğlu vd (2006) 74 ayrık ve 61 yarı ayrık algol türü çift yıldızlarının kütle (M), yarıçap (R) ve ışınım gücü (L) olmak üzere M-R, M-T_{eff}, R-T_{eff} ve M-L diyagramlarını incelediler. Malkov (2007) klasik MLR bağıntısı başta olmak üzere kütle yarıçap, kütle etkin sıcaklık bağıntılarını ve ters bağıntılarının matematiksel ifadelerini 215 tane anakol ayrık örten çift yıldız (114 çift yıldız) verilerinden çıkardı. Son zamanlarda, Torres vd (2010) duyarlı temel çift yıldız kütle ve yarıçap veri tabanını güncellediler. Gafeira vd (2012) F, G ve K türü anakol yıldızlarındaki kütle parlaklık bağıntısına (MLR) etki eden yaş ve metal bolluğu etkisini araştırmak için Torres vd'nin (2010) listesinden seçtiği 13 sistemi kullandılar.

	Örnek	Duyarlılık	Kütle-Parlaklık	Kütle- Yarıçap	Aralık
Eker vd (2015)	268 yıldız (tüm bileşenleri çift çizgili ayrık örten çift yıldızlar) homojenleştirilmiş veri	M ve R \leq 3% L \leq 30%	Dört kırık çizgi, Doğrusal ve ikinci derece	-	0.2 <m m<sub="">0<32 0.23<r r<sub="">0<9.36</r></m>
Torres vd (2010)	190 yıldız (94 tane örten +α Cen) homojenleştirilmiş veri	M ve R \leq 3%	logM-logL diyagramı	logM-logR diyagramı	0.21 <m m<sub="">0<27.27 0.24<r r<sub="">0<9.35</r></m>
Malkov (2007)	215 yıldız (114 ayrık örten) yayınlanmış veriler	M ve R $\leq 10\%$	İkinci Derece σ=0.12	Üçüncü derece σ=0.08	0.63 <m m<sub="">0<31.6 0.63<r r<sub="">0<25.1</r></m>
Henry (2004)	188 yıldız (139 ayrık anakol yıldızı, 49 görsel çift) yayınlanmış veriler	M ve R $\leq 15\%$	Kütle-Mv	-	0.07 <m mo<33<="" td=""></m>
Andersen (1991)	90 yıldız (45 ayrık örten çift) yayınlanmış değerler	M ve R \leq 2%	logM-logL diyagramı	-	0.58 <m m<sub="">0<22.90 0.61<r r<sub="">0<9.35</r></m>
Demircan ve Kahraman (1991)	140 yıldız (70 örten çift değen, yarı değen ve ayrık)	-	Kütle-M _{bol} Doğrusal, İkinci ve Üçüncü derece	Liner, Kuadratik, Kübik	0.63 <m mo<18.1<br="">0.15<r ro<9<="" td=""></r></m>

Çizelge 2.2. Kütle – Parlaklık – Yarıçap arasındaki bağıntılar hakkında son çeyrek yüzyıl içindeki çalışmaların karşılaştırılması

Güncellediği MLR bağıntılarını karşılaştırmak üzere, Eker vd (2015) son cevrek yüzyıl içinde MLR ve MRR ile ilgili yapılan çalışmaları bir Cizelge ile özetlediler. Eker vd'nin (2015) derlediği veriler Çizelge 2.2'de gösterilmiştir. Çizelgede açıkça görülmektedir ki, ayrık örten çift çizgili (SB2) tayfsal çift yıldızların katkısı zamanla artmaktadır. Bu Çizelgeye göre, Demircan ve Kahraman'ın (1991) listesindeki 140 çift yıldız (bunlardan 70 tanesi tutulma gösteren sistem) sayısı bir sonraki çalışma Andersen (1991) de 90'a düşmektedir. Bunun nedeni Andersen (1991) duyarlı kabul etmediği birçok sistemi listesinden çıkarmıştır. Böylelikle Andersen (1991) yarı ayrık ve değen sistemleri doğrudan elemiş ve avrık sistemlerden toplanan %3 ve daha ivi duvarlılığı olan kütle ve yarıçapları listelemiştir. Henry (2004) ile kütle parlaklık bağıntısında kullanılan yıldız sayısı, bileşenler ayrı ayrı sayılırsa 188'e ulaşmıştır. Duyarlı parametresi olan yıldız sayısı Malkov (2007) ve Torres vd (2010) ile daha da artmıştır. Eker vd (2015) MLR bağıntılarının matematiksel ifadesini çıkarırken 268 tane her biri bir çift yıldız üyesi olarak bilinen en duyarlı anakol yıldızlarının verilerini kullanmışlardır. Kütle ve yarıçapa konan %3'lük duyarlılık sınırı yanında, gözlemsel olarak belirlenen ışınım gücünün de %30'dan daha duyarlı olmasına dikkat etmişlerdir. Eker vd (2015) 268 yıldızı aynı ekibin derlediği 257 tane ayrık örten çift yıldız üyesi 514 tane yıldızın parametrelerini veren Samanyolu'ndaki Ayrık Örten Çift Çizgili Tayfsal Çift Yıldızlardan Toplanmış Yıldız Parametreleri Kataloğu'ndan seçmişlerdir.

Her biri bir çift yıldız üyesi olan ve çoğunluğu anakol yıldızlarından ibaret, güncellenmiş ve homojen hale getirilmiş, 514 yıldızın parametrelerini barındıran Eker vd'nin (2014) hazırladığı aynı katalok, bu tez çalışmasında veri kaynağı olarak kullanılmıştır.

2.5. Etkin Sıcaklık Duyarlılık Problemi

Son birkaç on yıl içerisinde örten ayrık SB2 türü tayfsal çift yıldızların dikine hız ve ışık eğrilerinin eş zamanlı çözümünden astrofiziksel öneme sahip olacak derecede kütlesi ve yarıçapı çok duyarlı (%3'den daha iyi) belirlenmiş yıldızların sayısı bir hayli artmış yüzlerle ifade edilmeye başlanmıştır. Bu yıldızların kütle yarıçap değerlerindeki bu duyarlılık, anakol evrim aşamalarını gösterecek derecede olduğu Andersen (1991), Torres vd (2010), Eker vd (2014, 2015) tarafından açıkça beyan edilmektedir.

Gözlemlerle tespit edilmiş yıldız etkin sıcaklıkları için, özellikle çift yıldız bilesenlerinin etkin sıcaklıklarının belirlenmesinde, aynı duyarlılık düzeyine ulaşıldığı söylenemez. Yıldız etkin sıcaklıklarının belirlenmesinde genellikle kullanılan metotlar şunlardır: Öz (kızarmamış) renklerden, atmosfer modeli yaparak veya atmosfer modeli ile üretilen sentetik tayfın gözlenen tayfın belli bölgelerine veya belli başlı çizgilerine eşleştirerek (fit ederek) uygun hale getirilmesiyle veya gözlenen fotosfer çizgilerinin doğrudan çizgi derinlik oranlarından. Bu metotlar birçok durumda çift yıldız sistemleri için pratik olmaktan uzaktır veya doğru sonuç vermemektedir. Çünkü, gözlemlerle elde edilen renkler sistemin gözlenen rengini temsil eder, her bir bileşenin öz rengini doğrudan vermez. Daha önceki birçok çalışmada, özellikle örten değişen çift yıldızların ışık eğrisi analizlerinde baş yıldızın sıcaklığı kabaca tahmin edilmiş tayf türlerinden veya kızıllaşmadan arındırılmamış UBVRI fotometrisi ile belirlenmiş sistem için gözlenen renklerden belirlenmektedir (Ren vd 2011, Rozyczka vd 2013, Li ve Qian 2013, Elkhateep vd 2014). Daha sönük yıldızları gözleyebilmek için daha düşük çözünürlüklü tayflar tercih edilmektedir. Oysa düşük çözünürlüklü tayflar ile belirlenen tayf türlerinde hata olasılığı büyüktür. Bütün bu olumsuzluklardan dolayı Helminiak vd (2009) ve Zasche (2011) gibi yazarlar örten değişen çift yıldızların ışık eğrisi çözümlerinde tek tek yıldızların sıcaklıklarını değil de, bileşenlerin sıcaklık oranlarını belirlemeyi tercih etmektedirler.

Örten değişen yıldızların ışık eğrisi çözümleri genellikle bileşenlerden birinin sıcaklığının bilinmesini ve ışık eğrisi çözüm programına girdi parametresi olarak girilmesini gerektirmektedir. Ancak bundan sonra, kullanılan programın ürettiği sentetik ışık eğrisini gözlenen tutulmalı ışık eğrisine fit ederek, yoldaş yıldızın sıcaklığı hesaplanmaktadır. Bu türden ışık eğrisi çözümlerinde önerilen sıcaklık hataları içsel sıcaklık hataları (internal temperatures errors) ve bu yüzden gerçekçi değildirler. Gerçekçi hatalara oranla daha küçüktürler. Böylesi ışık eğrisi çözümlerinden sadece bir bileşen için içsel hata değeri çıksa da aynı sıcaklık hatasını her iki bileşen için eşit kabul edenler vardır (Ribas vd 1999, Clausen vd 2010, Kraus vd 2011). Andersen'in (1991) listesinde 45 ayrı örten çift yıldızdan 31 sistem için verilen sıcaklık hataları her iki bileşen için aynı kabul edilmiştir. Benzer şekilde, Torres vd (2010) listesindeki 95 çift yıldızın bileşenlerinin sıcaklık hataları da aynı olarak listelenmiştir.

Anakol yıldızları için MLR bağıntısı kullanılarak, kütlesi ve yarıçapı bilinen bir anakol yıldızının etkin sıcaklığını hesaplamak mümkündür. Metodun işleyişindeki adımlar şu şekildedir: Önce MLR bağıntısı kullanılarak yıldızın kütlesinden, ışınım gücüne geçilir. Yıldızın yarıçapı da biliniyorsa ve $L = 4\pi R^2 \sigma T_{eff}^4$ formülü kullanılarak T_{eff} değerini, yani bu yıldızın etkin sıcaklığı hesaplanabilir. Bu klasik yöntem yeni bir metot değildir. Eker vd (2015) bu klasik yöntemi, kütlesi ve yarıçapı en duyarlı 286 tane anakol yıldızının verilerine dayalı olarak güncellenmiş MLR bağıntıları ile tekrar incelemiştir. Güncellenmiş MLR bağıntısı ile duyarlı M ve R değerlerinin getirdiği bir başka avantajı da vardır. Böylelikle etkin sıcaklıklardaki standart hatanın da hesaplanabilmesi mümkün olmuştur. Standart hatanın kaynağı, yıldızların M-L diyagramındaki saçılmasıdır. Saçılmaya etki eden sadece gözlemsel hatalar değildir. Yıldızların M-L diyagramında saçılmasına sebep olduğu için yıldızların evrimsel durumu (yaşı) ve kimyasal kompozisyonlarındaki farklılıklar da hata olarak karşımıza çıkmaktadır.

Eker vd (2015) MLR kullanarak bir yıldızın etkin sıcaklık ve standart hatasını hesaplamanın klasik yöntemini detaylarıyla anlatmaktadır. Yöntem 286 tane kalibrasyon yıldızları dahil, 371 tane anakol yıldızına uygulanmış, bu yıldızların etkin sıcaklıkları ve standart hataları hesaplanmıştır. Ayrıca, bu sıcaklıklar ve hatalar, söz konusu yıldızların ısık eğrisi cözümlerinden gelen sıcaklık ve hataları ile karşılaştırılmıştır. Açıkça görülmüştür ki, klasik yöntem ve mevcut M ve R değerleri ile elde edilen etkin sıcaklıklar yayınlanmış gözlemsel sıcaklıklar ile uyum içindedir, ancak hesaplanan sıcaklıkların hataları, yayınlanmış sıcaklıkların hatalarından yaklasık üç misli büyüktür. Duyarlılık sınırı %6'ya kadar olan M ve R değerlerinden, klasik metot ile hesaplanan etkin sıcaklıkların standart hatası %8 duyarlılık limiti içindedir. Malesef yöntemin hesaplayabildiği en duyarlı etkin sıcaklık %6'dan daha iyi olmaması bir problem olarak karşımızda durmaktadır. Yani, gözlemsel yarıçaptaki hata %1 ve daha duyarlı sistemler için bile hesaplanan etkin sıcaklıklar %6'dan daha iyi değildir. Yaklaşık %6 hata, Güneş ve Güneş benzeri yıldızlar için 300-400 °K mutlak hataya karşılık gelmektedir. Bu duyarlılık, diğer gözlemsel metotlarla elde edilen sıcaklık hataları yanında tercih edilmeyecek kadar büyüktür. Günümüzde kabul edilebilir sıcaklık hatası %1-2 mertebesindedir (Masana vd 2006).

Bu tez çalışmasında klasik yöntemle hesaplanan etkin sıcaklıklardaki yıldız evrimi ve kimyasal kompozisyonun sebep olduğu yanlılık probleminin çözümü önerilmektedir. Homojen sıkıştırma yöntemi (HYS) adını verdiğimiz yeni bir yöntem ile klasik yöntem sıcaklıklarının çok daha duyarlı hale getirilebileceği gösterilmiştir ve tez çalışması için kullanılan M ve R değeri olan Eker vd'nin (2014) Samanyolundaki Ayrık Örten Çift Çizgili Tayfsal Çift Yıldızlardan Toplanmış Yıldız Parametreleri Kataloğu'ndan seçilen tüm anakol yıldızlarına (450 tane) uygulanmıştır.

3. MATERYAL VE ETKİN SICAKLIK HESAPLAMA YÖNTEMLERİ

3.1. Materyal

Klasik yöntemle Stefan-Boltzmann yasası çerçevesinde etkin sıcaklık belirlenmesindeki duyarlılık problemini çözmeyi hedefleyen bu tez çalışması için gerekli olan temel malzeme, fiziksel parametreleri yeterince duyarlı ölçülmüş anakol yıldızlarıdır. Anakol yıldızlarının nereden, hangi kriterler ile seçildiğine geçmeden önce, bu tez çalışması için gerekli olan bir başka temel bilgi kaynağı teorik yıldız evrimi modellerinin incelenmesi ve bu tez çalışmasında kullanılan yıldızların parametre aralığını kaplayan uygun modellerin seçilmesi gerekmektedir.

3.1.1. Teorik yıldız evrim modellerinin seçimi

Yıldız evrimi ile ilgili olan ve gözlemlerle belirlenebilen parametreler [kütle, yarıçap, etkin sıcaklık, kimyasal kompozisyon, yüzey çekim ivmesi, ışınım gücü] arasında en duyarlı ölçülebilen iki parametre yıldızın kütlesi ve yarıçapıdır. Bu yüzden, anakol yıldızlarının seçimi kütle-yarıçap (log M – log R) diyagramı üstünden yapılması en doğru bir yaklaşımdır. log M – log R diyagramı üstünde anakol bandı içinde kalan anakol yıldızlarının seçimi yapılırken sınır olarak Bressan vd (2012) tarafından hazırlanmış PARSEC evrim modelleri kullanılmıştır.

PARSEC evrim modelleri daha önceden Bressan, Chiosi ve Bertelli (1981), Girardi vd (2000), Bertelli vd (2008, 2009) tarafından kullanılan ve Bressan vd (2012) tarafından anlatıldığı şekliyle güncellenmiş yıldız evrim modelleridir. Modeller ağır element bolluğu 0.0005 < Z < 0.07 ve He içeriği 0.248 < Y < 0.400 aralığında 19 farklı kimyasal kompozisyondan oluşmaktadır. Bressan vd'nin (2012) ilk yayınladığı küçük kütleli modeller 0.1 ile 12 M₀ arasında kütleler içindir. PARSEC modellerinin kütle üst sınırı daha sonra 350 M₀'e kadar çıkartılmıştır (Chen vd 2015). Böylelikle PARSEC modelleri, Eker vd (2014) kataloğundaki yıldızların kütle aralığı $0.18 < M/M_0 < 33$ olan tüm yıldızları kapsayan geniş kütle aralığına sahip hale gelmiştir.

Bu tez çalışmasına dahil edilecek yıldızlar, Eker vd (2014) makalesinde komşuluğundaki tartısıldığı gibi Günes yıldızlar olduğu için, kimyasal kompozisyonlarının da Güneş'e benzediği kabul edilmiştir. Bu yüzden Bressan vd (2012) modellerinde Günes kompozisyonuna tekabül eden Z=0.014 modellerinin bu tez çalışmasında kullanılmasına karar verilmiştir. Bunun yanında, Güneş komşuluğundaki yıldızlar arasında %6-8 oranında, Güneş kompozisyonundan farklı, homojenliği bozan kalın disk ve halo yıldızları da olabilir (Karaali vd 2003; Karataş vd 2004; Bilir vd 2005, 2006, 2008; Ak vd 2010, 2013). Güneş civarında az sayıda bulunması beklenen farklı popülasyondaki yıldızların karışımı, tez çalışmasından elde edilecek sonuçlara etki etmeyeceği düşünülmüş ve bu nedenle Eker vd'nin (2015) çalışmasında yapıldığı gibi kalın disk ve halo yıldızlarının ayıklama yoluna gidilmemiştir.

Ayrıca, bu tez çalışmasında farklı kütleli evrim yollarının literatürden tespit edilmesi ve mümkün olan her farklı kütle değerine göre farklı modellerin tezde kullanılmak üzere kaydedilmesi gerekmiştir. En küçük kütle değeri 0.09 M_{0} 'den başlayıp 40 M_{0} arasında mevcut olan Güneş metal bolluğunda (Z=0.014) ve He

(Y=0.273) içeriği %27.3 olan tüm modeller Bressan vd (2012) makalesinde belirtilen web¹ adresinden indirilmiştir. Her bir evrim yolu (track) tek tek incelenmiş, sıfır yaş anakolu (ZAMS = Zero Age Main Sequence) ve anakol dönemi sonu (TAMS = Terminal Age Main Sequence) yani yıldız çekirdeğinde hidrojenin tükendiği evreleri simgeleyen iki evre için ışınım gücü (L), etkin sıcaklık (T_{eff}) ve yarıçap (R) değerleri listelenmiştir. Uzun olması sebebiyle çizelge formatında tezin ekler bölümüne ilave edilmiştir. Çizelgenin birinci kolonunda Güneş biriminde model yıldızların kütleleri verilmiştir. Sonraki üç kolonda ZAMS evresinde yıldızın ışınım gücü (L), etkin sıcaklığı (T_{eff}) ve yarıçapı (R) bir sonraki üç kolonda da aynı parametrelerin TAMS evresindeki değerleri sunulmuştur. Çizelgedeki değerlerin her biri, kütleler hariç, logaritmik olarak verilmiştir. T'nin birimi Kelvin (K), L ve R'nin birimleri Güneş birimi cinsindendir (bkz Ek1).

3.1.2. Anakol yıldızlarının seçimi

Bu adım hem bu tez çalışması için hem de empirik kütle-parlaklık bağıntısının güncelleneceği saf örneğin elde edilmesi bakımından önemlidir. Saf örnekten maksat, örnek içindeki yıldızların Güneş komşuluğundaki normal anakol yıldızı olmasıdır. Çalışmada temel alınacak örnek içerisinde evrimleşmiş yıldızlar, devler veya süperdevler koluna geçmiş veya Galaksi içinde Güneş komşuluğundaki alan yıldızlarından farklı özellik gösteren prensipte metalce fakir, kalın disk ve halo yıldızları gibi değişik özellik gösteren yıldızların olmamasıdır. Eker vd'nin (2014) "Samanyolundaki Ayrık Örten Çift Çizgili Tayfsal Çift Yıldızlardan Toplanmış Yıldız Parametreleri Kataloğu" genel hatlarıyla bu tarif edilen özellikteki yıldızları içermektedir.

Katalokta toplam 514 tane yıldızın parametresi bulunmaktadır. Bu tez çalışmasına temel veri kaynağı olma özelliği taşıyan bu yıldızlar Ek 2'de çizelge halinde listelenmiştir. Çizelgedeki kolonlarlar sırasıyla sıra numarası, yıldız adı, çift yıldızın hangi bileşeni olduğu, Epok 2000 için ekvatoral koordinatlar, yıldızın kütlesi, kütlede mutlak hata ve bağıl hata, yıldızın yarıçapı, yarıçaptaki mutlak ve bağıl hatalar, yıldızın etkin sıcaklığı, sıcaklık mutlak ve bağıl hatalarından sonra en son kolon açıklamalar olarak düzenlenmiştir. Bu tez çalışması için seçilen yıldızlar en son kolonda (\checkmark) işareti ile belirtilmiştir. Mevcut yıldızların çoğunluğu anakol yıldızıdır. Sınırlı sayıda da olsa anakolda olmayan yıldızların ayıklanması gerekmektedir.

Kütle (M) ve yarıçap (R) gözlemlerle belirlenebilen en duyarlı yıldız parametreleri olduğu için, evrimleşmiş veya henüz anakola gelmemiş anakol dışında kalan yıldızların ayıklanması için en uygun diyagram kütle-yarıçap diyagramı olması kaçınılmazdır. Bu yüzden bu tez çalışmasının birinci adımında kataloktaki tüm yıldızlar tek tek log M – log R diyagramı üstünde kütle ve yarıçap değerlerine bağlı olarak işaretlenmiştir (Şekil 3.1).

¹ <u>http://stev.oapd.inaf.it/PARSEC/v1.1/</u>

Şekil 3.1. Kütle – yarıçap (log M – log R) diyagramında bu tez çalışması için gerekli anakol yıldızlarının seçilmesi. Tez çalışmasına dâhil edilmeyen yıldızlar (+) ve (×) ile gösterilmiştir

Daha sonra bu diyagram üstüne teorik evrim modeli olarak mevcut olan (Ek1) her bir kütleye karşılık gelen R'lerin ZAMS ve TAMS değerleri yerleştirilmiştir. Bu değerlerin birleştirilerek elde edilen sürekli çizgi Şekil 3.1 üstünde gösterilmiştir. Hangi çizginin ZAMS'ı hangi çizginin TAMS'ı ifade ettiği Şekil üstünde ayrıca belirtilmiştir.

Şekil 3.1'de açıkça görülmektedir ki, TAMS sınırının üstünde (büyük yarıçaplar) kalan yıldızlar (kırmızı + ile işaretlenmiş) muhtemel anakol dışı yıldızlardır. Bu yıldızlar tek tek belirlenip Ek2'de (×) ile gösterilmiştir. Ayrıca Şekil 3.1'e bakıldığında mavi (×) işareti ile noktalanmış yıldızlar görülmektedir. Bu yıldızlar anakol sınırları içinde kalsalar dahi kütle-parlaklık bağıntısının geçerli olduğu sınır dışında kalmaktadır. Kütle-parlaklık bağıntılarının (MLR) geçerli olduğu aralık Çizelge 3.1 de görülmektedir. Mavi (×) işareti ile noktalanmış yıldızlar 0.38 M/M_{\odot} sınırının (Çizelge 3.1) altında kaldıklarından dolayı tez çalışmasında kullanılan yıldızlar listesinden çıkarılmıştır. Bu şart ile çıkarılan yıldızlar Ek2'de (–) işareti ile gösterilmiştir.

Kütle Aralığı	Sayı	Kütle aralığı	MLR Bağıntıları	R	σ	α
Küçük Kütleli	57	$0.38 < M/M_{\odot} \leq 1.05$	$logL = 4.841 \times log M - 0.026(25)$	0.980	0.121	4.841
Orta Kütleli	146	$1.05 < M/M_\odot \le 2.4$	$logL = 4.328 \times log M - 0.002(20)$	0.970	0.108	4.328
Büyük Kütleli	42	$2.4 < M/M_{\odot} \le 7$	$logL = 3.962 \times log M + 0.120(112)$	0.951	0.165	3.962
Çok Büyük Kütleli	23	$7 < M/M_{\odot} < 32$	$logL = 2.726 \times log M + 1.237(228)$	0.946	0.158	2.726

Çizelge 3.1. Eker vd'ne (2015) göre farklı kütle aralıklarında MLR bağıntıları

Bu seçim işlemi sonunda en küçük kütle sınırından daha küçük kütleli 10 tane ve 54 tane TAMS sınırı üstünde kalan yıldızların çıkarımı gerçekleştikten sonra elimizde yeni metodu uygulayabileceğimiz toplam 450 tane anakol yıldızı kalmıştır. Bu yıldızlar Ek2 de verilen çizelgenin son kolonunda (\checkmark) işareti ile işaretlenmiş yıldızlardır.

3.2. Kütle ve Yarıçap Kullanarak Teff Hesaplama Yöntemleri

Hertzsprung (1923) ve Russell vd'nin (1923) 20. yüzyılın ilk yarısında empirik olarak gözlemlerden keşfettiği kütle-parlaklık (MLR) bağıntısı astrofiziğin tanınmış ve test edilmiş evrensel yasalarından biridir. Bağıntı kütle (M) ile lüminosite (L), veya kütle (M) ile bolometrik mutlak parlaklık (M_{bol}) arasındaki ilişkiye bağlı olarak farklı yazarlar tarafından farklı şekillerde ifade edilmiştir. Ancak, bu bağıntının en temel gösterimi: L α M^{α}, ışıtma gücünün kütlenin fonksiyonu olarak bir kuvvet yasası ile ifade edilmesidir. Kütlenin üstündeki kuvvet (α), log M – log L diyagramında bir doğrunun eğimi olarak karşımıza çıkar. Önceleri H-R diyagramı üstünde sınırlı sayıda yıldız varken, tüm yıldızları tek bir kuvvet yasası, yani logaritmik diyagramda tek bir doğru ile ifade etmek mümkündü. Ancak verilerin duyarlılığı, kalitesi ve sayısı arttıkça tek bir doğrunun tüm yıldızları temsil etmesinin zorluğu ortaya çıktı. Bu nedenle birçok yazar (Kuiper 1938; Cester vd 1983; Andersen 1991; Demircan ve Kahraman 1991; Henry ve McCarthy 1993; Malkov 2003, 2007; Fang ve Yan-ning 2010) farklı kütle aralıklarında farklı eğimli doğrular kullanmayı tercih ettiler.

Eker vd (2015), 271 anakol yıldızının kütle (M) ve ışınım gücü (L) değerleri ile bağıntının farklı formlarını araştırırken, log M – log L diyagramında α 'nın sabit olduğu doğal kütle sınırlarını keşfettiler. log M – log L diyagramında bu sınırları hemen görmek aslında pekte kolay değildir. Eker vd'nin (2015) farklı kütleli yıldızlarda enerji üretiminin verimini araştırmak için çizdiği log L/M'nin M ile değişimi grafiğinde farklı kütle aralıklarındaki farklılık hemen göze çarpmaktadır (Bkz. Eker vd 2015, Şekil 3).

Eker vd (2015) $M/M_{\odot} < 1.05$; $1.05 \le M/M_{\odot} < 2.4$; $2.4 \le M/M_{\odot} < 7$ ve $M/M_{\odot} \ge 7$ olmak üzere dört kütle aralığında L α M^{α} bağıntısındaki α 'nın sabit olduğunu iddia etmiş ve kullandığı veri tabanındaki yıldızları kütlelerine göre dört sınıfa ayırmış, her biri için log M – log L diyagramındaki dağılımlarına birer doğru fit etmişlerdir. Bu doğrular ve kütle-parlaklık bağıntısı anlamında ifade ettiği lineer bağıntılar Çizelge 3.1'de görülmektedir. Çizelge 3.1'de birinci kolon kütle aralığının adını, ikinci kolon bu aralıktaki mevcut yıldızların sayısını, üçüncü kolon Güneş kütlesi cinsinden kütle aralıklarını, dördüncü kolon en küçük kareler yöntemi ile elde edilen doğru denklemini göstermektedir. Fit işleminden sonra elde edilen korelasyon katsayısı (R), standart sapma (σ) ve L α M^{α} bağıntısındaki α değeri sırasıyla beşinci, altıncı ve yedinci kolonlarda listelenmiştir.

Eker vd (2014) tarafından yayınlanmış "Samanyolundaki Ayrık Örten Çift Çizgili Tayfsal Çift Yıldızlardan Toplanmış Yıldız Parametreleri Kataloğu'ndan seçilmiş Eker vd'ne (2015) göre en duyarlı parametreleri olan, yani, M ve R değerlerindeki hatası %3 ve daha küçük, L değerlerindeki hatası %30'dan az olan, 271 tane anakol yıldızı verilerinden elde edilen log M – log L diyagramı Şekil 3.2'de gösterilmektedir. L α M^{α} bağıntısındaki α 'nın sabit olduğu kütle aralıkları Sekil 3.2'nin üst panelinde düşey çizgiler ile belirtilmiştir. Çizelge 3.1'de verilen denklemlerin veriye uyumu da Şekil 3.2'de üst panelin altındaki dört küçük panel içinde gösterilmiştir. Eker vd (2015) $0.38 < M/M_{\odot} < 32$ kütle aralığı için belirlediği bu dört parçalı MLR bağıntısını tüm verive fit edilen tek doğru, parabol ve ücüncü derece polinom ile ifade edilebilen MLR bağıntıları ile de karşılaştırmış ve dört parçalı MLR'nin gözlemsel verileri en iyi temsil ettiği sonucuna varmışlardır. Astronomik gözlemler ile empirik olarak belirlenmiş Çizelge 3.1'de verilen MLR bağıntıları (kolon 4), ile birlikte belirlenen α ve σ değerleri klasik yöntem ile T_{eff} belirlemenin temelini teşkil etmektedir. Bu tez çalışmasında kullanılan yönteme geçmeden önce, klasik yöntemin detaylarının anlaşılması gerekmektedir.

Şekil 3.2. Eker vd'ne (2015) göre kütle – parlaklık grafiği. Alttaki dört panel üstteki panelde dikey çizgilerle sınırlanmış kütle aralıklarındaki verilere fit edilmiş lineer fonksiyonları göstermektedir.

3.2.1. T_{eff} belirlemede klasik yöntem

Yıldızların etkin sıcaklıkları Stefan-Boltzmann yasasına dayalı olarak

$$T_{eff} = \sqrt[4]{\frac{L}{4\pi\sigma R^2}} \tag{3.1}$$

formülü ile ifade edilmektedir. Burada L yıldızın tüm dalga boylarındaki ışınım gücü yani yüzeyinden tüm uzaya birim zamanda tüm dalga boylarında yayılan radyasyon enerjisidir. $4\pi R^2$ yıldızın yüzey alanı ve σ =5.67 × 10⁻⁸Wm⁻²K⁻⁴ da Stefan-Boltzmann sabitidir. Yıldız ışınım gücü Güneş'in ışınım gücüne oranlanırsa, denklem 3.1

$$T_{eff} = 5777 \times \sqrt[4]{\frac{L/L_0}{(R/R_0)^2}}$$
(3.2)

şeklini alır. Denklem 3.2'de görüldüğü gibi T_{eff} belirlemek için iki parametreye ihtiyaç vardır (L/L₀ ve R/R₀). Bu iki parametre gözlemlerle belirlenebilir. Yıldızın uzaklığı biliniyorsa, Pogson formülü (V-M_v = 5logd – 5) ile M_v mutlak parlaklığı, sonra bolometrik düzeltme terimi kullanılarak BC = M_{bol} – M_v formülünden M_{bol} hesaplanır, sonra

$$M_{bol}(\mathbf{0}) - M_{bol} = 2.5 \log \frac{L}{L_0} \tag{3.3}$$

formülü ile yıldızın ışınım gücü (L) elde edilebilir ve yarıçap da (R) biliniyorsa 3.2 formülü ile yıldız etkin sıcaklığı hesaplanabilir. En güvenilir, en duyarlı R ölçümleri örten değişen yıldızların ışık eğrisi çözümlerinden gelmektedir.

Ancak, bu tez çalışmasında vurgulanmak istenen yöntem bu değildir. Klasik yöntem olarak adlandırılan yöntem, kütlesi gözlemlerle belirlenmiş yıldızın ışınım gücünün (L) bir MLR kullanılarak hesaplanmasının ardından gözlemlerle belirlenmiş yıldız yarıçapını (R) da kullanarak denklem 3.1 veya 3.2 ile yıldız etkin sıcaklığının hesaplanmasıdır. Görüldüğü gibi, klasik yöntem için gözlemsel olarak belirlenmiş iki parametre (M ve R) den başka bir de yıldızın kütle değerine uygun düşen bir kütle – parlaklık (MLR) bağıntısı gereklidir.

Bu tez çalışmasında kullanılan MLR bağıntıları dört kütle aralığı için çizelge 3.1'de listelenmiştir. Bu dört MLR bağıntılarından hangisinin kullanılacağını yıldızın kütlesi belirleyecektir. Böylelikle kütlesi bilinen bir yıldızın L α M^{α} bağıntısı yardımıyla (Çizelge 3.1) ışınım gücü bilinir. Gözlemlerle belirlenmiş yarıçapı da varsa klasik yöntem ile yıldızın etkin sıcaklığı (T_{eff}) hesaplanmış olur.

M ve R'ler gözlemlerle belirlendiği için, uygulamaya gelince, Ek2'de verilen M ve R değerlerine eşlik eden gözlemsel hata payları da vardır. M ve R deki gözlemsel

hataların T_{eff} değerlerine yürütülmesi (veya taşınması) gerekir. Yani, hesaplanan T_{eff} lerdeki bağıl hatalar

$$\frac{\Delta T_{eff}}{T_{eff}} = \sqrt{\left(\frac{\Delta L}{4 \times L}\right)^2 + \left(\frac{\Delta R}{2 \times R}\right)^2} \tag{3.4}$$

denklemi ile hesaplanır. Bu formülde, $\Delta R/R$ yarıçaplardaki göreli hataları temsil eder. Ancak $\Delta L/L$ gözlemlerden geliyor ise (mutlak parlaklık metodu) $\Delta L/L$ doğrudan gözlemsel hatalardan hesaplanır. Ancak, kütle parlaklık bağıntısı kullanılıyor ve gözlemsel hata olarak $\Delta M/M$ verilmiş ise, $\Delta M/M$ değerini $\Delta L/L$ değerine taşımak gerekir. Bu taşıma işlemi de L α M^{α} bağıntısında logaritmik türev alırsak

$$\frac{\Delta L}{L} = \alpha \, \frac{\Delta M}{M} \tag{3.5}$$

elde edilir. 3.5 denkleminin sağ tarafı MLR'de kullanılan kütlenin göreli hatasının $\Delta L/L'$ ye nasıl taşındığını belirtir. Denklemdeki α değeri, MLR bağıntısında kullanılan kütle için belirlenmiş üs (kuvvet) değeridir.

Göreli ışınım gücü hataları ($\Delta L/L$) sadece kütledeki göreli hatalardan kaynaklanıyor olsaydı denklem 3.5 kullanılabilirdi. Fakat, empirik (gözlemsel) olarak belirlenen kütle ile birlikte Çizelge 3.1'de verilen MLR bağıntıları kullanıldığı için, log M – log R diyagramındaki yıldızların dağılımı, yani fit ile bulunan standart sapma değeri kullanmamız gereken göreli hata olmalıdır. log M – log R diyagramında yıldızların dağılımın etkileyen sadece gözlemsel hatalar değildir. Yıldız evriminin ve yıldızların kimyasal kompozisyon farklılıkları da ışınım güçlerinin log M – log L diyagramı üstündeki konumunu etkiler.

Andersen (1991), Torres vd (2010) ve Eker vd'ne (2014, 2015) göre yıldızların log M – log R diyagramında saçılmalarını yani verilen bir MLR fonksiyonundan standart sapmalarını belirleyen etkiler belli başlı üç kaynaktan gelir. Birincisi gözlemsel standart hatalardır ki, diğer iki hata yanında ihmal edilebilir düzeydedir. Daha büyük etki anakol yıldızlarının farklı evrim ve metal bolluğu değerine sahip olmalarıdır. Bu yüzden 3.4 denkleminde kullanılan $\Delta L/L$ değerinin 3.5 denkleminden gelmemesi, aşağıdaki formül ile hesaplanması gerekmektedir.

$$\frac{\Delta L}{L} = \frac{\sigma}{0.4343} \tag{3.6}$$

Her bir farklı kütle aralığı için farklı σ değeri olabilir. Bu nedenle MLR bağıntısında kullanılan klasik yöntemin farklı kütle aralıkları için $\Delta L/L$ ve ilgili belirsizlikleri ayrı ayrı hesaplanmış ve Çizelge 3.2'de gösterilmiştir (Eker vd 2015).

Kütle Aralığı	Kütle aralığı	σ	$\Delta L/L(\%)$	$(\Delta L/L)/4$	$(\Delta R/R)/2$	$\Delta T/T$	α	$\Delta M/M(\%)$
Küçük Kütleli	$0.38 < M/M_{\Theta} \leq 1.05$	0.121	27.86	6.96	1.5	7.12	4.841	5.76
Orta Kütleli	$1.05 < M/M_{\odot} \le 2.4$	0.108	24.87	6.22	1.5	6.39	4.328	5.75
Büyük Kütleli	$2.4 < M/M_{\odot} \leq 7$	0.165	37.99	9.50	1.5	9.62	3.962	9.59
Çok Büyük Kütleli	$7 < M/M_{\odot} < 32$	0.158	36.38	9.10	1.5	9.22	2.726	13.35

Çizelge 3.2. Eker vd'ne (2015) göre kütle-parlaklık diyagramı üzerindeki standart saçılmalar ve göreli belirsizlikler

Cizelge 3.2'de σ değerlerine bağlı olarak $\Delta L/L$ 'deki belirsizlikler kolon dörtte, $\Delta L/(4 \times L)$ değerleri kolon beşte, $\Delta R/(2 \times R)$ değerleri (üst sınır %3 kabul edilip) kolon altıda verilmiştir. Kolon yedi standart sapma (σ) değerine bağlı olarak %3'lük yarıçap hatasına karşılık gelen hata değerini vermektedir. log M – log L diyagramındaki standat sapma, yeni daha güvenilir gözlemlerle tekrar belirlenip küçülmediği müddetçe, değişmez. Bu durumda etkin sıcaklıktaki hatanın değişmesi $\Delta R/R$ 'nin değişmesine bağlıdır. Yani, daha duyarlı gözlemler ile daha küçük yarıçap hatası daha duyarlı etkin sıcaklık hatası anlamına gelmektedir. Ancak, bu iyileştirme etkisi sınırlıdır. Bir başka ifade ile, mümkün olan minimum $\Delta T/T$ 'yi görmek için Çizelge 3.2'de kolon dörde bakmamız gerekmektedir. Etkin sıcaklıktaki minimum hata, $\Delta R/R$ 'nin sıfır olduğu veya $\Delta L/L$ yanında ihmal edilebilecek kadar küçük olduğu durumlarda ortaya çıkmaktadır. Bu durumda hatanın hepsi, M - R diyagramındaki dağılımdan kaynaklanmaktadır. Hatayı belirleyen tek parametre standart sapma (σ) değeridir. Çizelge 3.2'de son kolonda verilen $\Delta M/M$ değerleri, diyagramdaki dağılımdan belirlenen $\Delta L/L$ 'ye karşılık gelen $\Delta M/M$ değerleridir ki, bize kütle değerlerinde ne kadar toleransa sahip olduğumuzu söylemektedir. Eğer gözlenen M değerindeki göreli hata 3.2 Çizelgesinin son kolonundaki $\Delta M/M$ değerinden büyük ise, denklem 3.5'in kullanılması gerekmektedir. Eğer büyük değilse denklem 3.6'nın kullanılması gerekmektedir.

3.2.2. Homojen sıkıştırma yöntemi (HSY)

Klasik yöntem ile MLR bağıntısı kullanılarak M ve R'den yıldızın etkin sıcaklığının hesaplamasında duyarlılık problemi vardır. Problemin kaynağı sadece ve sadece gözlemsel verilerden kaynaklanan M ve R deki standart hatalar değildir. Denklem 3.4'te Δ L/L olarak ifade edilen belirsizliğe en büyük katkı, yıldız evriminden gelmektedir, yani anakol yıldızlarının farklı evrim aşamalarında (yaşlı, genç) olmalarıdır. İkinci derecede katkı ise, yıldızların kimyasal kompozisyonlarının farklı olmasıdır. Gözlemlerde hiç hata olmasa bile sadece bu iki hata kaynağı yüzünden yıldızlar log M - log L diyagramında saçılacaktır. Yıldız evriminden ve farklı metal bolluğundan kaynaklanan belirsizlik etkileri yanında unutmayalım ki göreli olarak azda olsa M ve R değerlerindeki gözlemlerden kaynaklanan hatalar yani belirsizlikler de vardır.
M ve R deki gözlemsel hatalar sistematik değil rastgele hatalardır. Oysa, yıldız evriminden ve/veya metal bolluğundan gelen hatalar sistematik hatalardır. Sistematik hataları düzeltmek mümkündür, çünkü sistematik hata sıcaklık hesabında bir yanlılığa sebep olur. Bu yanlılık sebebi ile hesaplanan etkin sıcaklık olması gerektiği değere göre ya daha büyüktür ya da daha küçüktür. Yanlılığın hesaplanıp düzeltilmesi durumunda, T_{eff} hesabı daha duyarlı hale getirilebilir. Bu nedenle, homojen sıkıştırma yöntemi (HSY) olarak adlandırdığımız metot ile klasik yöntem adını verdiğimiz MLR kullanılarak M ve R'lerden hesaplanan etkin sıcaklıkları (T_{eff}) daha duyarlı hale getirme işlemlerine geçmeden önce, MLR'nin sebep olduğu yanlılığı anlamak gerekmektedir.

3.2.3. Klasik yöntemin sebep olduğu yanlılık (bias)

Anakol kütle parlaklık bağıntısının (MLR) en temel ifadesi bir üstel yasadır, yani yıldızın ışınım gücü, kütlenin fonksiyonu olarak L α M^{α} şeklinde ifade edilen formudur. Bu durum, log M – log R diyagramında ifade edilen MLR fonksiyonunun Çizelge 3.1'de verildiği edildiği gibi bir doğru denklemi ile ifade edilebileceğini söylemektedir. Pratikte durum böyle olmayabilir. log M – log R diyagramında yıldız ışınım güçlerinin kütleye göre dağılımı farklı farklı fonksiyonlarla örneğin ikinci, üçüncü veya daha yüksek dereceden polinom MLR bağıntısı olarak kullanılmış olabilir.

log M – log R ve log M – log T_{eff} gibi diğer düzlemlere oranla, yıldızların log M – log L diyagramı üstündeki yıldız dağılımını bir fonksiyon ile temsil edilmeye en uygun düzlemdir. Bunun da sebebi şudur, en sıcak yıldızlar ile en soğuk yıldızlar arasındaki sıcaklık farkı (50000 ile 2500 K) yaklaşık bir kadir değeri farkı kadardır. Oysa, en küçük yıldızlar ile en büyük yıldızların arasındaki dağılım 2 kadirlik değişim ile ifade edilebilmekte ve 0.1 R_o lerden 100 R_o değerleri arasında değişmektedir. Buna karşılık log M – log L diyagramındaki en küçük L değeri ile en büyük L değerlerinin dağılımı yaklaşık 8 kadirlik değişim ile ifade edilmektedir. Çünkü $L = 4\pi R^2 \sigma T_{eff}^4$ bağıntısındaki R ve T'lerin kuvvetleri, yani R'nin karesi, T'nin dördüncü kuvveti, L'nin alabileceği değerleri çok geniş bir skalaya yaymıştır. R ve T'ye göre çok daha geniş skalada değişim gösteren L değerleri sebebi ile yıldız ışınım güçleri, log M – log L diyagramını bir köşeden karşı köşeye uzanan göreli olarak dar bir hat boyunca saçılmış olarak görülür (Şekil 3.2).

Andersen (1991) ve Torres vd (2010) bu dağılıma uygun bir fonksiyon fit edilebileceğine karşı çıkmışlardır. Bunun sebebi olarak da, log M – log L diyagramı üstündeki saçılmanın ana sebebinin gözlem hataları değil, daha çok yıldız evriminden ve kimyasal bolluk farklılığından kaynaklandığını söylemişlerdir. Bu argüman söz olarak doğrudur. Ancak, en küçük kareler yöntemi kullanılarak dağılımın bir fonksiyon ile gösterilmesine engel teşkil etmez. log M - log L diyagramındaki veriler bir MLR fonksiyonu ile ifade edildiği takdirde, verileri temsil eden ince bir çizgi vardır. Her bir yıldızın diyagramdaki konumu bu çizgi üstünde olmayacaktır, M ve L değerlerine göre yıldızlar diyagram üstünde saçılacaklardır. Bir başka ifadeyle, yıldızın gerçek ışınım gücü (L), MLR fonksiyonuna M değerinin konup hesaplanması ile elde edilecek L değerinden daha farklı olabilir. Hesaplanan L ile gerçek L arasındaki fark sözünü ettiğimiz yanlılığın bir başka ifadesidir. Bir fonksiyon ile ifade edilen MLR, genç yıldızların ışınım güçlerini olması gerektiğinden daha büyük, yaşlı anakol yıldızlarının ışınım güçlerini ise olması gereken L değerinden daha az hesaplamaktadır. Çünkü teorik yıldız evrim modellerine göre, yıldızın ışınım gücü sıfır yaş anakolu (ZAMS) noktasından başlayarak monotonik olarak zamanla artar. Yıldız anakol evriminin sonuna geldiğinde, bu noktaya terminal yaş anakolu, yani TAMS denir, yıldızın L değeri en büyük değerini alır (Clyton 1968, Iben 2013). Bu nedenle, yıldızın yaşına yani anakol evrim durumuna bağlı olarak MLR ile hesaplanan L'ye göre bir yanlılık vardır ve matematiksel olarak

$$\Delta L = L \left(R, T \right) - L \left(M \right) \tag{3.7}$$

ifade edilebilir. Burada L (R,T) Stefan-Boltzmann yasasına göre yıldız ışınım gücüdür. Bunun yanında L (M), MLR bağıntısı ve M ile elde edilen ışınım gücüdür. Δ L ise, yıldızın yaşına veya evrim durumuna göre ortaya çıkan yanlılık değeridir. Açıkça görülmektedir ki, Δ L bilinmiş olsaydı Stefan-Boltzmann yasasına göre yıldızın gerçek ışınım gücü MLR yardımıyla hesaplanabilirdi. Eğer bağımsız başka bir metot ile doğrudan Δ L hesaplanamaz ise denklem 3.7'nin bir önemi yoktur. Bu çalışmada denklem 3.7'de olduğu gibi değil, dolaylı olarak Δ L'yi hesaplayan bağımsız bir metot verilecektir. Bizim metodumuz doğrudan Δ L 'yi hesaplayabilen bir metot değil, log M – log T_{eff} diyagramı üzerinde fazla hesaplanmış veya az hesaplanmış sıcaklıkları düzelterek yanlılığı ortaya koyan bir metottur. Diğer bir deyişle bir yıldızın M ve R'si gözlemler ile sabitlenmiş ise Eker vd (2015) tarafından klasik metot ile hesaplanan sıcaklıklarda yanlılık kendini log M – log T_{eff} diyagramı üztünde göstermektedir. Bu yanlılığın hesaplanması ve düzeltilmesi önerdiğimiz homojen sıkıştırma yönteminin özünü oluşturmaktadır.

Klasik yöntem 450 anakol yıldızına uygulanmıştır ve hesaplanan etkin sıcaklık değerleri Şekli 3.3'te gösterilmektedir. Ayrıca Şekil 3.1'deki R ler için ZAMS ve TAMS noktaları aynı metot ile sıcaklıklara dönüştürülmüş ve Şekil 3.3'te kesikli çizgilerle gösterilmiştir. Bu nedenle, Şekil 3.3'te ikişer tane ZAMS ve TAMS çizgisi bulunmaktadır. 3.2 denklemi log M – log R düzleminden log M – log T_{eff} düzlemine, dönüşüm denklemi olarak kullanılmıştır. Daha açık söylemek gerekirse, log M – log R diyagramında (•) ile işaretli her bir anakol yıldızının konumu denklem 3.2 kullanılarak, log M – log T_{eff} üstünde işaretlenmiştir. 3.2 denklemini kullanırken, yıldızın kütle değerine göre MLR bağıntısı Çizelge 3.1'den alınıp, kütlenin fonksiyonu olarak belirlenen L/L₀ değeri ile hesaplanmıştır.

 $\log M - \log R$ diyagramında (Şekil 3.1) teorik ZAMS ve TAMS çizgileri de aynı yöntem ile aynı MLR bağıntıları kullanılarak $\log M - \log T_{eff}$ diyagramı üstüne aktarılmıştır. Şekil 3.1'den hesap yapılarak aktarılan ZAMS ve TAMS çizgileri Şekil 3.3'te noktalı çizgiyle gösterilmiştir. Orijinal, yani Ek1'deki çizelgede listelenen teorik evrim modellerine göre ZAMS ve TAMS çizgileri Şekil 3.3'te sürekli çizgi ile gösterilmiştir.

Şekil 3.3. Klasik metot ile M ve R değerlerinden hesaplanmış etkin sıcaklıkların (T_{eff}) log M – log T_{eff} diyagramında dağılımı

Sonuç olarak, Şekil 3.3'te kesikli çizgiler dönüştürülmüş ZAMS VE TAMS, düz çizgiler ise doğrudan PARSEC modellerinden gelen gerçek ZAMS ve TAMS'tır (Ek1). Şekil 3.3'teki her bir nokta, Ek2'de listelenmiş, bu tez çalışmasının uygulamaları için seçilmiş (\checkmark) ile işaretli anakol yıldızlarıdır. Gözlemsel olarak belirlenmiş anakol yıldızı yarıçapları iki düzlem (log M – log R ve log M – log T_{eff} düzlemleri) arasındaki dönüşüm için kullanıldığından, yarıçaplar Şekil 3.1'de ki ZAMS ve TAMS çizgilerinin arasında dağılması sebebiyle, bunlara karşılık gelen sıcaklıklar da benzer şekilde, dönüştürülmüş (kesikli) ZAMS ve TAMS çizgileri arasında dağılmalıdır (Şekil 3.3).

İlginçtir ki iki diyagram arasında düşey doğrultu ters dönmektedir. Şekil 3.1'de ZAMS çizgisi anakol yıldızları için en küçük yarıçapları temsil ederken Şekil 3.3'de ise en yüksek sıcaklıkları temsil etmektedir. Bu durum büyük kütleli ($M >> 1M_{o}$) yıldızlar için, beklenen bir durumdur. Büyük kütleli yıldızlarda ($M >> 1M_{o}$) yıldız yaşının artması ile ışınım gücü artarken, yarıçapın genişlemesine bağlı olarak yüzey sıcaklığı da az bir miktar düşer (Clayton 1968). Düşük kütleli yıldızlarda ise ($M < 1M_{o}$) başlangıçtaki sıcaklıklar anakol evrimi boyunca belli bir miktar artış gösterdikten sonra küçük bir miktar düşmektedir. Böylece ZAMS ve TAMS arasında L devamlı artarken, TAMS'a yakın yıldızların sıcaklıkları, ZAMS'a yakın yıldızların sıcaklıklarından fazla olmaktadır. Ek1'de listelenmiş PARSEC modellerindeki trend de bu durumla benzerlik göstermektedir. Dikkat edersek gerçek ZAMS ve TAMS yaklaşık 1.1M_o kütleli yıldızlarda yön değiştirmektedir (Şekil 3.3). Büyük kütleli yıldızlar için ($M > 1M_{o}$) ZAMS'a göre TAMS çizgisi düşük sıcaklıklara sahiptir, ama düşük kütleli yıldızlarda durum bunun tam tersi olarak görünmektedir. Bu durum, küte aralığı 0.35 < M/M_o < 40 için R'nin sürekli artışına işaret etmektedir (Şekil 3.1). Dönüştürülmüş ZAMS ve TAMS sınırları içerisindeki dağılım, log M – log R diyagramındaki (Şekil 3.1) gerçek ZAMS ve TAMS ile uyumludur. Bir başka deyişle Şekil 3.3'te ki yıldızların dağılımı log M – log T_{eff} düzlemindeki gerçek ZAMS ve TAMS ile belirlenen gerçek sınırları aşar. Sınırı aşan bu yıldızlar ile birlikte gerçek ZAMS ve TAMS'a göre dönüştürülmüş ZAMS ve TAMS'ın göreli konumları klasik yöntem ile hesaplanan T_{eff} değerinde bir yanlılığın var olduğunu açıkça işaret etmektedir. Şekil 3.3'te ZAMS'a yakın yıldızların T_{eff} sıcaklığının (genç yıldızlar) fazla hesaplanmış olduğu ve TAMS yakınlarındaki yaşlı anakol yıldızları içinse tam tersi olduğu açıkça görülmektedir. R'nin gözlemsel değeri ile fazla hesaplanmış (veya az hesaplanmış) T_{eff}, fazla hesaplanmış (veya az hesaplanmış) ışınım gücü (L) anlamına gelir. Bu durum M >>1 M₀ olan yıldızlar için açıkça ortadadır. Ayrıca açıktır ki yanlılığın miktarı ve yönü dönüştürülmüş ZAMS ve TAMS'a göre yıldızı konumu ile belirlenebilir.

3.2.4. Homojen sıkıştırma yöntemi (HSY) ile yanlılığın giderilmesi

 $\log M - \log T_{eff}$ diyagramı üzerinde dönüstürülmüs ZAMS ve TAMS'a göre yanlılık sistematik ve yıldızın konumuyla orantılı olduğundan yanlılığı hesaplamak mümkündür. Hesaplanan bu yanlılığı sonrasında düzeltmek de mümkündür. Söz konusu durum yıldızın evrimi hakkında ek bilgi gerektirmediği için yöntem basittir. Yıldızın evrim durumu (yaşı) ve metallisite bilgisi gözlenen yarıçap içinde zaten mevcuttur. Yarıçaplar ve ışınım güçleri yıldız evrim modellerinin ürettiği teorik bilgilerdir. Belirli bir kütle ve kimyasal kompozisyon için teorik evrim modelleri uygun R ve L'yi zamanın bir fonksiyonu olarak verirler. Modern dedektörler, gözlem teknikleri ve yüksek hızlı bilgisayarlar sayesinde artık çok duyarlı gözlemsel parametreler elde edilebilmektedir. Bu duyarlı parametreler o düzeye çıkmıştır ki evrim modellerinin sonuçları ile karşılaştırıp, modeller test edilebilir duruma gelmiştir. Eker vd (2014) tarafından hazırlanan Samanyolundaki Ayrık Örten Çift Çizgili Tayfsal Çift Yıldızlardan Toplanmış Yıldız Parametreleri Kataloğu'ndaki kütle ve yarıçap belirsizliği %1'den daha iyi ölçülen yıldızların sayısı 93, %3'den daha iyi ölçülen yıldızların sayısı 311 ve %5'den daha iyi ölçülebilenlerin sayısı da 388'dir. Böylelikle, yıldızların konumları log M – log R diyagramından log M – log T_{eff} diyagramına evrim ve metal bolluğu verileriyle birlikte taşınmaktadır.

Yanlılık ZAMS ve TAMS çizgileri arasındaki boşluğu düşey doğrultuda her iki yöne doğru genişletmektedir. Bu durumda, yanlılıktan dolayı dönüştürülmüş ZAMS ve TAMS arasındaki boşluk olması gerekenden daha büyüktür. Sonuç olarak Homojen Sıkıştırma Yönteminin (HSY) amacı yanlılık yüzünden log M – log T_{eff} diyagramı üstünde açıkça görülen ZAMS ve TAMS arasında genişlemiş boşluğu, yıldız konumları ile birlikte düzeltmektir. Bu düzeltme işlemi iki adımda gerçekleştirilebilir. Uygulama için sıkıştırma (boşluk alma) katsayılarına ihtiyaç vardır.

Şekil 3.4. AL Scl yıldızının baş bileşeni ZAMS ve TAMS çizgilerini Z, Z', T ve T' noktalarında kesen dikey doğru üstündedir. İlk sıkıştırmada T' noktası, ikinci sıkıştırmada Z noktası referans alınmıştır

3.2.4.1. Sıkıştırma katsayıları

Sıkıştırma düşey doğrultuda homojendir. log M – log T_{eff} diyagramında düşey doğrultuda belirlenmiş herhangi bir uzunluğu sıkıştırmak demek, bu uzunluğu birden küçük bir katsayı ile çarpmak olarak düşünülmelidir. Sıkıştırma işleminde kullanılan katsayılara sıkıştırma katsayıları adı verilmiştir.

Sıkıştırma katsayıları farklı yıldız kütleleri için farklı olabilir. Bir başka ifade ile, log M – log T_{eff} diyagramı üstünde farklı kütle değerleri için farklı sıkıştırma katsayıları vardır. Bu yüzden, sıkıştırma katsayıları Şekil 3.3'te işaretlenmiş tüm anakol yıldızları için ayrı ayrı hesaplanması gerekmektedir.

Sıkıştırma katsayılarının nasıl hesaplandığını örnek vererek açıklamak gerekirse: Örneğin AL Scl yıldızının baş bileşeninin (Ek 2) sıkıştırma katsayılarını hesaplamak istiyoruz. AL Scl yıldızının baş bileşeninin kütlesi M= 3.62 M_{\circ} 'dir. Logaritmik ölçek homojen olmadığı için katsayıların doğrusal M – T_{eff} diyagramı üstünde hesaplanması gerekir. AL Scl yıldızı için lineer bir M – T_{eff} diyagramı Şekil 3.4'te görülmektedir. Bu diyagram üstünde yıldız konumları içi boş noktalarla, orijinal ZAMS ve TAMS sürekli çizgi ile, dönüştürülmüş ZAMS ve TAMS kesikli çizgi ile belirtilmiştir.

Sıkıştırma katsayılarının hesabında atılması gereken ilk adım, yıldızın kütle değerinden (M= $3.63M_{\circ}$) geçen bir düşey çizgi çizmektir. Bu düşey çizgi Şekil 3.4'te görüldüğü gibi gerçek ZAMS ve TAMS'ı Z ve T noktalarında keser. Aynı şekilde, dönüştürülmüş ZAMS'ı ve TAMS'ı da Z' ve T' noktalarında keser. Şekil 3.4'te Z, Z', T, T' noktaları ve bu noktaların temsil ettiği sıcaklıklar gösterilmiştir. Bu özel noktaların değerleri AL Scl'nin baş bileşeni için Z= 14549 K, Z'= 15414 K, T= 10412 K ve T'= 9086 K'dir. AL Scl'nin baş bileşeni için klasik yöntemle hesaplanan sıcaklık T_x=12286 K Şekil 3.4'te ayrıca belirtilmiştir.

Birinci ve ikinci sıkıştırma katsayıları (CC1, CC2) aşağıdaki formül ile hesaplanır.

$$CC1 = \frac{Z - T'}{Z' - T'}$$
 $CC2 = \frac{T - Z}{T' - Z}$ (3.8)

CC1 ve CC2 katsayı gibi davranırlar. Böylelikle, bir dikey uzunluk bu katsayılarla çarpıldığında kısalır. Bu katsayılar M – T_{eff} diyagramı üzerinde verilen bir yıldızın kütlesi için dikey çizgi boyunca sabit olduklarından, sıkıştırmalar düşey uzunluk boyunca aynı olmaktadır. CC1 ve CC2 değerleri M >> 1M_o şartını sağlayan yıldızlar için pozitiftir ve 1'den küçüktür. Örneğin, AL Scl yıldızının birinci bileşeni için hesaplanan sıkıştırma katsayıları CC1= 0.8633 ve CC2= 0.7573'tür (Şekil 3.4). İlk olarak düşey çizgi üzerindeki test yıldızının konumu, dönüştürülmüş TAMS çizgisine göre olan konumuyla orantılı bir biçimde bir miktar aşağı doğru itilecektir. Böylece aşağıdaki denklem,

$$T_1 = (T_x - T') \times CC1 + T'$$
(3.9)

ilk sıkıştırmayı gerçekleştirir. Burada T_x Eker vd (2015) tarafından tanımlanan klasik metot kullanılarak hesaplanan etkin sıcaklıktır. T_1 ilk düzeltme sonrası test yıldızının sıcaklığıdır. Bu denklemde açıkça görülmektedir ki, eğer yıldız dönüştürülmüş TAMS üzerinde ise $T_x=T'$ dür. Bu durumda denklem 3.9'a göre, $T_1=T'$ olur. Eğer yıldız dönüştürülmüş ZAMS üzerinde ise ($T_x=Z'$), denklem 3.9 da yerine koyduğumuzda $T_1=Z$ olmaktadır, ve yıldız gerçek ZAMS üstüne gelmektedir. Bu yüzden ilk olarak dönüştürülmüş TAMS'a göre her sıcaklık değeri birinci sıkıştırma işleminden sonra azalacaktır, daha sonra aşağıdaki denklem ikinci sıkıştırma işlemi için kullanılacaktır.

$$T_2 = Z - (Z - T_1) \times CC2 \tag{3.10}$$

İkinci sıkıştırma için referans olarak gerçek ZAMS kullanılmaktadır. Burada $T_1 = Z$ (ilk sıkıştırma işlemi sonunda, yıldız gerçek ZAMS üstünde), ise $T_2 = Z'$ dir. Yıldızın pozisyonu değişmemektedir, çünkü denklem 3.10 gerçek ZAMS'ı referans olarak kullanmaktadır. ZAMS'ın üzerindeki yıldızlar ikinci sıkıştırmadan etkilenmeyecektir.

Birinci sıkıştırmadan etkilenmeyen yıldızlar gerçek TAMS üzerine dikey yönde itilmiş olacaktır. Böyle bir yıldız için ilk sıkıştırmadan sonra $T_1 = T'$, denklem 3.10'da yerine koyduğumuzda $T_2 = T$ olmaktadır ve yıldız gerçek TAMS üstüne oturmaktadır. 3.9 denklemini AL Scl yıldızının baş bileşeni için T_x = 12286 K sıcaklığı ile uygularsak, T_1 = 11848 K olmaktadır. Sonra denklem 3.10 uygulandığında ise T_2 = 12504 K olmaktadır. Böylelikle klasik metot ile AL Scl yıldızın etkin sıcaklığı 218 K düşük olarak hesaplanmıştır. Böylece bu tez için geliştirilen HSY yöntemi AL Scl yıldızının sıcaklığın T_{eff} = 12504 K olarak vermektedir.

Lineer M – T_{eff} düzlemi üstünde, klasik metot ile hesaplanan sıcaklıkları düzeltme işleminde kullanılan sıkıştırma katsayıları CC1, CC2 model bağımlıdır. CC1 ve CC2'deki model bağımlılığı açıkça görülmektedir, çünkü CC1 ve CC2'nin hesabında kullanılan Z, Z', T, T' limit sıcaklıkları doğrudan teorik yıldız evrimi modellerinden gelmektedir. Bu nedenle, Ek1'deki teorik yıldız evrimi modellerine ihtiyaç duyulmaktadır. Ancak, Ek1'de verilen logaritmik değerler, logaritmadan kurtarılıp lineerleştirildikten sonra hesaplanması gerekir. Bu yüzden, Ek1'deki veriler kullanılarak, her bir yıldız kütlesi için yıldızın ZAMS'taki etkin sıcaklığını belirten Z ve TAMS'taki etkin sıcaklığını belirten T değerleri doğrudan logaritmadan kurtarılarak hesaplanmıştır. Dönüştürülmüş ZAMS ve TAMS'ı temsil eden Z' ve T' değerleri Ek1'deki yarıçaplar logaritmadan kurtulduktan sonra, MLR kullanılarak hesaplanan (L/L₀)'ler yardımı ile hesaplanmış z, T, Z' ve T' limit sıcaklıkları yine aynı formatta Ek3'te bir çizelge olarak verilmiştir. Ek1 deki kütlelere uygun düşen CC1 ve CC2 katsayıları aynı çizelgenin son iki kolonunda listelenmiştir.

Test yıldızının kütlesi, AL Scl örneğimizde olduğu gibi Ek3'te listelenen kütlelerden birine eşit olmayabilir. Bu durumda, lineer interpolasyon, yani ara değer hesabı yapmak gerekir. Lineer interpolasyon olarak

$$\frac{M_x - M_1}{M_2 - M_1} = \frac{T_{limit} - T_1}{T_2 - T_1} \tag{3.11}$$

bağıntısı kullanılmıştır. Burada M₁, M₂ Ek3'te listelenmiş kütleler arasında test yıldız kütlesi M_x'den büyük (M₂) ve küçük (M₁) kütle değerleridir. Aynı şekilde T₂ ve T₁ de ZAMS veya TAMS için hangi limit sıcaklığı hesaplıyorsak, M₁'e ve M₂'ye tekabül eden sıcaklık değerleridir. Bu durumda T_{limit} sıcaklığı da hesaplanmak istenen limit sıcaklıktır. Yani yıldız kütlesi için hesaplamak istediğimiz Z, Z', T ve T' limit sıcaklıklarının her biri tek tek (3.11) denklemi yardımıyla hesaplanması gerekir.

Şekil 3.5. CG Cyg yıldızının baş bileşenin konumu düşey çizgi üstünde T_x ile işaretlenmiştir. CC2 değeri M < 1.15M₀ olan yıldızlarda negatiftir. Buradaki T_x değeri klasik metot ile CG Cyg için hesaplanan sıcaklık değeridir

Ek3'teki çizelgeye bakıldığında görülecektir ki, kütlesi M < $1.15M_{\odot}$ olan yıldızlar için CC2 katsayısı negatiftir. Bu yıldızlar için gerçek ZAMS ve TAMS terstir, çünkü yaşlı yıldızlar genç yıldızlardan daha sıcaktırlar. Yukarıda tanımlandığı gibi $M >> 1M_{0}$ vıldızları icinse bu durum tam tersidir. Ters dönmüs gercek ZAMS ve TAMS Sekil 3.5'te görülmektedir. Burada ayrıca tıpkı log M – log R diyagramında olduğu gibi yıldızların, dönüştürülmüş ZAMS ve TAMS çizgileri (kesikli çizgiler) arasında kaldığı görülmektedir. Bu durum ayrıca Sekil 3.4 için de geçerlidir. Yapılan ara değer hesabında çok küçük kütleli yıldızlar için Ek3'te verilen CC1 ve CC2 değerleri yeteri kadar hassas olmayabilir (M < 0.6M₀), ayrıca bu kütle aralığında ki CC1 değerleri 1'den büyük olmaktadır. Bu çalışmada ilk olarak Z', Z, T ve T' limit sıcaklık değerleri hesaplanmıştır ve sonra yıldızın kütlesine göre ara değer hesabı yapılmıştır. Örneğin CG Cyg yıldızının birinci bileşeninin kütlesi M = 0.948 ± 0.012 M_o'dir ve hesaplanan limit sıcaklık değerleri Z' = 5863 K, Z = 5590 K, T = 5795 K ve T' = 4879K'dir (Şekil 3.5). Sonuç olarak CC1 = 0.7226 ve CC2 = -0.2883'tür. CG Cyg yıldızının birinci bileşeni için T_x değeri 5633 K'dir. İlk düzeltme işleminden sonra $T_1 = 5424$ K ve ikinci yapılan düzeltmeden sonra sıcaklığı $T_2 = 5638$ K olmaktadır. O halde klasik metotla hesaplanan etkin sıcaklık bu yıldız için kabul edilebilir limit içindedir diyebiliriz.

Şekil 3.6. Homojen Sıkıştırma Yöntemi uygulanmasında birinci sıkıstırmadan sonra 450 anakol yıldızının log M – log Teff diyagramı üstündeki dağılımı. İlk düzeltmeden sonra yıldızlar düzgün bir şekilde aşağı kaymıştır

Homojen sıkıştırma yöntemi 450 tane anakol yıldızına uygulanmıştır. Bu 450 tane yıldızın log M – log T_{eff} diyagramı üstünde dağılımı Şekil 3.6'da görülmektedir. İlk sıkıştırma işleminden sonraki yıldızların dağılımı Şekil 3.6, ikinci sıkıştırma işleminden sonraki yıldızların dağılımı şekil 3.7'de görülmektedir. İlk olarak gerçek ve dönüştürülmüş ZAMS arası temizlenmiştir, ikinci düzeltmeden sonra ise tüm yıldızlar gerçek ZAMS ve TAMS arasında yer almaktadır.

Şekil 3.7. Homojen Sıkıstırma Yöntemi uygulanmasında ikinci sıkıstırmadan sonra 450 anakol yıldızının log M – log Teff diyagramı üstündeki dağılımı. İkinci düzeltmeden sonra yıldızlar düzgün bir şekilde yukarı kaymıştır

4. BULGULAR VE TARTIŞMALAR

Homojen Sıkıştırma Yöntemi (HSY) olarak adlandırdığımız yöntem Ek2'de (\checkmark) işaretiyle işaretli 450 yıldıza uygulanmıştır. Yayınlanmış etkin sıcaklıklar, klasik yöntemle hesaplanmış etkin sıcaklıklar ve HSY ile duyarlılığı arttırılmış etkin sıcaklıklar karşılaştırma amacıyla bir çizelge halinde Ek4'te listelenmiştir. Çizelgedeki kolonlar sırasıyla sıra numarası, katalog numarası, yıldızın adı, hangi bileşen olduğu, yayınlanmış etkin sıcaklıklar ile birlikte mutlak ve bağıl hataları, klasik yöntemle hesaplanmış sıcaklıklar ile birlikte mutlak ve bağıl hataları, en son üç kolonda ise homojen sıkıştırma yöntemiyle duyarlılığı arttırılmış (iyileştirilmiş) etkin sıcaklıklar ile mutlak ve bağıl hataları nasıl hesaplandığı önceki bölümlerde anlatılmıştır. İyileştirilmiş sıcaklıklarla ilgili hataların nasıl hesaplandığı hesaplanacağı aşağıda anlatılacaktır.

Klasik metotla hesaplanmış, sonra HSY ile daha duyarlı hale getirilmiş sıcaklık değerleri yıldız evrim modelleri üreten araştırmacılar için çok önemlidir. Bu yöntem bu araştırmacılara hatası büyük gözlemsel sıcaklıkları kullanmadan, daha duyarlı M ve R değerlerini kullanarak geliştirmek istedikleri evrim modellerini test etme imkanı sağlar. Gözlemsel etkin sıcaklık hataları, $L = 4\pi R^2 \sigma T_{eff}^4$ bağıntısı gereği, ışınım gücüne taşınır ve bu yüzden ışınım gücü hatası Stefan-Boltzman yasası gereği dört misli büyük olur. HSY ile L'deki hatayı çok daha küçük hale getirme imkanı ortaya çıkmıştır. Klasik yöntem ile en duyarlı %6 mertebesinde belirlenebilen etkin sıcaklıklar, HSY ile M ve R'deki gözlem hatası düzeyine yani %3'den daha duyarlı hale getirilmiştir. Böylesi duyarlı sıcaklıkların çift yıldız çözümlerini de daha güvenilir hale getireceği de açıktır.

HSY gözlenen sıcaklıklardan bağımsız olarak ve kullanılan evrim modeli ile daha tutarlı bir şekilde önce etkin sıcaklığı (T_{eff}) sonra lüminositeyi (L) hesaplama imkanı verir. Bu yüzden, sadece kütle ve yarıçap kullanılarak evrim yolları güvenli bir şekilde test edilebilir ve karşılaştırılabilir. Aslında, gözlenen lüminosite ve etkin sıcaklıklar kıyaslandığında gözlemler ile elde edilen en güvenilir parametreler kütle ve yarıçaptır. Etkin sıcaklıktaki hata lüminositeye aktarıldığından, lüminositede ki hata daha da artmaktadır. Çünkü lüminosite etkin sıcaklığın dördüncü kuvveti ile orantılıdır $(L = 4\pi R^2 \sigma T_{eff}^4)$. Daha duyarlı L için bilinen paralaks alternatif olamaz. Çünkü paralaks hataları genellikle büyük olduğundan değil, ayrıca görsel mutlak parlaklığı bolometrik parlaklığa çevirirken tutarlı bir bolometrik düzeltme için doğru ölçülmüş bir sıcaklık da gerekmektedir. Etkin sıcaklık belirlenmesinde alternatif metotlar ve bunlarla ilgili karışıklıklar bu yeni metot ile önlenebilir olmaktadır.

HSY ile elde edilen etkin sıcaklıkların doğruluğu, kullanılan evrim modeline güçlü bir şekilde bağlıdır. Modele olan bağlılık o denli güçlüdür ki, eğer log M – log T_{eff} düzlemindeki limit sıcaklıklar Z, Z', T ve T' farklı bir evrim modeli için farklı bir değer alırsa sıkıştırma katsayıları denklem 3.9 ve 3.10'da ifade edildiği gibi doğrudan etkilenecektir. Sonuçta, düzeltilmiş etkin sıcaklıkların model bağımlılığı kaçınılmazdır. Günümüzde birçok teorik yıldız evrim modeli birbirleriyle rekabet içindedir. Örneğin, Geneva Grids evrim modelleri (Schaller vd 1992, Schaerer vd 1993), Padova yıldız evrim yolları veri tabanı (Girardi vd 2000, Marigo vd 2008, Bertelli vd 2008,2009, Girardi vd 2010, Bressan vd 2012, Chen vd 2015), Yonsei-Yale izokronları (Demarque vd 2004, 2008), Victoria-Regina(Vandenberg, Bergbusch ve Dowler 2006), Dartmounth yıldız evrimi veri tabanı (Dotter vd 2008), Pisa yıldız evrimi veri tabanı (Tognelli, Prada Moroni ve Degl'Innocenti 2011), Geneva Grids dönmeli yıldız evrim modelleri (Meynet ve Maeder 2000, Ekström vd 2012, Mowlavi vd 2012, Georgy vd 2013), Basti yıldız evrim veri tabanları (Pietrinferni vd 2013) ve Pols vd (1988), Yıldız (2015) gibi diğerleri.

Bu tez çalışmasında geliştirdiğimiz metot (HSY) güvenilir kütle ve yarıçap değerleriyle gözlenen Teff, L ve yıldızların yaşı gibi tutarlı değerler elde etme konusunda üstte sayılan modellerin test edilmesinde yeni imkanlar getirmektedir. Uygulamada Bressan vd tarafından Güneş metalisitesinde (Z=0.014) verilen ZAMS ve TAMS çizgilerinin kullanılması tercih edilmiştir (PARSEC modelleri, 2012). Cünkü bu model ortalama Güneş metalisitesindeki tüm Güneş komşuluğundaki yıldızların kütle aralığını kapsamaktadır. Daha iyi bir yaklaşım her bir yıldız için bilinen uygun metalisite ölçümlerini kullanmak olabilirdi. Fakat güvenilir metalisite ölçümlerine sahip yıldızların sayısı sınırlıdır. Southworth'un (2014) DEBCat veri tabanında² verilen 176 ayrık çiftin arasından yalnızca 66 tanesinin metalisite bilgileri mevcuttur ve bunlardan bazıları gerçek ölçümler değil, varsayımlardır ve bazıları ise düşük doğruluktadır. Anakol yıldızları MLR bağıntısına, metalisite ve yaşın etkisini araştıran Gafeira, Patacas ve Fernandes (2012), Torres vd'nin (2010) listesinde mevcut 94 çift sistem arasından 13 tanesinin metalisite ölçümlerini yeterli bulmuştur. Metalisite bilgisinin bu derece sınırlı olması nedeni ile bu tez çalışmasında Güneş komşuluğundaki anakol yıldızlarının metal bolluğu Güneş gibi kabul edilmiştir.

Sıkıştırma katsayılarının (CC1 ve CC2) hesabında kullanılan Z, Z', T ve T' olarak belirtilen limit sıcaklıklar her kütle değeri için özel bir yıldız evrim modeli olmadığından ara değer (lineer interpolasyon) hesabıyla hesaplanmıştır. Söz konusu limit sıcaklıklardaki duyarlılığı arttırmanın bir çaresi daha sık kütle aralıklarında yıldız evrimi modelleri üretmektir. Ancak, bu konu tezimizin hedefleri dışındadır. Eğer log M – log R ve log M – log T_{eff} düzlemlerinde kütle sayısı yeterince fazla olsaydı, ZAMS ve TAMS konumları, bu diyagramlar üzerinde sürekli çizgiden farksız olurdu. Dolayısıyla, böyle ideal bir durum için HSY ile hesaplanmış sıcaklıkların göreli hataları

$$\frac{\Delta T_{eff}}{T_{eff}} = \sqrt{\left(\frac{\alpha}{4}\frac{\Delta M}{M}\right)^2 + \left(\frac{1}{2}\frac{\Delta R}{R}\right)^2} \tag{4.1}$$

formülü ile hesaplanır olacaktır. Dikkat edilirse bu formül denklem 3.4 ve 3.5 formüllerinin birlikte kullanılmasıyla elde edilmiştir. Burada $\Delta M/M$ ve $\Delta R/R$ test yıldızının kütlesi ve yarıçapının gözlemsel rastgele hatalarıdır ve α klasik MLR'de ki M'nin kuvvetidir (L α M^{α}). Eğer kütle ve yarıçapın göreli hataları %1 veya daha az ise orta kütleli yıldızlarda (1.05 < M/M₀ < 2.40) olduğu gibi α = 4.328'dir ve etkin sıcaklıktaki göreli belirsizlikte %1.2'den daha az olmaktadır. 4.1 denklemi gözlemlerle elde edilen M ve R değerlerindeki rastgele (random) hataları, etkin sıcaklığa taşıyan formüldür. İdeal durumlarda, yani Z, Z', T ve T' limit sıcaklıklarında, bunlara bağlı CC1 ve CC2 katsa- yılarında hata yok ise, denklem 4.1 kullanılabilir. Aksi taktirde, denklem 4.1'in verdiği göreli hata değeri alt sınır olarak kabul edilmelidir. Ek4'teki çizelgedeki

² http://www.astro.keele.ac.uk/jkt/debcat/

yıldızlar için göreli etkin sıcaklık hataları ($\Delta T_{eff}/T_{eff}$) 4.1 denklemi kullanılarak, yıldızın göreli kütle ($\Delta M/M$) ve göreli yarıçap ($\Delta R/R$) hataları Ek2'deki çizelgeden alınarak hesaplanmıştır.

4.1. Yeni MLR Bağıntıları

Duyarlılığı HSY ile arttırılmış etkin sıcaklıklar Eker vd (2015) tarafından elde edilen dört MLR'yi tekrar gözden geçirmemize olanak sağlamıştır. Örnek vıldızların iyileştirilmiş etkin sıcaklıkları ve gözlenen yarıçapları kullanılarak ışınım güçleri veniden belirlenmiştir ve sonra belirlenen bu ışınım güçleri ve kütleler kullanılarak dört bölge için yeni MLR bağıntıları aynı yöntemle tekrar belirlenmiştir. İterasyonlar bu yeni MLR'ler kullanılarak bir sonraki adım için tekrar yeni MLR'ler bulunmuştur. Bir önceki ve bir sonraki adımlarda bulunan MLR bağıntılarının aynı olması durumunda iterasyonlar durdurulmuştur. Ancak, bu iterasyon işlemlerinde seçilmiş 450 anakol yıldızlarının hepsi kullanılmamıştır. İterasyon işlemleri için kütle (M) ve yarıçap (R) değerleri %3 ve daha iyi olan yıldızlardan olusmus bir kalibrasyon örneği kullanılmıştır. Kalibrasyon örneği 450 arasından seçilmiş en duyarlı M ve R değerlerine sahip 281 tane anakol yıldızından oluşturulmuştur. İterasyonlar çabucak sonlanmıştır. Çünkü üçüncü iterasyon sonucunda iyileştirilmiş ışınım güçlerine karşılık gelen kalibrasyon örnekleri için log M – log L düzlemi Sekil 4.1'de gösterilmiştir ki bu da kararlı değerlere ulaşmak için yeterlidir. Yan yana karşılaştırma yapabilmek için gözlenen sıcaklıklarla elde edilen ışınım güçleri dikey ölçekte +2.3 dex kaydırılmıştır. Gözlenen lüminositelere göre iyileştirilmiş lüminositelerin daha az saçıldığı Şekil 4.1'de açıkça görülmektedir.

Şekil 4.1. Kütle ve yarıçap duyarlılığı %3 ve daha iyi olan 281 tane anakol yıldızının log M – log L diyagramında dağılımı. (+) iyileştirilmiş lüminositeler, (o) ise yayınlanmış lüminosite değerleridir. Kırılma noktaları M= 1.05, 2.4 ve 7M₀'tir

Eker vd'nin (2015) belirlediği MLR bağıntıları ve bu tez çalışmaşında HSY vönteminin iterasyonu ile ivilestirilmis ve bu ivilestirilmis MLR ler Cizelge 4.1'de karşılaştırılmıştır. Birinci ve ikinci kolonlar sırasıyla yıldız kütle aralığı adını ve kütle aralıklarını göstermektedir. Üçüncü kolon örnek yıldızların sayısını ve dördüncü kolon iterasyon sayısını göstermektedir. İterasyon sayısının sıfır olması Eker vd'nin (2015) belirlediği orijinal yani başlangıç MLR'lerini göstermektedir. Dikkat edilirse yıldız sayılarında, kütle aralığı $7 < M/M_{\odot} < 32$ olanlar hariç artış görülmektedir. Bunun da sebebi bazı yıldızların yayınlanmış T_{eff} değerinin olmaması ve dolayısıyla yayınlanmış L değerlerinin belirlenmemiş olmasıdır. Bu nedenle Eker vd (2015) tarafından daha önce tanımlanan MLR bağıntılarında kullanılan yıldız sayısı daha azdır. Bu çalışmayla birlikte iyileştirilmiş etkin sıcaklıklara dayalı birkaç yıldız daha ilave edilmiştir. Beşinci kolon lineer MLR bağıntılarını vermektedir. İkinci ve üçüncü satırlar, birinci ve üçüncü iterasyon sonucunda elde edilen ivilestirilmiş MLR bağıntılarını göstermektedir. İterasyonlar çabucak sonuca ulaşmıştır, böylelikle en yüksek iterasyon sayısı üçtür. Korelasyon katsayıları (R), standart sapmalar (σ) ve klasik MLR içindeki (L α M^{α}) M'nin üssü (α) sırasıyla altı, yedi ve sekizinci kolonlarda verilmiştir. Korelasyon katsavıları dört kütle aralığının üçü için iyileştirilmiştir, orta, yüksek ve çok yüksek kütle aralıkları. Küçük kütle aralığı için yaklaşık olarak aynı kalmıştır. İyileştirmenin açık etkisi standart sapmalarda (σ) görülmektedir. İlk iterasyon sonunda keskin bir azalma görülmekte ve sonraki tüm iterasyonlarda azalma sabit kalmaktadır (kolon 7). Cizelge 4.1'de kolon yedideki standart sapmaların yayınlanmış sıcaklıklarda daha fazla ve iyileştirilmiş sıcaklıklarda ise daha az saçılma gösterdiği görülmektedir. Buna ek olarak log M – log L düzleminde yıldız verilerine fit edilen lineer denklemlerin eğimi iterasyon sonucunda biraz değişmiştir. Bu yüzden α değerinin iterasyonlarla değiştiği görülmektedir.

Eker vd (2015) tarafından elde edilen MLR bağıntılarındaki hata ve standart sapmalar ile bu tez çalışmasında iterasyonlar sonucunda elde edilen hata ve standart sapmaları Çizelge 4.2'de karşılaştırılmıştır. Çizelge 4.2'deki birinci ve ikinci kolonlar, kütle aralığı adı ve kütle aralıklarıdır. Üçüncü kolon kütle aralığı için belirlenmiş standart sapmaları, sonraki kolon dört ve kolon beş verilen standart sapmaya karşılık gelen göreli lüminosite belirsizliği ($\Delta L/L$) ve bu değerin dörtte birini ($\Delta L/4L$) vermektedir. Göreli yarıçap hatasının yarısı ($\Delta R/2R$) kolon altıdadır. ($\Delta R/2R$) hesabında limit belirsizlik %3 olarak alınmıştır. Bu durumda hesaplanan etkin sıcaklıktaki göreli belirsizlik ($\Delta T_{eff}/T_{eff}$) kolon vedidedir. Kolon sekiz α değerleridir. Kolon dokuzda $(\Delta M/M)$ olarak belirtilen büyüklük, lüminositedeki belirsizliğin kütleve tasınmıs halidir. Bu değer, kütle belirsizliğindeki toleransı gösterir. Bu kolondaki değerden büyük belirsizlikler için $\Delta M/M$ belirsizliği $\Delta L/L'$ ye taşınmalıdır. Çizelge 4.2'nin en son kolonu verilen belirsizliklerin kaynağına işaret etmektedir. Çizelge 4.2 özet olarak bize sunu anlatmaktadır. Eker vd'nin (2015) belirlediği MLR'ler ile en iyi belirlenebilen etkin sıcaklık hatası %6.22 iken (Çizelge 4.2, Kolon 5), bu tez çalışmasında elde edilen MLR'ler kullanıldığı taktirde, klasik metot ile belirlenebilen en duyarlı sıcaklık hatası %3.51'e düşmüştür. Yani, bu tez çalışmasındaki iterasyonlar ile yeni bulunan MLR'ler göreli olarak daha duyarlı etkin sıcaklık elde etmeyi (klasik yöntemle) mümkün kılmaktadır. Bu tez çalışması ile iyileştirilmiş MLR'ler, HSY ile uğraşmak istemeyen, kolay yoldan Teff hesabi yapmak isteyenlere bir kolaylıktır. Bu noktada HSY'nin uygulanması ile çok daha duyarlı (%1'den daha duyarlı) T_{eff} hesabı yapmanın mümkün olduğunu unutmamamız gerekir.

Kütle Aralığı Kütle Aralığı Adı	Yıldız Sayısı	İterasyon Sayısı	MLR Bağıntıları	R	σ	α
	57	0	Log L=4.841xlogM-0.026	0.980	0.121	4.841
Küçük Kütleli $0.38 < M/M_{\odot} \le 1.05$	62	1	Log L=5.062xlogM+0.100	0.976	0.096	5.062
		3	Log L=5.062xlogM+0.100	0.976	0.096	5.062
	146	0	$L_{0,\alpha} I = 4.328 \times 10^{-10} M_{\odot} 0.002$	0.070	0 108	1 3 7 8
Orta Kütleli $1.05 < M/M_{\odot} < 2.40$	140	0	Log L=4.526x10gW1-0.002	0.970	0.108	4.320
	149	1	Log L=4.327xlogM+0.028	0.980	0.061	4.327
		3	Log L=4.321xlogM+0.029	0.979	0.061	4.321
	42	0	Log L=3.962xlogM+0.120	0.951	0.165	3.962
Büyük Kütleli $2.4 < M/M_{\odot} \le 7$	47	1	Log L=3.695xlogM+0.262	0.982	0.063	3.695
		3	Log L=3.695xlogM+0.262	0.982	0.063	3.695
	23	0	Log L=2.726xlogM+1.237	0.946	0.158	2.726
Çok Büyük 7 < M/M₀ ≤ 32 Kütleli	23	1	Log L=2.698xlogM+1.183	0.976	0.073	2.698
		3	Log L=2.697xlogM+1.185	0.976	0.073	2.697

Çizelge 4.1. Eker vd (2015) tarafından hesaplanan MLR'ler ile yeni hesaplanmış MLR'lerin karşılaştırılması

Çizelge 4.2. Eker vd (2015) tarafından elde edilen kütle – parlaklık bağıntısındaki hata ve standart sapmalar ile bu tez çalışmasında elde edilen hata ve standart sapmaların karşılaştırılması

Kütle Aralığı Adı	Kütle Aralığı	σ	ΔL/L (%)	(<i>ΔL/L</i>)/4 (%)	$(\Delta R/R)/2$ (%)	ΔT/T (%)	α	<i>∆M/M</i> (%)	Remark
Küçük	$0.38 < M/M_{\odot} \le 1.05$	0.121	27.86	6.96	1.5	7.12	4.841	5.76	Eker vd (2015)
Kütleli		0.096	22.10	5.53	1.5	5.73	5.062	4.37	Bu Çalışma
Orta Kütleli	1.05 <m m₀≤2.40<="" td=""><td>0.108</td><td>24.87</td><td>6.22</td><td>1.5</td><td>6.39</td><td>4.328</td><td>5.75</td><td>Eker vd (2015)</td></m>	0.108	24.87	6.22	1.5	6.39	4.328	5.75	Eker vd (2015)
		0.061	14.05	3.51	1.5	3.82	4.321	3.25	Bu Çalışma
Büvük	2.4 < M/M⊚ < 7	0.165	37.99	9.50	1.5	9.62	3.962	9.59	Eker vd (2015)
Kütleli		0.063	14.51	3.63	1.5	3.93	3.695	3.93	Bu Çalışma
Çok Büyük Kütleli	$7 < M/M_{\odot} \leq 32$	0.158	36.38	9.10	1.5	9.22	2.726	13.35	Eker vd (2015)
		0.073	16.81	4.20	1.5	4.46	2.697	6.23	Bu Çalışma

4.2. İyileştirilmiş, Hesaplanmış ve Yayınlanmış T_{eff} Karşılaştırması

Kalibrasyon örneğindeki yıldızların (281 yıldız) iyileştirilmiş (HSY), hesaplanmış (Klasik öntem) ve yayınlanmış etkin sıcaklıkları log M – log T_{eff} diyagramında karşılaştırılmıştır (Şekil 4.2). Yayınlanan ve hesaplanan sıcaklıklar dikey ölçekte kaydırılarak, yan yana kıyas yapmanın mümkün olması sağlanmıştır. Yayınlanmış sıcaklıkların dağılımının düzensiz olduğu açıkça görülmektedir. Eker vd'nin (2015) klasik metodu uygulandıktan sonra, saçılma azalmıştır. Rastgele gözlenen etkin sıcaklık hatalarının azaldığı tartışılabilir. Bununla beraber, daha makul bir biçimde, evrim ve metal bolluğuna bağlı sistematik hatalara örnek olarak genç yıldızların sıcaklıkları olduğundan fazla hesaplanmakta, yaşlı yıldızların sıcaklıkları ise olduğundan az hesaplanmaktadır. Bundan dolayı log M – log T_{eff} diyagramındaki yıldızların konumları ZAMS ve TAMS çizgilerinin dışına taşmaktadır (Şekil 4.2 ortadaki diyagram). Dikkat edilirse bu diyagramda, ZAMS çizgisinden daha sıcak ve TAMS çizgisinden daha soğuk yıldızlar yer almaktadır.

Şekil 4.2. Yayınlanmış (üst), hesaplanmış (orta) ve iyileştirilmiş (alt) etkin sıcaklıkların karşılaştırılması. Yayınlanmış ve hesaplanmış sıcaklıklar kıyaslama yapılabilmek için sırasıyla 0.8 ve 0.4 dex yukarı kaydırılmıştır

HSY'nin uygulanması ile klasik metot tarafından gelen sistematik hatalar düzeltilebilmektedir. Sonuç olarak, Şekil 4.2'nin en altında gösterilen diyagramda tüm yıldızlar ZAMS ve TAMS arasında belirlenen bölge arasında kalmaktadır. Hatırlanacağı üzere, bu çalışmadaki anakol yıldızları log M – log R düzleminde, (Şekil 3.1) ZAMS ve TAMS çizgileri arasında kalan yıldızlar olarak seçilmiştir. Böylelikle, bu öncül durumun log M – log T_{eff} düzlemde de tasdik edilebilmesi mümkün olmuştur ki, böyle bir durum ancak iyileştirilmiş etkin sıcaklıklarla tasdik edilebilir. Mevcut kalibre edilmiş yıldızların yayınlanmış, hesaplanmış ve iyileştirilmiş etkin sıcaklıkların H-R diyagramları Şekil 4.3'te karşılaştırılmıştır.

Şekil 4.3. Yayınlanmış (üst), hesaplanmış (orta) ve iyileştirilmiş (alt) H – R diyagramlarının karşılaştırılması

Bu diyagramda, karşılaştırılma yapılabilmesi için yayınlanmış ve hesaplanmış etkin sıcaklıkların H-R diyagramları, sırasıyla +8 ve +4 dex olarak dikey ölçekte kaydırılmıştır. Dikkat edilirse, diyagramdaki yayınlanmış ve hesaplanmış etkin sıcaklıklar özellikle geç tayf türünden yıldızlarda ZAMS ve TAMS çizgilerinin dışına taşmaktadır. Ayrıca yayınlanmış ve hesaplanmış etkin sıcaklıklarla oluşturulan H-R diyagramlarının sıcaklık aralığı, iyileştirilmiş sıcaklıklarla oluşturulmuş H-R diyagramının sıcaklık aralığından daha geniştir. Yıldızın metalisitesi biliniyor ve homojen sıkıştırma katsayıları CC1 ve CC2'nin hesaplandığı teorik ZAMS ve TAMS değerleri yıldızın metalisitesi ve kütlesine uygun seçilmiş ise HSY araştırmacılara klasik metottaki sistematik hataların düzeltilmesi için yeni bir olanak sağlar. Klasik metodun sebep olduğu sistematik hatalar düzeltilmiş ise, geriye kalan sadece ve sadece M ve R'lerdeki rastgele hatalardır. En kötü durumda, yani yıldızın metalisitesi bilinmiyor ve bu yüzden metalisiteye uygun evrim modelleri kullanılmamış, örneğin Güneş metal bolluğu farzedilmiş ise, sadece yıldız evriminden kaynaklanan sistematik hata düzeltilmiş, metalisite etkisi düzeltilmemiş olur. Rastgele gözlemsel hatalar ile birlikte, metalisite kaynaklı sistematik hataların hesaplanan etkin sıcaklıklara eşlik ettiği unutulmamalıdır. Metodun güçlü model bağımlılığından kaynaklanan belirsizlikler ancak farklı farklı evrim modellerine bağlı sonuçların karşılaştırılması ile ortaya konabilir. Metalisite ve farklı farklı modellerin etkisinin araştırılması bu tez kapsamında olmadığı için, şimdilik sadece bu konunun önemine dikkat çekilmiştir.

4.3. İyileştirilmiş Sıcaklıklar Gözlemsel Sıcaklıklardan Bağımsız Mı?

HSY ile hesaplanan iyileştirilmiş sıcaklıklar kullanılan MLR'lerden bağımsızdır. Bir yıldızın kütle ve yarıçapını kullanan klasik etkin sıcaklık hesaplama metodu herhangi bir formdaki MLR'yi kullanabilir. Klasik metot için MLR'nin doğru olması ve gerçek yıldızları temsil edebilmesi çok önemlidir. Çünkü, MLR'nin kendisi ek sistematik hata getirebilir, fakat homojen sıkıştırma yöntemi MLR'leri tıpkı kimyasal reaksiyonlardaki katalizör gibi kullanır. Bu sebeple, MLR'nin doğruluğu bu yeni metotta önemli değildir.

Bu tez çalışması kapsamında, Eker vd'den (2015) alınan logaritmik formda

$$logL = \alpha \, logM + sabit \tag{4.2}$$

olarak ifade edilen MLR'lerdeki sabitin değeri değiştirilerek, yani MLR bağıntısını ifade eden doğru log M – log L diyagramında aşağı ve yukarı kaydırılarak birçok test yapılmıştır. Ancak, her testin sonucunda, kaydırma yönü ve büyüklüğünden bağımsız olarak, hep aynı iyileştirilmiş etkin sıcaklık değeri hesaplanmıştır. Bu durumun bir sürpriz olduğunu düşüneneler olabilir. Dikkatli bakıp incelendiğinde, bu durumun beklenmedik bir sürpriz değil, HSY'nin doğal bir sonucu olduğu anlaşılır.

Kullanılan MLR'nin formu ne olursa olsun, ister kaydırılsın, isterse yanlış sonuç veren bir MLR olsun, HSY'ye devam edilirse, sonuçta doğru etkin sıcaklık hesaplanır. Çünkü HSY yıldızın log M – log R diyagramındaki teorik ZAMS ve TAMS'a göre yıldızın konumunu temel parametre olarak alır. İkinci adımda yıldızın log M – log T_{eff} diyagramında konumu 3.9 ve 3.10 denklemleriyle düzeltilir. Yıldızın log M – log R'deki ZAMS ve TAMS'a göre konumu, log M – log T_{eff} düzleminde de korunduğu için, MLR'nin katkısı, sebep olduğu yanlılık ile birlikte düzeltilmiş olur. Bu da yeni yöntemin model bağımlı olduğunun başka bir kanıtıdır, çünkü R ve T_{eff}'in ZAMS ve TAMS değerleri kullanılan yıldız içyapısı ve evrim modellerinden gelmektedir. İyileştirilmiş sıcaklıklar kullanılan MLR'den bağımsız olduğu için gözlenen

sıcaklıklardan da bağımsızdır. Bu sebeple iyileştirilmiş etkin sıcaklıklar doğrudan Stefan-Boltzmann yasasında tanımlanan sıcaklıklardır. Buna karşılık gözlemlerle elde edilen sıcaklıklar, etkin sıcaklıktan farklı olarak, renk sıcaklığı, parlaklık sıcaklığı, uyartılma sıcaklığı, iyonlaşma sıcaklığı gibi farklı bir değer olarak ortaya çıkabilir. Ancak termodinamik dengenin geçerli olduğu şartlarda ve doğru bir kalibrasyonla bütün bu sıcaklıklar aynı olabilir.

4.4. Yeni Metot ve Evrim Yolları

Yeni metot (HSY), bir yıldızın ilgili evrim modeliyle uyumlu olarak kütle, yarıçap ve metalisite ile belirlenen bir etkin sıcaklık sağlar. Diğer taraftan, doğrudan teorik evrim yolları kullanılarak da aynı sonuç elde edilebilir. Yani, yıldızın metalisite ve kütlesine (M) göre uygun seçilmiş bir evrim yolu üstünde R değeri ile yıldızın yaşı belirlenebilir. Teorik evrim hesapları yıldız yaşının fonksiyonu olarak sadece T_{eff} ve L değil, merkezindeki sıcaklık ve basıncı, yıldız içindeki hidrojen, helyum ve ağır element bolluklarını da vermektedir. Bu doğrudan metot diyebileceğimiz yöntem, yani M ve R'den yıldız yaşını bulma, ve sonrasında modelin ürettiği diğer çıktıları evrim modelinden okuma yöntemi, Homojen Sıkıştırma Yöntemine göre, daha basit ve daha kolay uygulanabilir görülmektedir. Diğer bir deyişle, HSY göreceli olarak daha karmaşık ve zahmetli olarak algılanabilir. Ancak, bu kadar temel ve basitmiş gibi görülen doğrudan yöntemin gözlemsel etkin sıcaklık ve lüminosite belirleyen astronomlar arasında çok kullanılan bir yöntem olmadığı anlaşılmaktadır ki, etkin sıcaklık duyarlılık probleminin ortaya çıkması bu yüzdendir.

HSY'nin doğrudan yönteme göre avantajlarına geçmeden önce belirtilmesi gereken bir gerçeklik vardır. HSY ve uygulamaları söz konusu teorik evrim modellerini test etme imkanı ortaya koymaktadır. Herhangi bir M – R diyagramı üstünde yıldızın yaşını belirleme ve bu yaşa karşılık gelen teorik hesapla ortaya konan T_{eff} değerini okuma (veya bulma) söz konusu evrim modelini kullanan bir metot olabilir. Tek başına böyle bir yöntem teorik model hesaplarını test etmek için yeterli olamaz. Teorik model hesaplarını test etmek için başka bir bağımsız metot gerekir. Bu tez çalışması kapsamı içinde, listemizdeki anakol yıldızları ile yeni metot (HSY) ve doğrudan metot kullanılarak birçok test yapılmış ve yeni yöntem tarafından sağlanan hata limitleri içinde, elde edilen T_{eff}'ler birbirleriyle uyumlu bulunmuştur.

Her iki metodun temel uygulamaları karşılaştırılınca HSY'nin göreli olarak daha zahmetli ve karmaşık görünmesinin arkasında, bunun böyle olmadığı, gerçek karmaşa ve yetersizliğin doğrudan yöntem ile ortaya çıktığının açıklamaları aşağıda maddeler halinde belirtilmiştir:

1) Mevcut evrim yolları belirli bir kütle ve metalisite içindir. Her kütle ve metalisite değeri için evrim yolu yoktur. En yakın iki evrim yoluna bağlı olarak arada kalan kütle için de uygun bir teorik evrim yolu hesaplanmalıdır.

2) Evrim yolları daha önceden belirlenen zaman aralıklarına göre hesaplanmıştır. Bu zaman aralıkları ihtiyaç olandan daha geniş ya da daha dar olabilir. Eğer ihtiyaç duyulandan daha geniş ise yıldızın yarıçapı evrim model çıktıları içinde bulunmayabilir, eğer daha dar ise evrim yolu üzerinde aynı yarıçapta birçok nokta bulunabilir. Bu da etkin sıcaklık değerlerinde hataya sebep olur.

3) Yukarıdaki iki madde sebebiyle, T_{eff} değerlerinin hata hesabı kolay değil, karmaşıktır. Doğrudan metodun aksine, HSY hesaplanan T_{eff} değerleriyle ilgili hataları hesaplamada güvenilir bir yöntem sağlar.

4) Evrim yollarını kullanan doğrudan yöntem, iki boyutlu M – R düzlemi üstünde çizilen bir evrim yolunu, yani iki boyutlu bilgi kullanarak sonuca gider. Oysa, HSY yıldızın M – R düzlemindeki konumunu, M – T_{eff} düzlemine taşıdığı ve sonuca M – T_{eff} düzleminde gitiği için üç boyutlu bilgi kullanır. Birbirine dik iki düzlem kullandığı için HSY daha ileri daha güvenilir sonuç sağlar. Bu iki düzlemin ara kesitinde kütle (M) bilgisi vardır. Diğer düzlemleri tarif eden yarıçaplar (R) ve etkin sıcaklıklardır (T_{eff}).

5) ZAMS ve TAMS noktaları evrim yolları üzerinde iyi belirlenmiş tanımlı noktalardır. ZAMS ve TAMS noktaları, HSY için referans noktalarıdır. Bu yüzden bir yıldızın M – R ve M – T_{eff} diyagramları üzerindeki göreli konumu iyi belirlenmiş ise, üç boyutlu uzayda konumu da belirlenmiştir. Bu yüzden, iki boyutlu M – R düzlemini kullanan doğrudan metoda göre göreli hatalar HSY de daha azdır.

6) HSY anakol kütle – parlaklık bağıntısını ve teorik yıldız içyapı ve evrim modellerini kullanan yarı empirik bir metottur. Doğrudan yöntemin metot olarak kabul edilmesi bile problemlidir. O sadece, yıldızın gözlemsel kütlesine göre belirlenmiş bir teorik evrim yolu (farklı yaşlardaki R değerleri) ile gözlenen yarıçapın karşılaştırılmasıdır.

7) İki metodun da çalışma yöntemi farklıdır. Doğrudan metot M – R diyagramı üstünde belirlenen yıldızın yaşına, model hesaplamaları tarafından öngörülen yaş, ışınım gücü ve etkin sıcaklıkta dahil olmak üzere diğer parametrelerin belirlenmesine dayanmaktadır. Fakat, yıldızın M – R ve M – T_{eff} düzlemleri konumuna bağlı olarak HSY'de önce yıldızın etkin sıcaklığı (T_{eff}) hesaplanır. Sonra T_{eff} ve R kullanılarak lüminosite bulunur. Nihayet, yıldızın yarıçapı (R), etkin sıcaklığı (T_{eff}) ve lüminosite (L) kullanılarak en son parametre olarak yıldızın yaşı bulunur. Bu durumda, HSY ile yıldızın evrim durumu (yaşı) daha iyi, daha güvenilir olarak belirlenmiş olur.

8) Eğer gözlenen yıldızın kütle kaybı oranı bilinmiyorsa, gözlenen kütle ve yarıçap ile yıldızın yaşını belirlemek mümkün değildir. Çünkü doğrudan yöntemi uygulayabilmek için yıldızın sıfır yaş kütlesinin bilinmesi gerekmektedir. Sıfır yaş kütlesi bilinmeden hangi evrim yolu kullanılması gerektiği bilinmez. HSY kütle kayıplı modelleri kullanma konusunda aşağıda anlatılacağı gibi daha ileri ve avantajlıdır.

	ZAMS			TAMS				
M/M₀	log L/L₀	$\log T_{\text{eff}}$	log R/R₀	M/M₀	log L/L₀	$\log T_{\rm eff}$	log R/R₀	
12	4.00085	4.45791	0.6080	12.000	4.42475	4.32486	1.0861	
14	4.20053	4.48899	0.6457	13.891	4.61901	4.34551	1.1419	
16	4.36799	4.51455	0.6783	15.861	4.79150	4.36601	1.1871	
18	4.51016	4.53587	0.7067	17.758	4.91822	4.37069	1.2411	
20	4.63419	4.55409	0.7323	19.618	5.03327	4.37517	1.2897	
24	4.84189	4.58370	0.7769	23.224	5.22010	4.37359	1.3863	
28	5.00460	4.60597	0.8138	26.393	5.36283	4.35535	1.4941	
30	5.07616	4.61549	0.8305	27.906	5.42366	4.34155	1.5521	
35	5.23146	4.63550	0.8681	31.451	5.55328	4.29146	1.7171	
40	5.35780	4.65078	0.9007	34.697	5.66046	4.20972	1.9342	

Çizelge 4.3. Kütle kayıplı Güneş metal bolluğundaki (Z= 0.014) PARSEC evrim modellerinde (Bressan vd 2012) ZAMS ve TAMS değerlerinin karşılaştırılması

4.5. Kütle Kayıplı Evrim Modellerinin HSY Yöntemine Dâhil Edilmesi

Yıldızların anakol yaşamları boyunca kütle kaybı özellikle büyük kütleli yıldızlar için önemlidir. Yani, yıldızların anakol yaşamlarının başlangıcındaki (ZAMS) ve sonlarındaki (TAMS) kütleleri arasında önemli kütle kaybı olabilir. Bu çalışmada kullanılan evrim yolları incelendiğinde dikkat edilirse kütle kaybı $M \ge 14 M_0$ 'den başlayarak daha büyük kütleli yıldızlarda görülmeye başlar ve daha küçük kütleli $M \le 12 M_0$ olan yıldızlar için kütle kaybı ihmal edilebilir olduğu için yıldızın kütlesi anakol yaşamı başlangıcında (ZAMS) ve anakol yaşamının sonunda (TAMS) aynıdır. ZAMS'ta ve TAMS'ta Güneş metal bolluğunda ki (Z=0.014) PARSEC modelleri için verilen kütle, yarıçap, ışınım gücü ve etkin sıcaklıklar Çizelge 4.3'te gösterilmektedir.

Çizelge 4.3'e göre kütlesi 14 M₀ olan bir yıldızın anakol süresi içinde TAMS'a varmadan önceki relatif kütle kaybı yaklaşık %0.8'dir (0.109 M_o). Kütle kayıp oranı büyük kütlelere doğru artmaktadır. Örneğin kütlesi 30 M₀ olan bir yıldızın TAMS'a varıncaya kadar kaybettiği relatif kütle kaybı yaklaşık %7'dir (2.094 M_o). HSY M \leq 12 M_o kütleli yıldızlar için doğrudan uygulanabilir, çünkü bu kütlelerde ZAMS'dan TAMS'a gelene kadar yıldızın kütlesi hep aynı kalmaktadır. Önemli miktarda yani evrim volunda değişikliğe sebep verecek kadar kütle kaybeden büyük kütleli yıldızlar için buraya kadar anlatıldığı şekli ile HSY yetersizdir. Biliyoruz ki, kütle kaybeden büyük kütleli yıldızlar da, log M – log R ve log M – log T_{eff} diyagramları üstünde, ZAMS ve TAMS çizgileriyle sınırlanmış düzlemde olacaklardır. Bu nedenle sıfır yasındaki kütleleri (ZAMS evresindeki) yatay eksene koyarak, sonrasında TAMS'taki R ve T_{eff} değerlerini bu diyagramlarda işaretlemek, kütle kayıplı modeller için doğru olmaz. Gözlemsel M ve R'leri kullandığımız için, modifiye edilmiş, yani değiştirilip uygun hale getirilmiş TAMS çizgilerini kullanmak gerekir. Bundan sonra modifiye TAMS verine mTAMS ifadesi kullanılacaktır. log M – log R ve log M – log T_{eff} diyagramlarında mTAMS üstüne işaretlenmiş bir yıldız, ki bu yıldız kütle kaybeden bir yıldızdır, anakol ömrünün sonundaki bir yıldızdır. Kütle kayıplı evrim modelleri

arasından doğru bir evrim yolunu bulup kullanmadıkça, böylesi bir yıldızın anakol kütlesini bilmek imkanı yoktur. Bu durumda, log M – log R ve log M – log T_{eff} diyagramlarının her ikiside, kütle kayıplı modelleri içine alacak şekilde TAMS değil de, mTAMS olarak değiştirilmelidir. Bu noktada, kütle kayıplı evrim modellerinden mTAMS çizgisinin nasıl hesaplanacağına bakmak durumundayız.

4.5.1. Kütle kayıplı evrim modellerinde mTAMS çizgisinin hesaplanması

İlk olarak Çizelge 4.3'e baktığımızda kütlesi $M \ge 12 M_0$ olan kütleli yıldızlarda TAMS evresine gelene kadar bir kütle kaybı ortava cıkmaktadır. Bu kütle kaybından dolayı evrim modelinde verilen track kütlesi ile TAMS evresindeki kütleler farklılık göstermektedir. O halde kütle kayıplı modellerde TAMS evresinde bu kütlelere göre hesaplanan yarıçap, etkin sıcaklık ve ışıtma güçleri evrim modelinde verilen track kütlesine karşılık gelen değerler olmamalıdır. Bundan dolayı track kütlesi, kütleyarıçap, kütle-etkin sıcaklık diyagramlarında konup, sonrasında TAMS'taki yarıçap ve etkin sıcaklık değerlerini bu diyagramlarda işaretlemek doğru olmaz. Çünkü M ≥ 12 M_o'den büyük kütleli yıldızlar TAMS'a vardıklarında artık aynı kütlede değillerdir. Bu gün gözlenen bir anakol yıldızı bugün itibariyle ZAMS üstünde veya TAMS üstünde veya arasında bir konumda olabilir. ZAMS üstünde ise zaten sorun yoktur. TAMS üstünde ve kütle kaybeden yıldız ise TAMS değerlerinin modifiye edilip, mTAMS değerlerinin hesaplanmış olması gerekir. Bu durum bir bakıma model hesapları yapılırken, kütle kayıp oranı ve mekanizmasına göre ZAMS kütlesinin bulunması gibi bir durumdur. Ancak, biz bu yıldızların ZAMS kütlesini bilmek durumunda değiliz. Kütlesini gözlemlerden elde ettiğimiz yıldızlar bugün TAMS evresinde ise, modifiye edilmiş TAMS (mTAMS) üstünde olmalıdır. mTAMS eğrisini kütlenin bir fonksiyonu olarak düşünebiliriz. mTAMS aslında bir fonksiyondur. Bu fonksiyon TAMS evresine ulaşmış farklı yıldızların kütleleri ile, TAMS değerleri (R, Teff) arasındaki ilişkiyi ifade eden bir fonksiyondur.

Çizelge 4.3'te kütle kayıplı modellerin ($M \ge 12 M_{o}$) TAMS evresindeki yarıçap değerleri logaritmadan kurtarılarak M - R düzlemi üzerinde işaretlenmiştir (Şekil 4.4). Bu diyagram üzerinde işaretlenmiş noktalardan (+) geçen en küçük kareler yöntemi ile çeşitli polinom fonksiyonları denenmiş ve beşinci dereceden bir fonksiyonun, diyagram üstündeki noktaları en küçük standart sapma (σ) ve en büyük korelasyon (R) ile en iyi temsil ettiği görülmüştür. fonksiyon fit edilmiştir. Aynı şekilde Çizelge 4.3'teki TAMS etkin sıcaklık değerleri logaritmadan kurtarılarak M – T_{eff} düzlemi üzerinde işaretlenmiştir (Şekil 4.5). İşaretlenen noktalardan en küçük kareler yöntemi ile ikinci dereceden bir fonksiyon (polinom) fit edilmiştir. İkinci dereceden bir polinom, M – T_{eff}'deki dağılımı açıklamakta yeterli olmuştur.

Şekil 4.4. Kütlenin fonksiyonu olarak TAMS yarıçapları (R). Artı (+) işareti ile gösterilen noktaların koordinatları Çizelge 4.3'ten alınmıştır. Logaritmadan kurtarılan Güneş birimindeki TAMS yarıçaplarına beşinci dereceden fit edilen polinom fonksiyonu düz çizgi (-) ile gösterilmiştir.

Şekil 4.5. Kütlenin fonksiyonu olarak TAMS etkin sıcaklıkları (T_{eff}). Artı (+) işareti ile gösterilen noktaların koordinatları Çizelge 4.3'ten alınmıştır. Logaritmadan kurtarılan Kelvin birimindeki TAMS sıcaklıklarına ikinci dereceden fit edilen polinom fonksiyonu düz çizgi (-) ile gösterilmiştir.

	R = R(M)	Teff = T(M)			
	5.Derece Pol.	2. Derece Pol.			
а	$4.87905e-05 \pm 5.172e-06$	-38.1578 ± 0.892			
b	-0.00483 ± 0.00059	1572.44 ± 41.6			
c	0.19064 ± 0.02637	7714.06 ± 447.5			
d	-3.68738 ± 0.56790	-			
e	35.58780 ± 5.90800	-			
f	-125.284 ± 23.72	-			
R	0.99997	0.99884			
σ	0.17517	128.035			

Çizelge 4.4. Kütlenin fonksiyonu olarak TAMS evresinde kütle kaybeden yıldızların PARSEC modellerine göre yarıçap [R=R(M)] ve sıcaklık [T_{eff}=T(M)] fonksiyonu fit parametreleri

Bu durumda, Şekil 3.1 de kullanıldığı hali ile mTAMS fonksiyonu log R(M) ile ifade edilmektedir. R(M)'nin açık ifadesi

$$R(M) = aM^{5} + bM^{4} + cM^{3} + dM^{2} + eM + f$$
4.3

dir. Burada M, TAMS'a ulaşmış yıldızın Güneş birimindek kütlesidir. Beşinci dereceden fonksiyonun katsayıları ve hataları Çizelge 4.4'te verilmiştir.

Aynı şekilde Şekil 3.3'te, kullanıldığı hali ile mTAMS fonksiyonu log T(M) ile ifade edilmektedir. T(M)'nin açık ifadesi

$$T(M) = aM^2 + bM + c \tag{4.4}$$

dir. Aynı şekilde M, TAMS'a ulaşmış yıldızın Güneş birimindeki kütlesini ve T(M) de etkin sıcaklığını göstermektedir. Katsayılar ve hataları Çizelge 4.4'te verilmiştir.

Çizelge 4.3'teki verilerden her bir track için TAMS anındaki kütlelere göre belirlenen bu fonksiyonlar mTAMS olarak kullanılmışlardır. Önceden belirtilmemiş olmasına rağmen anakol yıldızlarının seçiminde kullanılan Şekil 3.1'de dahil olmak üzere, bu tezde TAMS içeren her bir şeklideki TAMS çizgileri, $M \ge 12M_0$ için mTAMS olarak düzeltilmiş formu içermektedir. Bu düzeltme şekiller üstünde, yanlış anlamaya sebep olmamak için ayrıca belirtilmemiştir. Ek1'de verilen teorik evrim modelleri için de TAMS değerleri Çizelge 4.3 ile karşılaştırılırsa görülecektir ki, Ek1'deki büyük kütleli modellerin TAMS değerleri Çizelge 4.3'teki kütle kayıplı modeller ile aynı olmadığı görülecektir. Bunun sebebi, Ek1'deki çizelgede dahi mTAMS değerleri kullanılmıştır. Yani bu tezde, görülen her bir şekildeki TAMS aslında denklem 4.3 ve 4.4 kullanılarak hesaplanmış mTAMS değerleridir. Kütle kayıplı modeller için Işıtma gücü değerleri de Stefan-Boltzmann yasası kullanılarak denklem 4.3 ve denklem 4.4 den elde edilen R ve $T_{\rm eff}$ değerlerinden hesaplanmıştır.

5. SONUÇLAR

Bu tez çalışmasının sonucunda, Homojen Sıkıştırma Yöntemi (HSY) adı verilen, klasik metot ile yıldızın gözlemlerle belirlenmiş M ve R'sinden MLR kullanarak hesaplanan etkin sıcaklıkları (T_{eff}) daha duyarlı hale getiren bir yöntem geliştirilmiştir. Doğrudan yöntem olarak tasvir edilen, log M – log R diyagramı üstüne çizilmiş farklı kütleli evrim yollarından yıldız yaşını ve sonrasında bu yaşa tekabül eden T_{eff} ve L gibi diğer model çıktılarını dikkate alan, yöntem ile HSY'nin karşılaştırılması yapılmış, HSY'nin avantajları ve üstünlükleri anlatılmıştır. HSY güvenilir T_{eff} ve L hesaplamak için kullanılmanın yanında kullanılan teorik evrim modellerinin test edilmesinde de kullanılabilir.

HSY ile elde edilen etkin sıcaklıkların ne kadar güvenilir olduğunu ortaya koymak için, bu tez çalışmasında kullanılan 450 anakol yıldızının yayınlanmış etkin sıcaklıklarının hataları kullanılarak bir histogram hazırlanmış, bu histogram HSY yöntemi ile hesaplanan etkin sıcaklıklarının hataları kullanılarak hazırlanmış histogram ile karşılaştırılmıştır (Şekil 5.1). Şekil 5.1'deki üst paneldeki histogram, yayınlanmış etkin sıcaklık hatalarından, alt paneldeki histogram, HSY ile elde edilen sıcaklıkları 4.1 formülü ile hesaplanmış, taşınmış gözlemsel hatalar ile oluşturulan histogramdır.

Şekil 5.1. İyileştirilmiş etkin sıcaklıkların göreli hataları ile yayınlanmış etkin sıcaklıkların göreli hatalarının karşılaştırılması. 1 ile gösterilen düşük, 2 ile gösterilen orta, 3 ile gösterilen büyük, 4 ile gösterilen çok büyük kütleli yıldızların göreli hatalarının karşılaştırılması. a-) Eker vd (2015) tarafından klasik metotla elde edilen sonuçlar b-) Bu çalışmadaki yeni yöntemle elde edilen sonuçlar

Üstteki paneldeki histogramın maximumu bize der ki: Ayrık örten çift çizgili tayfsal çizgili (SB2) çift yıldızlarının ışık eğrisi ve radyal hız eğrisi çözümlerinden elde edilen sıcaklıklar ağırlıklı olarak %2-3 mertebesindedir. Buna karşılık gözlemsel M ve R'leri kullanarak HSY ile hesaplanan etkin sıcaklıkların hataları %1'den daha küçüktür. Yani HSY gözlemsel sıcaklıklardan daha duyarlı etkin sıcaklık belirleyebilmektedir.

Şekil 5.1 ayrıca Eker vd 'nin (2015) MLR'leri ile bu tez çalışmasında belirlenen MLR'leri karşılaştırmaktadır. Bu tez çalışmasında belirlenen MLR'ler ile, sadece klasik yöntem kullanarak, HSY yöntemi kadar duyarlı olmasa bile, yeterince duyarlı olabilecek (~%3.5) etkin sıcaklık hesabı yapmak mümkün hale gelmektedir. Bu tez çalışmasında geliştirilen HSY yönteminin, en büyük avantajı, belirlenen etkin sıcaklık tarifine uygun, Stefan-Boltzmann yasası çerçevesinde tarif edilen etkin sıcaklıklardır. Oysa, gözlemlerle belirlenen sıcaklıklar, bu tarife uygun sıcaklıklar değildir.

Yeni yöntem, seçilen yıldız evrim modeline oldukça bağlıdır fakat kullanılan MLR'den bağımsızdır. MLR'ler kimyasal reaksiyonlardaki katalizörler gibi davranırlar. MLR gereklidir, fakat sonuç üzerinde bir etkisi yoktur. Sonuçların doğruluğu, yıldız evrim modellerinin doğruluğuna bağlı olduğu gibi, gözlemlenen kütle ve yarıçap değerlerinin doğruluğuna da bağlıdır. Etkin sıcaklıkları belirlemede bahsi geçen yeni yöntem, etkin sıcaklıkları Stefan-Boltzmann yasasında tanımlandığı biçimde, doğrudan hesaplamaktadır. H-R diyagramındaki bir yıldızın evrim durumlarını ve yaşını, izokron fiti veya evrim yollarıyla belirlemede, daha iyi tutarlılık, doğruluk ve hassasiyet isteyen astronomların, etkin sıcaklık hesabı için yeni metodu kullanmalarını öneriyoruz. Belki de metodun en can alıcı avantajı, yıldız yapısını ve evrim modellerini, verilen bir metalisite için, sadece iki gözlemsel parametre olan M ve R ile test etmeye olanak sağlamasıdır.

6. KAYNAKLAR

- Ak, T., Bilir, S., Ak, S., Coşkunoğlu, K.B. and Eker, Z. 2010. The age of cataclysmic variables: A kinematical study. *New Astronomy*, 15: 491-508.
- Ak, T., Bilir, S., Güver, T., Çakmak, H. and Ak, S. 2013. Population types of cataclysmic variables in the solar neighbourhood. *New Astronomy*, 22: 7-14.
- Andersen, J. 1991. Accurate masses and radii of normal stars. Astronomy and Astrophysics Review, 3: 91-126.
- Aston, F.W. 1920. The Mass-Spectra of Chemical Elements. *Philosophical Magazine* and Journal of Science, 39: 611-625.
- Bertelli, G., Girardi, L., Marigo, P. and Nasi, E. 2008. Scaled solar tracks and isochrones in a large region of the Z-Y plane. I. From the ZAMS to the TP-AGB end for 0.15-2.5 $\{M_{\odot}\}$ stars. *Astronomy and Astrophysics*, 484: 815-830.
- Bertelli, G., Nasi, E., Girardi, L. and Marigo, P. 2009. Scaled solar tracks and isochrones in a large region of the Z-Y plane. II. From 2.5 to 20 M_{\odot} stars. *Astronomy and Astrophysics*, 508: 355-369.
- Bethe, H.A. 1939. Energy productions in stars. Phys. Rev. 55: 434-456.
- Bilir, S., Karataş, Y., Demircan, O. and Eker, Z. 2005. Kinematics of W Ursae Majoris type binaries and evidence of the two types of formation. *Monthly Notices of the Royal Astronomical Society*, 357: 497-517.
- Bilir, S., Karaali, S. and Gilmore, G. 2006. Investigation of the ELAIS field by Vega photometry: absolute magnitude-dependent Galactic model parameters. *Monthly Notices of the Royal Astronomical Society*, 366: 1295-1309.
- Bilir, S., Cabrera-Lavers, A., Karaali, S., Ak, S., Yaz, E. and L'opez-Corredoira, M. 2008. Estimation of Galactic Model Parameters in High Latitudes with SDSS. *Publications of the Astronomical Society of Australia*, 25: 69-84.
- Bressan, A.G., Chiosi, C. and Bertelli, G. 1981. Mass loss and overshooting in massive stars. *Astronomy and Astrophysics*, 102: 25-30.
- Bressan, A.G., Marigo, P., Girardi, L., Salasnich, B., Dal Cero, C., Rubele, S. and Nanni, A., 2012. Stellar Tracks and Isochrones with the Padova and TRieste Stellar Evolution Code. *Monthly Notices of the Royal Astronomical Society*, 427: 127-145.
- Cester, B., Ferluga, S. and Boehm, C. 1983. The Empirical Mass-Luminosity Relation. *Astrophysics and Space Science*, 96: 125-140.

- Chadwick, J. 1933. Bakerian Lecture-The Neutron. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 142: 1-25.
- Chen, Y., Bressan, A.G., Girardi, L., Marigo, P., Kong, X. and Lanza, A. 2015. PARSEC evolutionary tracks of massive stars up to 350 M_{\odot} at metallicities $0.0001 \le Z \le 0.04$. Monthly Notices of the Royal Astronomical Society, 452: 1068-1080.
- Clausen, J.V., Olsen, E.H., Helt, B.E. and Claret, A. 2010. Absolute dimensions of eclipsing binaries. XXVII. V1130 Tauri: a metal-weak F-type system, perhaps with preference for Y = 0.23-0.24. *Astronomy and Astrophysics*, 510: 12.
- Clayton, D.D. 1968. Principles of Stellar Evolution and Nucleosynthesis. McGrow-Hill Book Company, New york, 625p.
- Demarque, P., Woo, J., Kim, Y. and Yi, S.K. 2004. Y² Isochrones with an Improved Core Overshoot Treatment. *The Astrophysical Journal Supplement Series*, 155: 667-674.
- Demarque, P., Guenther, D.B., Li, L.H., Mazumdar, A. and Straka, C.W. 2008. YREC: the Yale rotating stellar evolution code. Non-rotating version, seismology applications. *Astrophysics and Space Science*, 316: 31-41.
- Demircan, O. ve Kahraman, G. 1991. Stellar Mass-Luminosity and Mass-Radius Relations. *Astrophysics and Space Science*, 181: 313-322.
- Dotter, A., Chaboyer, B., Jevremovic, D., Kostov, V., Baron, E. and Ferguson, J.W. 2008. The Dartmouth Stellar Evolution Database. *The Astrophysical Journal Supplement Series*, 178: 89-101.
- Eddington, A.S. 1920. The Internal Constitution of the Stars. *The Observatory*, 43: 341-358.
- Eddington, A. S. 1926. The Internal Constitution of the Stars. Cambridge University Press, England, 416p.
- Eggen, O. J. 1956. Photometric Parallaxes and The Mass-Luminosity Relation. *Astronomical Journal*, 61: 361-380.
- Einstein, A. 1905. Zur Elektrodynamic Bewegter Köper. Annalen der Physik, 322: 891-921.
- Eker, Z., Bilir, S., Soydugan, F., Yaz, Gökçe, E., Soydugan, E., Tüysüz, M., Şenyüz, T. and Demircan, O. 2014. The Catalogue of Stellar Parameters from the Detached Double-Lined Eclipsing Binaries in the Milky Way. *Publications of the Astronomical Society of Australia*, 31: e024.

- Eker, Z., Soydugan, F., Soydugan, E., Bilir, S., Yaz Gökçe, E., Steer, I., Tüysüz, M., Şenyüz, T. and Demircan, O. 2015. Main-Sequence Effective Temperatures from a Revised Mass-Luminosity Relation Based on Accurate Properties. *Astronomical Journal*, 149: 131.
- Ekström, S., Georgy, C., Eggenberger, P., Meynet, G., Mowlavi, N., Wyttenbach, A., Granada, A., Decressin, T., Hirschi, R., Frischknecht, U., Charbonnel, C. and Maeder, A. 2012. Grids of stellar models with rotation. I. Models from 0.8 to 120 M_☉ at solar metallicity (Z = 0.014). *Astronomy and Astrophysics*, 537: 146.
- Elkhateeb, M.M., Nouh, M.I., and Saad, S.M. 2014. First photometric study of the eclipsing binary GSC 04371-0161. *New Astronomy*, 26: 102-105.
- Fang, X., and Yan-ning, F. 2010. The V-band Empirical Mass-luminosity Relation for Main Sequence Stars. *Chinese Astronomy and Astrophysics*, 34: 277-287.
- Gafeira, R., Patacas, C., and Fernandes, J. 2012. Mass-Luminosity Relation For FGK Main Sequence Stars: Metallicity and Age Contributions. *Astrophysics and Space Science*, 341: 405-410.
- Georgy C., Ekström, S., Eggenberger, P., Meynet, G., Haemmerle, L., Maeder, A., Granada, A., Groh, J. H., Hirschi, R., Mowlavi, N., Yusof, N., Charbonnel, C., Decressin, T. and Barblan, F. 2013. Grids of stellar models with rotation. III. Models from 0.8 to 120 M_{\odot} at a metallicity Z = 0.002. Astronomy and Astrophysics, 558A: 103.
- Gimenez, A. and Zamorano, J. 1985. The Mass-Radius Relation in Binary Systems. *Astrophysics and Space Science*, 114: 259-269.
- Girardi L., Bressan A., Bertelli G. and Chiosi C. 2000. Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 M_{sun}, and from Z=0.0004 to 0.03. *Astronomy and Astrophysics Supplement*, 141: 371-383.
- Girardi, L., Williams, B.F., Gilbert, K.M., Rosenfield, P., Dalcanton, J.J., Marigo, P., Boyer, M.L., Dolphin, A., Weisz, D.R., Melbourne, J., Olsen, K.A.G., Seth, A.C. and Skillman, E. 2010. The ACS Nearby Galaxy Survey Treasury. IX. Constraining Asymptotic Giant Branch Evolution with Old Metal-poor Galaxies. *The Astrophysical Journal*, 724: 1030-1043.
- Gorda, S.Y. and Svechnikov, M.A. 1998. Determination of empirical mass-luminosity and mass-radius relations for main-sequence stars that are the components of eclipsing binary systems. *Astronomy Reports*, 42: 793-798.
- Harmanec, P. 1988. Stellar masses and radii based on modern binary data. *Astronomical Institutes of Czechoslovakia, Bulletin*, 39: 329-345.

- Helminiak, K.G., Konacki, M., Ratajczak, M., and Muterspaugh, M.W. 2009. Orbital and physical parameters of eclipsing binaries from the All-Sky Automated Survey catalogue - I. A sample of systems with components masses between 1 and 2 M_{solar}. *Monthly Notices of the Royal Astronomical Society*, 400: 969-983.
- Henry, T.J. and McCarthy, D.W. 1993. The mass-luminosity relation for stars of mass 1.0 to 0.08 solar mass. *Astronomical Journal*, 106: 773-789.
- Henry, T.J. 2004. The Mass-Luminosity Relation from End to End. Astronomical Society of the Pacific, 318: 159-165.
- Hertzsprung, E. 1923. On the relation between mass and absolute brightness of components of double stars. *Bulletin of the Astronomical Institutes of the Netherlands*, 2: 15.
- Huang, S.S. and Struve O. 1956. The radii and masses of eclipsing binary stars. *Astronomical Journal*, 61: 300-309.
- Ibanoğlu, C., Soydugan, F., Soydugan, E., ve Dervişoğlu, A. 2006. Angular momentum evolution of algol binaries. *Monthly Notices of the Royal Astronomical Society*, 373: 435-448.
- Iben, I. Jr. 2013. Stellar Evolution Physics, Volume 2: Advanced Evolution of Single Stars. Cambridge University Press, Cambridge, UK.
- Karaali, S., Ak, S.G., Bilir, S., Karataş, Y. and Gilmore, G. 2003. A charge-coupled device study of high-latitude Galactic structure: testing the model parameters. *Monthly Notices of the Royal Astronomical Society*, 343: 1013-1024.
- Karataş, Y., Bilir, S., Eker, Z. and Demircan, O. 2004. Kinematics of chromospherically active binaries and evidence of an orbital period decrease in binary evolution. *Monthly Notices of the Royal Astronomical Society*, 349: 1069-1092.
- Kopal, Z. 1978. Dynamics of close binary systems. Astrophysics and Space Science Library. 68: 524.
- Kuiper, G.P. 1938. The Empirical Mass-Luminosity Relation. *The Astrophysical Journal*, 88: 472.
- Kraus, A.L., Tucker, R.A., Thompson, M.I., Craine, E.R., and Hillenbrand, L.A. 2011. The Mass-Radius(-Rotation?) Relation for Low-mass Stars. *The Astrophysical Journal*, 728: 18.
- Lacy, C.H. 1977. Radii of nearby stars: an application of the Barnes-Evans relation. *The Astrophysical Journal Supplement Series*, 34: 479-492.
- Lacy, C.H. 1979. Distances to eclipsing binaries. III Masses, radii, and absolute magnitudes of 96 stars. *The Astrophysical Journal*, 228: 817-827.

- Li, K. and Qian, S.B. 2013. Multiple color light curves and period changes investigation of the contact binary HV Aqr. *New Astronomy*, 21: 46-49.
- Malkov, O.Y. 2003. Eclipsing binaries and the mass-luminosity relation. *Astronomy and Astrophysics*, 402: 1055-1060.
- Malkov, O.Y. 2007. Mass-luminosity relation of intermediate-mass stars. *Monthly Notices of the Royal Astronomical Society*, 382: 1073-1086.
- Marigo P., Girardi L., Bressan A., Groenewegen M. A. T., Silva L. and Granato G. L., 2008. Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP-AGB models. *Astronomy and Astrophysics*, 482: 883-905.
- Masana, E., Jordi, C. and Ribas, I. 2006. Effective temperature scale and bolometric corrections from 2MASS photometry. *Astronomy and Astrophysics*, 450: 735-746.
- McCrea, W.H. 1950. Physics of the sun and stars. Hutchinson's University Library, London, New York.
- McLaughlin, D.B. 1927. The masses and luminosities of the eclipsing binaries. *Astronomical Journal*, 38: 21-26.
- Meynet, G. and Maeder, A. 2000. Stellar evolution with rotation. V. Changes in all the outputs of massive star models. *Astronomy and Astrophysics*, 361: 101-120.
- Mowlavi, N., Eggenberger, P., Meynet, G., Ekström, S., Georgy, C., Maeder, A., Charbonnel, C. and Eyer, L. 2012. Stellar mass and age determinations . I. Grids of stellar models from Z = 0.006 to 0.04 and M = 0.5 to 3.5 M_{\odot}. Astronomy and Astrophysics, 541: 41.
- Patterson, J. 1984. The evolution of cataclysmic and low-mass X-ray binaries. *The Astrophysical Journal Supplement Series*, 54: 443-493.
- Petrie, R.M. 1950a. The mass-luminosity relation determined from spectroscopic binaries. *Publications of the Dominion Astrophysical Observatory*, 8: 341.
- Petrie, R.M. 1950b. A new determination of the mass-luminosity relation from spectroscopic binaries. *Astronomical Journal*, 55: 180.
- Pietrinferni A., Cassisi S., Salaris M. and Hidalgo S. 2013. The BaSTI Stellar Evolution Database: models for extremely metal-poor and super-metal-rich stellar populations. *Astronomy and Astrophysics*, 558A: 46.
- Plaut, L. 1953. An Investigation of the Eclipsing Binaries Brighter than Photographic Magnitude 8.50 at Maximum. *Publications of the Kapteyn Astronomical Laboratory Groningen*, 55: 1-62.

- Pols, O.R., Schröder, K.P., Hurley, J.R., Tout, C.A. and Eggleton, P.P. 1998. Stellar evolution models for Z = 0.0001 to 0.03. *Monthly Notices of the Royal Astronomical Society*, 298: 525-536.
- Popper, D.M. 1967. Determination of Masses of Eclipsing Binary Stars. *Annual Review* of Astronomy and Astrophysics, 5: 85.
- Popper, D.M. 1980. Stellar masse. Annual Review of Astronomy and Astrophysics, 18: 115-164.
- Ren, A.B., Zhang, X.B., Luo, C.Q., Luo, Y.P., Deng, L.C. and Luo, Z.Q. 2011. CCD Photometry of the W UMa type star QX Andromeda. *New Astronomy*, 16: 194-198.
- Ribas, I., Jordi, C. and Torra, J. 1999. CD Tau: a detached eclipsing binary with a solarmass companion. *Monthly Notices of the Royal Astronomical Society*, 309: 199-207.
- Rozyczka, M., Pietrukowicz, P., Kaluzny, J., Pych, W., Angeloni, R. and D'ek'any, I. 2013. Absolute parameters of AE For - a highly active detached binary of late K type. *Monthly Notices of the Royal Astronomical Society*, 429: 1840-1846.
- Russell, H.N., Adams, W.S. and Joy, A.H. 1923. A Comparison of Spectroscopic and Dynamical Parallaxe. *Publications of the Astronomical Society of the Pacific*, 35: 189.
- Schaller, G., Schaerer, D., Meynet, G. and Maeder, A. 1992. New grids of stellar models from 0.8 to 120 solar masses at Z = 0.020 and Z = 0.001. Astronomy and Astrophysics Supplement, 96: 269-331.
- Schaerer, D., Meynet, G., Maeder, A. and Schaller, G. 1993. Grids of stellar models. II -From 0.8 to 120 solar masses at Z = 0.008. *Astronomy and Astrophysics Supplement*, 98: 523-527.
- Southworth, J. 2015. A Catalog of Detached Eclipsing Binary Stars. Astronomical Society of the Pacific, 496: 164.
- Strand, K. Aa., and Hall, R. G. 1954. Visual Binaries for the Mass-Luminosity Relation. *The Astrophysical Journal*, 120: 322.
- Tognelli, E., Prada Moroni, P. G. and Degl'Innocenti, S. 2011. The Pisa pre-main sequence tracks and isochrones. A database covering a wide range of Z, Y, mass, and age values. *Astronomy and Astrophysics*, 533: 109.
- Torres, G., Andersen, J., and Gimenez, A. 2010. Accurate masses and radii of normal stars: modern results and applications. *The Astronomy and Astrophysics Review*, 18: 67-126.

- VandenBerg, D. A., Bergbusch, P. A. and Dowler, P. D. 2006. The Victoria-Regina Stellar Models: Evolutionary Tracks and Isochrones for a Wide Range in Mass and Metallicity that Allow for Empirically Constrained Amounts of Convective Core Overshooting. *The Astrophysical Journal Supplement Series*, 162: 375-387.
- Worley, C. E., and Heintz, W. D. 1983. Fourth catalog of orbits of visual binary stars. Publications of the United States Naval Observatory, 24: 7.
- Yıldız M. 2015. Grids of stellar models including second harmonic and colours: Solar composition. *Research in Astronomy and Astrophysics*, 15: 2244.
- Zasche, P. 2011. The data mining III: An analysis of 21 eclipsing binary light-curves observed by the INTEGRAL/OMC. *New Astronomy*, 16: 157-160.

7. EKLER

Ek 1. Bressan vd'nin (2012) evrim modellerine göre anakol yıldızları için anakol ömürlerinin başında (ZAMS) ve sonunda (TAMS) yıldız ışınım gücü (L), etkin sıcaklık (T_{eff}) ve yarıçap (R) değerleri

		ZAMS			TAMS	
M / Mo	log L / Lo	log T <i>eff</i>	log R / Ro	log L /L0	log T <i>eff</i>	log R/Ro
0.35	-1.90705	3.51396	-0.458	-1.87743	3.51512	-0.4456
0.4	-1.7669	3.5251	-0.4102	-1.72684	3.52682	-0.3937
0.45	-1.61703	3.53732	-0.3598	-1.56505	3.54043	-0.34
0.5	-1.46145	3.55236	-0.312	-1.38657	3.55907	-0.288
0.55	-1.3017	3.57147	-0.2704	-1.15016	3.58563	-0.2229
0.6	-1.1379	3.59438	-0.2343	-0.91028	3.63026	-0.1923
0.65	-0.97941	3.6214	-0.2091	-0.66471	3.66445	-0.1379
0.7	-0.82804	3.6492	-0.189	-0.3628	3.70004	-0.0581
0.75	-0.68903	3.67747	-0.1761	-0.18948	3.71932	-0.01
0.8	-0.56044	3.69751	-0.1518	-0.09235	3.73228	0.0127
0.85	-0.43937	3.71622	-0.1287	-0.0022	3.74376	0.0348
0.9	-0.32603	3.73318	-0.106	0.08262	3.75404	0.0566
0.95	-0.21779	3.748	-0.0815	0.16285	3.76344	0.0779
1	-0.10909	3.76183	-0.0548	0.23918	3.77213	0.0987
1.05	-0.00214	3.77465	-0.027	0.31198	3.78015	0.1191
1.1	0.09532	3.78597	-0.0009	0.38165	3.78779	0.1386
1.15	0.18178	3.79581	0.0227	0.44831	3.79546	0.1566
1.2	0.27162	3.80568	0.0479	0.49283	3.79462	0.1806
1.25	0.35719	3.81544	0.0711	0.57358	3.79248	0.2252
1.3	0.43741	3.82432	0.0935	0.6538	3.78952	0.2713
1.35	0.51434	3.83405	0.1125	0.73404	3.78815	0.3141
1.4	0.587	3.84399	0.1289	0.81383	3.78621	0.3579
1.45	0.65409	3.8554	0.1396	0.89353	3.78394	0.4023
1.5	0.71944	3.86837	0.1464	0.95538	3.78695	0.4272
1.55	0.78055	3.88206	0.1496	1.01517	3.7893	0.4524
1.6	0.84075	3.89546	0.1529	1.07471	3.79179	0.4772
1.65	0.89672	3.9079	0.156	1.13155	3.79436	0.5005
1.7	0.95248	3.92	0.1596	1.18618	3.79733	0.5218
1.75	1.00526	3.93132	0.1634	1.23981	3.8003	0.5427
1.8	1.05694	3.94222	0.1674	1.29296	3.80364	0.5626
1.85	1.10466	3.95219	0.1714	1.3445	3.80715	0.5814
1.9	1.15204	3.96195	0.1755	1.39324	3.81147	0.5971
1.95	1.19858	3.97144	0.1798	1.44171	3.81672	0.6108
2	1.24278	3.9803	0.1842	1.48795	3.82327	0.6208
2.05	1.28506	3.98868	0.1886	1.53477	3.82991	0.631
2.1	1.32704	3.99674	0.1934	1.57973	3.83723	0.6388
2.15	1.36792	4.0047	0.198	1.62298	3.84483	0.6452
2.2	1.40779	4.01236	0.2026	1.66604	3.85208	0.6523

Ek 1'in devamı													
		ZAMS			TAMS								
M / Mo	log L / L o	log T <i>eff</i>	log R / Ro	log L /L0	log T <i>eff</i>	log R/Ro							
2.25	1.44681	4.01981	0.2072	1.70785	3.85935	0.6586							
2.3	1.4844	4.02699	0.2116	1.74851	3.86653	0.6646							
2.4	1.55601	4.04058	0.2202	1.82728	3.88059	0.6759							
2.6	1.69013	4.06557	0.2373	1.97495	3.9082	0.6945							
2.8	1.81352	4.08816	0.2538	2.11028	3.93285	0.7128							
3	1.92752	4.10878	0.2696	2.23615	3.95561	0.7303							
3.2	2.03326	4.1277	0.2846	2.35201	3.97714	0.7451							
3.4	2.13224	4.14522	0.2991	2.45967	3.99729	0.7587							
3.6	2.22431	4.16151	0.3125	2.56062	4.01603	0.7717							
3.8	2.31163	4.17674	0.3257	2.65463	4.03358	0.7836							
4	2.39274	4.19106	0.3377	2.74244	4.05019	0.7942							
4.2	2.47042	4.20476	0.3491	2.8259	4.06561	0.8051							
4.4	2.54333	4.2171	0.3609	2.90433	4.08028	0.815							
4.6	2.6133	4.22943	0.3712	2.97854	4.0942	0.8243							
4.8	2.68021	4.24095	0.3816	3.04883	4.10724	0.8333							
5	2.74251	4.25149	0.3917	3.11603	4.11944	0.8425							
5.2	2.80319	4.26185	0.4013	3.17953	4.131	0.8512							
5.4	2.86052	4.27153	0.4106	3.24066	4.14196	0.8598							
5.6	2.91622	4.28096	0.4196	3.299	4.15244	0.868							
5.8	2.96862	4.2897	0.4283	3.35516	4.16238	0.8762							
6	3.02046	4.29847	0.4367	3.40921	4.17176	0.8845							
6.2	3.07029	4.30688	0.4448	3.46107	4.18069	0.8926							
6.4	3.11661	4.31452	0.4527	3.51123	4.18907	0.9009							
7	3.24918	4.33657	0.4749	3.6492	4.21225	0.9235							
8	3.44275	4.36841	0.508	3.85213	4.2447	0.9601							
9	3.61058	4.39578	0.5371	4.02414	4.27075	0.994							
10	3.7567	4.41929	0.5632	4.17478	4.29241	1.026							
11	3.88661	4.43998	0.5867	4.30663	4.31005	1.0566							
12	4.00085	4.45791	0.608	4.42475	4.32486	1.0861							
14	4.20053	4.48899	0.6457	4.65582	4.35165	1.14994							
16	4.36799	4.51455	0.6783	4.80413	4.36639	1.19136							
18	4.51016	4.53587	0.7067	4.93494	4.37131	1.24583							
20	4.63419	4.55409	0.7323	5.05196	4.37586	1.30076							
24	4.84189	4.5837	0.7769	5.25445	4.37054	1.41265							
28	5.0046	4.60597	0.8138	5.42565	4.34047	1.55322							
30	5.07616	4.61549	0.8305	5.50228	4.31547	1.64426							
35	5.23146	4.6355	0.8681	5.67348	4.19937	1.9554							
40	5.3578	4.65078	0.9007	5.82179	3.92169	2.40687							
Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata($\pm\Delta R$)	(ΔR/R)	Teff	±Δτ	ΔT/T	Açıklama
-------------------------	-------------------------	---------------------------	---------------------------------------	--	--	--	--	--	--	--	---	---	---
DV Psc	1	00:13:09.20	+05:35:43.06	0.677	0.019	0.028	0.685	0.030	0.044	4450	8	0.002	\checkmark
DV Psc	2	00:13:09.20	+05:35:43.06	0.475	0.010	0.021	0.514	0.020	0.039	3614	8	0.002	x
MU Cas	1	00:15:51.56	+60:25:53.64	4.657	0.100	0.021	4.192	0.050	0.012	14750	500	0.034	\checkmark
MU Cas	2	00:15:51.56	+60:25:53.64	4.575	0.090	0.020	3.671	0.040	0.011	15100	500	0.033	\checkmark
V69-47 Tuc	1	00:22:52.95	-72:03:40.68	0.876	0.005	0.006	1.316	0.005	0.004	5945	150	0.025	x
V69-47 Tuc	2	19:21:48.49	+04:32:56.92	0.859	0.006	0.007	1.163	0.006	0.005	5959	150	0.025	x
YZ Cas	1	00:45:39.08	+74:59:17.06	2.308	0.010	0.004	2.547	0.030	0.012	9200	300	0.033	\checkmark
YZ Cas	2	00:45:39.08	+74:59:17.06	1.347	0.010	0.007	1.359	0.020	0.015	6700	250	0.037	\checkmark
NGC188 KR V12	1	00:52:37.54	+85:10:34.65	1.102	0.007	0.006	1.425	0.019	0.013	5900	100	0.017	x
NGC188 KR V12	2	10:38:20.77	+14:16:03.67	1.08	0.007	0.006	1.374	0.019	0.014	5875	100	0.017	x
V364 Cas	1	00:52:43.01	+50:28:10.16	1.684	0.094	0.056	1.600	0.010	0.006	7816	86	0.011	\checkmark
V364 Cas	2	00:52:43.01	+50:28:10.16	1.559	0.095	0.061	1.600	0.010	0.006	7780	86	0.011	\checkmark
CD-80 28	1	01:05:38.20	-80:03:40.66	1.38	0.055	0.040	3.209	0.335	0.104				x
CD-80 28	2	01:05:38.20	-80:03:40.66	1.385	0.055	0.040	4.123	0.416	0.101				x
Zet pHE	1	01:08:23.08	-55:14:44.74	3.922	0.045	0.011	2.853	0.020	0.007	14550	350	0.024	\checkmark
Zet pHE	2	01:08:23.08	-55:14:44.74	2.545	0.026	0.010	1.854	0.020	0.011	11910	200	0.017	\checkmark
Al Phe	1	01:09:34.19	-46:15:56.09	1.197	0.005	0.004	2.935	0.048	0.016	6310	150	0.024	х
Al Phe	2	01:09:34.19	-46:15:56.09	1.238	0.004	0.003	1.819	0.024	0.013	5010	120	0.024	х
Co And	1	01:11:24.83	+46:57:49.34	1.289	0.007	0.005	1.727	0.021	0.012	6140	130	0.021	\checkmark
Co And	2	01:11:24.83	+46:57:49.34	1.264	0.007	0.006	1.694	0.017	0.010	6170	130	0.021	\checkmark
V459 Cas	1	01:11:29.92	+61:08:47.96	2.015	0.030	0.015	2.010	0.013	0.006	9140	300	0.033	\checkmark
V459 Cas	2	01:11:29.92	+61:08:47.96	1.962	0.030	0.015	1.966	0.013	0.007	9100	300	0.033	\checkmark
2MASS J01132817-3821024	1	01:13:28.17	-38:21:02.50	0.613	0.030	0.049	0.596	0.020	0.034	3750	250	0.067	\checkmark
	2MASS J01132817-3821024	2MASS J01132817-3821024 1	2MASS J01132817-3821024 1 01:13:28.17	2MASS J01132817-3821024 1 01:13:28.17 -38:21:02.50	2MASS J01132817-3821024 1 01:13:28.17 -38:21:02.50 0.613	2MASS J01132817-3821024 1 01:13:28.17 -38:21:02.50 0.613 0.030	2MASS J01132817-3821024 1 01:13:28.17 -38:21:02.50 0.613 0.030 0.049	2MASS J01132817-3821024 1 01:13:28.17 -38:21:02.50 0.613 0.030 0.049 0.596	2MASS J01132817-3821024 1 01:13:28.17 -38:21:02.50 0.613 0.030 0.049 0.596 0.020	2MASS J01132817-3821024 1 01:13:28.17 -38:21:02.50 0.613 0.030 0.049 0.596 0.020 0.034	2MASS J01132817-3821024 1 01:13:28.17 -38:21:02.50 0.613 0.030 0.049 0.596 0.020 0.034 3750	2MASS J01132817-3821024 1 01:13:28.17 -38:21:02.50 0.613 0.030 0.049 0.596 0.020 0.034 3750 250	2MASS J01132817-3821024 1 01:13:28.17 -38:21:02.50 0.613 0.030 0.049 0.596 0.020 0.034 3750 250 0.067

Ek 2. Samanyolundaki Ayrık Örten Çift Çizgili Tayfsal Çift Yıldızlardan Toplanmış Yıldız Parametreleri Kataloğu (Eker vd 2014)

- 1	^	•	1
H Iz)'n	in	dovomi
L'A	4 II		ucvann

Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata($\pm\Delta M$)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±Δτ	ΔT/T	Açıklama
24	2MASS J01132817-3821024	2	01:13:28.17	-38:21:02.50	0.445	0.019	0.043	0.445	0.024	0.054	3085	300	0.097	\checkmark
25	UV Psc	1	01:16:55.12	+06:48:42.12	0.983	0.009	0.009	1.117	0.020	0.018	5780	100	0.017	\checkmark
26	UV Psc	2	01:16:55.12	+06:48:42.12	0.764	0.005	0.007	0.835	0.030	0.036	4750	80	0.017	\checkmark
27	BD-08 308	1	01:46:15.70	-08:06:48.57	0.489	0.009	0.018	1.126	0.380	0.337				x
28	BD-08 308	2	01:46:15.70	-08:06:48.57	0.443	0.009	0.020	1.019	0.373	0.366				x
29	2MASS J01542930+0053266	1	01:54:29.31	+00:53:26.60	0.515	0.023	0.045	0.601	0.078	0.130	3800			x
30	2MASS J01542930+0053266	2	01:54:29.31	+00:53:26.60	0.548	0.025	0.046	0.574	0.087	0.152	3600			\checkmark
31	NSVS 06507557	1	01:58:23.87	+25:21:19.65	0.656	0.086	0.131	0.603	0.030	0.050	3960	80	0.020	\checkmark
32	NSVS 06507557	2	01:58:23.87	+25:21:19.65	0.279	0.045	0.161	0.445	0.024	0.054	3365	80	0.024	x
33	V615 Per	1	02:19:01.57	+57:07:19.30	4.075	0.055	0.013	2.292	0.141	0.062	15000	500	0.033	\checkmark
34	V615 Per	2	02:19:01.57	+57:07:19.30	3.178	0.051	0.016	1.904	0.094	0.049	11000	500	0.045	\checkmark
35	V618 Per	1	02:19:11.78	+57:06:41.10	2.332	0.031	0.013	1.636	0.069	0.042	11000	1000	0.091	\checkmark
36	V618 Per	2	02:19:11.78	+57:06:41.10	1.558	0.025	0.016	1.318	0.069	0.052	8000	1000	0.125	\checkmark
37	V505 Per	1	02:21:12.96	+54:30:36.28	1.272	0.001	0.001	1.288	0.014	0.011	6512	21	0.003	\checkmark
38	V505 Per	2	02:21:12.96	+54:30:36.28	1.254	0.001	0.001	1.267	0.014	0.011	6462	12	0.002	\checkmark
39	AG Ari	1	02:26:26.96	+12:53:55.81	2.164	0.070	0.032	2.232	0.023	0.010	10300	250	0.024	\checkmark
40	AG Ari	2	02:26:26.96	+12:53:55.81	2.148	0.070	0.033	2.074	0.022	0.011	9800	230	0.023	\checkmark
41	BD+11359	1	02:36:30.72	+12:08:32.54	1.356	0.008	0.006	1.822	0.360	0.198				\checkmark
42	BD+11359	2	02:36:30.72	+12:08:32.54	1.137	0.007	0.006	1.282	0.290	0.226				\checkmark
43	XY Cet	1	02:59:33.53	+03:31:03.27	1.773	0.016	0.009	1.876	0.035	0.019	7870	115	0.015	\checkmark
44	XY Cet	2	02:59:33.53	+03:31:03.27	1.615	0.014	0.009	1.776	0.029	0.016	7620	125	0.016	\checkmark
45	CW Eri	1	03:03:59.95	-17:44:16.06	1.583	0.020	0.013	2.093	0.050	0.024	6840	86	0.013	\checkmark
46	CW Eri	2	03:03:59.95	-17:44:16.06	1.327	0.010	0.008	1.569	0.070	0.045	6561	100	0.015	\checkmark

I	Ek 2'nin devamı													
Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±Δτ	ΔΤ/Τ	Açıklama
47	V799 Cas	1	03:05:27.54	+61:39:17.69	3.081	0.400	0.130	3.231	0.140	0.043	11550	14	0.001	\checkmark
48	V799 Cas	2	03:05:27.54	+61:39:17.69	2.97	0.400	0.135	3.201	0.140	0.044	11210	14	0.001	\checkmark
49	AE For	1	03:08:06.66	-24:45:37.74	0.637	0.004	0.006	0.673	0.030	0.045	4100			\checkmark
50	AE For	2	03:08:06.66	-24:45:37.74	0.625	0.003	0.005	0.633	0.030	0.047	4055	6	0.001	\checkmark
51	V570 Per	1	03:09:34.94	+48:37:28.70	1.425	0.006	0.004	1.494	0.110	0.074	6842	25	0.004	\checkmark
52	V570 Per	2	03:09:34.94	+48:37:28.70	1.328	0.006	0.005	1.354	0.110	0.081	6580	70	0.011	\checkmark
53	TV Cet	1	03:14:36.51	+02:45:16.40	1.385	0.052	0.038	1.484	0.020	0.013	6902	150	0.022	\checkmark
54	TV Cet	2	03:14:36.51	+02:45:16.40	1.265	0.051	0.040	1.221	0.010	0.008	6575	150	0.023	\checkmark
55	TZ For	1	03:14:40.09	-35:33:27.60	1.945	0.030	0.015	3.974	0.090	0.023	6350	100	0.016	\checkmark
56	TZ For	2	03:14:40.09	-35:33:27.60	2.045	0.060	0.029	8.349	0.120	0.014	5000	100	0.020	х
57	SDSS-MEB-1	1	03:18:23.88	-01:00:18.40	0.272	0.020	0.074	0.268	0.009	0.034	3320	130	0.039	-
58	SDSS-MEB-1	2	03:18:23.88	-01:00:18.40	0.24	0.022	0.092	0.248	0.008	0.032	3300	130	0.039	-
59	2MASS J03262072+0312362	1	03:26:20.73	+03:12:36.29	0.527	0.002	0.004	0.505	0.008	0.016	3330	60	0.018	\checkmark
60	2MASS J03262072+0312362	2	03:26:20.73	+03:12:36.29	0.491	0.001	0.002	0.471	0.009	0.019	3270	60	0.018	\checkmark
61	GJ 3236	1	03:37:14.08	+69:10:49.79	0.375	0.016	0.043	0.383	0.006	0.016	3310	110	0.033	-
62	GJ 3236	2	03:37:14.08	+69:10:49.79	0.28	0.015	0.054	0.283	0.004	0.014	3241	108	0.033	-
63	EY Cep	1	03:40:04.07	+81:01:09.07	1.524	0.008	0.005	1.463	0.010	0.007	7090	150	0.021	\checkmark
64	EY Cep	2	03:40:04.07	+81:01:09.07	1.5	0.014	0.009	1.468	0.010	0.007	6970	150	0.022	\checkmark
65	V1229 Tau	1	03:47:29.45	+24:17:18.04	2.221	0.027	0.012	1.844	0.037	0.020	10025	620	0.062	\checkmark
66	V1229 Tau	2	03:47:29.45	+24:17:18.04	1.565	0.015	0.010	1.587	0.042	0.026	7262	380	0.052	\checkmark
67	V1130 Tau	1	03:50:41.94	+01:33:50.21	1.306	0.008	0.006	1.490	0.010	0.007	6650	70	0.011	\checkmark
68	V1130 Tau	2	03:50:41.94	+01:33:50.21	1.392	0.008	0.006	1.784	0.011	0.006	6625	70	0.011	\checkmark
69	IQ Per	1	03:59:44.68	+48:09:04.50	3.513	0.040	0.011	2.465	0.030	0.012	12300	200	0.016	\checkmark

]	Ek 2'nin devamı													
Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±Δτ	ΔT/T	Açıklama
70	IQ Per	2	03:59:44.68	+48:09:04.50	1.733	0.020	0.012	1.509	0.020	0.013	7670	100	0.013	\checkmark
71	CF Tau	1	04:05:10.13	+22:29:48.17	1.282	0.009	0.007	2.797	0.011	0.004	5200	150	0.029	x
72	CF Tau	2	04:05:10.13	+22:29:48.17	1.252	0.011	0.009	2.048	0.016	0.008	6000	150	0.025	х
73	AG Per	1	04:06:55.83	+33:26:46.93	4.498	0.134	0.030	3.009	0.070	0.023	18200	800	0.044	\checkmark
74	AG Per	2	04:06:55.83	+33:26:46.93	4.098	0.109	0.027	2.616	0.070	0.027	17400	800	0.046	\checkmark
75	SZ Cam	1	04:07:49.29	+62:19:58.58	17.328	0.654	0.038	9.402	0.053	0.006	30360			\checkmark
76	SZ Cam	2	04:07:49.29	+62:19:58.58	12.489	0.444	0.036	7.070	0.127	0.018	27244	255	0.009	\checkmark
77	V818 Tau	1	04:17:38.94	+16:56:52.29	1.047	0.165	0.158	0.898	0.189	0.210	5470			\checkmark
78	V818 Tau	2	04:17:38.94	+16:56:52.29	0.758	0.108	0.142	0.767	0.099	0.129	3977	22	0.006	\checkmark
79	BD-02 873	1	04:20:40.97	-01:44:23.37	1.293	0.009	0.007	1.591	0.290	0.182				\checkmark
80	BD-02 873	2	04:20:40.97	-01:44:23.37	1.179	0.009	0.008	1.431	0.260	0.182				\checkmark
81	WW Cam	1	04:31:25.28	+64:21:45.50	1.92	0.013	0.007	1.913	0.016	0.008	8360	140	0.017	\checkmark
82	WW Cam	2	04:31:25.28	+64:21:45.50	1.873	0.018	0.010	1.810	0.014	0.008	8240	140	0.017	\checkmark
83	2MASS J04463285+1901432	1	04:46:32.86	+19:01:43.20	0.467	0.050	0.107	0.560	0.020	0.036	3320	150	0.045	x
84	2MASS J04463285+1901432	2	04:46:32.86	+19:01:43.20	0.192	0.020	0.104	0.210	0.010	0.048	2900	150	0.052	-
85	2MASS J04480963+0317480	1	04:48:00.96	+03:17:48.09	0.567	0.002	0.004	0.552	0.008	0.014	3920	80	0.020	\checkmark
86	2MASS J04480963+0317480	2	04:48:00.96	+03:17:48.09	0.532	0.002	0.004	0.532	0.006	0.011	3810	80	0.021	\checkmark
87	TYC 4749-560-1	1	04:53:04.43	-07:00:23.47	0.834	0.006	0.007	0.848	0.005	0.006	5340	200	0.037	\checkmark
88	TYC 4749-560-1	2	04:53:04.43	-07:00:23.47	0.828	0.006	0.007	0.833	0.005	0.006	5125	200	0.039	\checkmark
89	HP Aur	1	05:10:21.78	+35:47:46.63	0.959	0.011	0.011	1.052	0.012	0.011	5790	80	0.014	\checkmark
90	HP Aur	2	05:10:21.78	+35:47:46.63	0.807	0.010	0.012	0.823	0.009	0.011	5270	90	0.017	\checkmark
91	V1236 Tau	1	05:16:28.81	+26:07:38.80	0.788	0.010	0.013	0.766	0.015	0.020	4200	200	0.048	\checkmark
92	V1236 Tau	2	05:16:28.81	+26:07:38.80	0.771	0.008	0.010	0.803	0.010	0.012	4133	250	0.060	\checkmark

F	Ek 2'nin devamı													
Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±Δτ	ΔT/T	Açıklama
93	CD Tau	1	05:17:31.15	+20:07:54.63	1.441	0.016	0.011	1.798	0.017	0.009	6200	50	0.008	\checkmark
94	CD Tau	2	05:17:31.15	+20:07:54.63	1.366	0.016	0.012	1.584	0.020	0.013	6200	50	0.008	\checkmark
95	AR Aur	1	05:18:18.90	+33:46:02.45	2.474	0.098	0.040	1.781	0.036	0.020	10950	300	0.027	\checkmark
96	AR Aur	2	05:18:18.90	+33:46:02.45	2.288	0.093	0.041	1.816	0.036	0.020	10350	300	0.029	\checkmark
97	EW Ori	1	05:20:09.15	+02:02:39.97	1.173	0.011	0.009	1.169	0.005	0.004	6070	95	0.016	\checkmark
98	EW Ori	2	05:20:09.15	+02:02:39.97	1.123	0.009	0.008	1.098	0.005	0.005	5900	95	0.016	\checkmark
99	2MASS J05282082+0338327	1	05:28:20.82	+03:38:32.80	1.366	0.011	0.008	1.835	0.010	0.005	5103	26	0.005	\checkmark
100	2MASS J05282082+0338327	2	05:28:20.82	+03:38:32.80	1.327	0.008	0.006	1.735	0.010	0.006	4751	26	0.005	\checkmark
101	AS Cam	1	05:29:46.91	+69:29:45.36	3.312	0.100	0.030	2.617	0.040	0.015	12000	600	0.050	\checkmark
102	AS Cam	2	05:29:46.91	+69:29:45.36	2.508	0.100	0.040	1.993	0.040	0.020	10700	520	0.049	\checkmark
103	UX Men	1	05:30:03.18	-76:14:55.34	1.235	0.006	0.005	1.349	0.013	0.010	6200	100	0.016	\checkmark
104	UX Men	2	05:30:03.18	-76:14:55.34	1.196	0.007	0.006	1.275	0.013	0.010	6150	100	0.016	\checkmark
105	TZ Men	1	05:30:13.89	-84:47:06.37	2.482	0.025	0.010	2.017	0.020	0.010	10400	500	0.048	\checkmark
106	TZ Men	2	05:30:13.89	-84:47:06.37	1.5	0.010	0.007	1.433	0.015	0.010	7200	300	0.042	\checkmark
107	V1174 Ori	1	05:34:27.85	-05:41:37.80	1.01	0.015	0.015	1.347	0.015	0.011	4470	120	0.027	x
108	V1174 Ori	2	05:34:27.85	-05:41:37.80	0.731	0.008	0.011	1.071	0.011	0.010	3615	100	0.028	x
109	V432 Aur	1	00:52:37.54	+85:10:34.65	1.08	0.016	0.015	2.464	0.020	0.008	6080	85	0.014	х
110	V432 Aur	2	05:37:32.51	+37:05:12.26	1.224	0.016	0.013	1.232	0.006	0.005	6685	8	0.001	\checkmark
111	GG Ori	1	05:43:10.22	+00:41:14.90	2.342	0.016	0.007	1.852	0.025	0.013	9950	200	0.020	\checkmark
112	GG Ori	2	05:43:10.22	+00:41:14.90	2.337	0.017	0.007	1.830	0.025	0.014	9950	200	0.020	\checkmark
113	V1031 Ori	1	05:47:26.89	-10:31:58.65	2.281	0.017	0.007	4.349	0.034	0.008	7850	500	0.064	\checkmark
114	V1031 Ori	2	05:47:26.89	-10:31:58.65	2.467	0.018	0.007	3.006	0.064	0.021	8400	500	0.060	\checkmark
115	beta Aur	1	05:59:31.72	+44:56:50.76	2.369	0.027	0.011	2.762	0.017	0.006	9350	200	0.021	\checkmark

Ek 2	2'nin devamı													
Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±Δτ	∆T/T	Açıklama
116	beta Aur	2	05:59:31.72	+44:56:50.76	2.295	0.027	0.012	2.568	0.017	0.007	9200	200	0.022	✓
117	V1388 Ori	1	06:10:59.17	+11:59:41.49	7.421	0.080	0.011	5.604	0.040	0.007	20500	500	0.024	\checkmark
118	V1388 Ori	2	06:10:59.17	+11:59:41.49	5.156	0.030	0.006	3.763	0.030	0.008	18500	500	0.027	\checkmark
119	FT Ori	1	06:13:58.15	+21:25:39.18	2.168	0.022	0.010	1.871	0.013	0.007	9600	400	0.042	\checkmark
120	FT Ori	2	06:13:58.15	+21:25:39.18	1.773	0.020	0.011	1.626	0.013	0.008	8600	300	0.035	\checkmark
121	V404 CMa	1	06:15:55.42	-18:44:51.54	0.75	0.005	0.007	0.721	0.014	0.019	4200	100	0.024	\checkmark
122	V404 CMa	2	06:15:55.42	-18:44:51.54	0.659	0.005	0.008	0.682	0.017	0.025	3940	20	0.005	\checkmark
123	IM Mon	1	06:23:01.47	-03:16:37.11	5.506	0.240	0.044	3.151	0.040	0.013	17500	350	0.020	\checkmark
124	IM Mon	2	06:23:01.47	-03:16:37.11	3.338	0.161	0.048	2.361	0.030	0.013	14500	550	0.038	\checkmark
125	RR Lyn	1	06:26:25.84	+56:17:06.35	1.935	0.008	0.004	2.579	0.020	0.008	7570	100	0.013	\checkmark
126	RR Lyn	2	06:26:25.84	+56:17:06.35	1.52	0.004	0.003	1.596	0.030	0.019	6980	100	0.014	\checkmark
127	V578 Mon	1	06:32:00.61	+04:52:40.90	10.212	0.056	0.005	5.228	0.060	0.011	30000	500	0.017	\checkmark
128	V578 Mon	2	06:32:00.61	+04:52:40.90	14.482	0.084	0.006	4.318	0.070	0.016	26400	400	0.015	\checkmark
129	WW Aur	1	06:32:27.18	+32:27:17.63	1.964	0.007	0.004	1.928	0.011	0.006	7960	420	0.053	\checkmark
130	WW Aur	2	06:32:27.18	+32:27:17.63	1.814	0.007	0.004	1.842	0.011	0.006	7670	410	0.053	\checkmark
131	SV Cam	1	06:41:19.07	+82:16:02.42	1.575	0.064	0.041	1.470	0.053	0.036	6038	58	0.010	\checkmark
132	SV Cam	2	06:41:19.07	+82:16:02.42	0.934	0.064	0.069	1.001	0.064	0.064	4804	143	0.030	\checkmark
133	GX Gem	1	06:46:09.13	+34:24:52.83	1.488	0.011	0.007	2.334	0.012	0.005	6194	100	0.016	\checkmark
134	GX Gem	2	06:46:09.13	+34:24:52.83	1.467	0.010	0.007	2.244	0.012	0.005	6166	100	0.016	\checkmark
135	HS Aur	1	06:51:18.47	+47:40:24.16	0.898	0.019	0.021	1.005	0.023	0.023	5350	70	0.013	\checkmark
136	HS Aur	2	06:51:18.47	+47:40:24.16	0.877	0.017	0.019	0.874	0.030	0.034	5200	72	0.014	\checkmark
137	HI Mon	1	06:55:49.07	-04:02:35.79	11.426	0.241	0.021	4.775	0.102	0.021	30000	500	0.017	\checkmark
138	HI Mon	2	06:55:49.07	-04:02:35.79	9.864	0.162	0.016	4.645	0.065	0.014	29000	500	0.017	\checkmark

Ek	2'nin devamı													
Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±Δτ	ΔT/T	Açıklama
139	LT CMa	1	07:04:02.62	-12:17:17.37	5.591	0.200	0.036	3.600	0.070	0.019	17000	500	0.029	\checkmark
140	LT CMa	2	07:04:02.62	-12:17:17.37	3.364	0.140	0.042	2.046	0.050	0.024	13140	800	0.061	\checkmark
141	SW CMa	1	07:08:15.24	-22:26:25.26	2.24	0.014	0.006	3.015	0.020	0.007	8200	150	0.018	\checkmark
142	SW CMa	2	07:08:15.24	-22:26:25.26	2.105	0.018	0.009	2.496	0.042	0.017	8100	150	0.019	\checkmark
143	HW CMa	1	07:08:21.86	-22:24:29.87	1.719	0.011	0.006	1.649	0.018	0.011	7560	150	0.020	\checkmark
144	HW CMa	2	07:08:21.86	-22:24:29.87	1.779	0.012	0.007	1.668	0.021	0.013	7700	150	0.019	\checkmark
145	GZ CMa	1	07:16:19.21	-16:43:00.10	2.201	0.025	0.011	2.490	0.030	0.012	8810	350	0.040	\checkmark
146	GZ CMa	2	07:16:19.21	-16:43:00.10	2.001	0.025	0.012	2.130	0.040	0.019	8531	340	0.040	\checkmark
147	TYC 176-2950-1	1	07:16:25.56	+05:48:53.33	1.058	0.008	0.008	1.653	0.030	0.018				x
148	TYC 176-2950-1	2	07:16:25.56	+05:48:53.33	1.043	0.008	0.008	1.182	0.020	0.017				\checkmark
149	CW CMa	1	07:21:52.53	-23:47:37.43	2.093	0.020	0.010	1.906	0.040	0.021				\checkmark
150	CW CMa	2	07:21:52.53	-23:47:37.43	1.977	0.020	0.010	1.805	0.071	0.039				\checkmark
151	FS Mon	1	07:24:42.30	-05:09:14.57	1.632	0.012	0.007	2.061	0.012	0.006	6715	100	0.015	\checkmark
152	FS Mon	2	07:24:42.30	-05:09:14.57	1.462	0.010	0.007	1.637	0.012	0.007	6550	100	0.015	\checkmark
153	YY Gem	1	07:34:37.41	+31:52:09.79	0.598	0.005	0.008	0.621	0.006	0.010	3820	100	0.026	\checkmark
154	YY Gem	2	07:34:37.41	+31:52:09.79	0.601	0.005	0.008	0.605	0.006	0.010	3820	100	0.026	\checkmark
155	2MASS J07431157+0316220	1	07:43:11.57	+03:16:22.09	0.584	0.002	0.003	0.559	0.002	0.004	3730	90	0.024	\checkmark
156	J07431157+0316220	2	07:43:11.57	+03:16:22.09	0.544	0.002	0.004	0.512	0.004	0.008	3610	90	0.025	\checkmark
157	PV Pup	1	07:45:28.73	-14:41:10.20	1.539	0.012	0.008	1.536	0.016	0.010	6920	300	0.043	\checkmark
158	PV Pup	2	07:45:28.73	-14:41:10.20	1.527	0.014	0.009	1.493	0.016	0.011	6930	300	0.043	\checkmark
159	V392 Car	1	07:58:10.48	-60:51:57.20	1.9	0.024	0.013	1.624	0.030	0.018	8850	200	0.023	\checkmark
160	V392 Car	2	07:58:10.48	-60:51:57.20	1.853	0.024	0.013	1.600	0.031	0.019	8650	200	0.023	\checkmark
161	CN Lyn	1	08:01:37.20	+38:44:58.40	1.038	0.020	0.019	1.799	0.210	0.117	6500	250	0.038	x

Ek	2'nin devamı													
Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±Δτ	ΔT/T	Açıklama
162	CN Lyn	2	08:01:37.20	+38:44:58.40	1.038	0.020	0.019	1.839	0.240	0.131	6455	260	0.040	x
163	AI Hya	1	08:18:47.46	+00:17:00.16	1.974	0.040	0.020	2.764	0.020	0.007	7100	60	0.008	\checkmark
164	Al Hya	2	08:18:47.46	+00:17:00.16	2.14	0.040	0.019	3.912	0.030	0.008	6700	60	0.009	\checkmark
165	NSVS 07394765	1	08:25:51.30	+24:27:05.10	0.36	0.005	0.014	0.459	0.004	0.009	3300	200	0.061	х
166	NSVS 07394765	2	08:25:51.30	+24:27:05.10	0.18	0.004	0.022	0.491	0.005	0.010	3106	125	0.040	х
167	TYC 5998-1918-1	1	08:25:51.60	-16:22:47.30	0.703	0.003	0.004	0.694	0.009	0.013	4350	200	0.046	\checkmark
168	TYC 5998-1918-1	2	08:25:51.60	-16:22:47.30	0.687	0.003	0.004	0.699	0.013	0.019	4090	200	0.049	\checkmark
169	AY Cam	1	08:25:51.79	+77:13:06.85	1.947	0.041	0.021	2.784	0.020	0.007	7250	100	0.014	\checkmark
170	AY Cam	2	08:25:51.79	+77:13:06.85	1.707	0.036	0.021	2.034	0.015	0.007	7395	100	0.014	\checkmark
171	VV Pyx	1	08:27:33.27	-20:50:38.25	2.097	0.018	0.009	2.169	0.020	0.009	9500	200	0.021	\checkmark
172	VV Pyx	2	08:27:33.27	-20:50:38.25	2.094	0.018	0.009	2.169	0.200	0.092	9500	200	0.021	\checkmark
173	HD 71636	1	08:29:56.31	+37:04:15.48	1.53	0.009	0.006	1.576	0.009	0.006	6950	140	0.020	\checkmark
174	HD 71636	2	08:29:56.31	+37:04:15.48	1.299	0.007	0.005	1.365	0.008	0.006	6440	140	0.022	\checkmark
175	CU Cnc	1	08:31:37.58	+19:23:39.47	0.427	0.002	0.005	0.433	0.005	0.012	3160	150	0.047	\checkmark
176	CU Cnc	2	08:31:37.58	+19:23:39.47	0.394	0.001	0.003	0.392	0.009	0.023	3125	150	0.048	\checkmark
177	VZ Hya	1	08:31:41.41	-06:19:07.56	1.271	0.009	0.007	1.315	0.005	0.004	6645	150	0.023	\checkmark
178	VZ Hya	2	08:31:41.41	-06:19:07.56	1.146	0.006	0.005	1.113	0.007	0.006	6290	150	0.024	\checkmark
179	TZ Pyx	1	08:41:08.26	-32:12:03.02	2.075	0.040	0.019	2.356	0.033	0.014	7468	203	0.027	\checkmark
180	TZ Pyx	2	08:41:08.26	-32:12:03.02	2.003	0.079	0.039	2.026	0.031	0.015	7521	208	0.028	\checkmark
181	RS Cha	1	08:43:12.21	-79:04:12.29	1.893	0.010	0.005	2.168	0.061	0.028	7638	76	0.010	\checkmark
182	RS Cha	2	08:43:12.21	-79:04:12.29	1.871	0.010	0.005	2.379	0.060	0.025	7228	72	0.010	\checkmark
183	V467 Vel	1	08:43:49.80	-46:07:08.83	30.699	1.023	0.033	12.090	1.008	0.083	37870			\checkmark
184	V467 Vel	2	08:43:49.80	-46:07:08.83	9.459	1.051	0.111	5.037	1.007	0.200	25500	500	0.020	\checkmark

Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata($\pm\Delta$ M)	(ΔM/M)	Yarıçap(R)	Hata($\pm\Delta$ R)	(ΔR/R)	Teff	±Δτ	ΔΤ/Τ	Açıklama
185	NSVS 02502726	1	08:44:11.04	+54:23:47.32	0.713	0.019	0.027	0.675	0.006	0.009	4300	200	0.047	\checkmark
186	NSVS 02502726	2	08:44:11.04	+54:23:47.32	0.346	0.012	0.035	0.764	0.007	0.009	3620	205	0.057	х
187	delta Vel	1	08:44:42.23	-54:42:31.76	3.191	0.026	0.008	3.209	0.043	0.013	9450			\checkmark
188	delta Vel	2	08:44:42.23	-54:42:31.76	2.987	0.026	0.009	2.723	0.054	0.020	9830			\checkmark
189	ASAS J085524-4411.3	1	08:55:24.04	-44:11:14.53	1.204	0.003	0.002	1.871	0.020	0.011				x
190	ASAS J085524-4411.3	2	08:55:24.04	-44:11:14.53	1.056	0.002	0.002	1.635	0.016	0.010				x
191	CV Vel	1	09:00:37.99	-51:33:20.06	6.076	0.074	0.012	4.130	0.024	0.006	18000	500	0.028	\checkmark
192	CV Vel	2	09:00:37.99	-51:33:20.06	5.977	0.070	0.012	3.912	0.027	0.007	17780	500	0.028	\checkmark
193	XY UMa	1	09:09:55.94	+54:29:17.71	1.097	0.073	0.067	1.161	0.020	0.017	5200	7	0.001	\checkmark
194	XY UMa	2	09:09:55.94	+54:29:17.71	0.665	0.031	0.047	0.630	0.010	0.016	4125	7	0.002	\checkmark
195	PT Vel	1	09:10:57.72	-43:16:02.93	2.199	0.016	0.007	2.095	0.020	0.010	9247	150	0.016	\checkmark
196	PT Vel	2	09:10:57.72	-43:16:02.93	1.626	0.009	0.006	1.560	0.020	0.013	7638	180	0.024	\checkmark
197	KW Hya	1	09:12:26.04	-07:06:35.38	1.973	0.036	0.018	2.129	0.015	0.007	8000	200	0.025	\checkmark
198	KW Hya	2	09:12:26.04	-07:06:35.38	1.485	0.017	0.011	1.486	0.022	0.015	6900	200	0.029	\checkmark
199	2MASS J09381349 -104281	1	09:38:13.51	-01:04:27.90	0.758	0.032	0.042	0.769	0.012	0.016	4360	150	0.034	\checkmark
200	2MASS J09381349 -104281	2	09:38:13.51	-01:04:27.90	0.761	0.021	0.028	0.766	0.013	0.017	4360	150	0.034	\checkmark
201	DU Leo	1	09:44:11.38	+25:21:11.41	0.935	0.020	0.021	1.182	0.030	0.025				х
202	DU Leo	2	11:02:02.27	+22:35:45.50	0.919	0.020	0.022	1.182	0.030	0.025				х
203	QX Car	1	09:54:33.88	-58:25:16.59	9.246	0.120	0.013	4.293	0.060	0.014	23800	500	0.021	\checkmark
204	QX Car	2	09:54:33.88	-58:25:16.59	8.46	0.120	0.014	4.053	0.060	0.015	22600	500	0.022	\checkmark
205	HS Hya	1	10:24:36.77	-19:05:32.96	1.255	0.008	0.006	1.278	0.007	0.005	6500	50	0.008	\checkmark
206	HS Hya	2	10:24:36.77	-19:05:32.96	1.219	0.007	0.006	1.220	0.007	0.006	6400	50	0.008	\checkmark
207	ZZ UMa	1	04:20:40.97	-01:44:23.37	1.179	0.013	0.011	1.518	0.023	0.015	5903	60	0.010	х

Ek	2'nin	devamı
LIN	<i>4</i> 11111	uovann

Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±Δτ	ΔT/T	Açıklama
208	ZZ UMa	2	10:30:03.19	+61:48:41.42	0.96	0.010	0.010	1.158	0.013	0.011	5097	60	0.012	\checkmark
209	2MASSJ10305521 +0334265	1	10:30:55.21	+03:34:26.57	0.499	0.002	0.004	0.457	0.005	0.011	3720	20	0.005	\checkmark
210	2MASSJ10305521 +0334265	2	10:30:55.21	+03:34:26.57	0.444	0.002	0.005	0.427	0.004	0.009	3630	20	0.006	\checkmark
211	UV Leo	1	10:38:20.77	+14:16:03.67	1.126	0.090	0.080	0.958	0.024	0.025	6129	67	0.011	\checkmark
212	UV Leo	2	10:38:20.77	+14:16:03.67	1.08	0.097	0.090	1.197	0.042	0.035	5741	59	0.010	\checkmark
213	RZ Cha	1	10:42:24.10	-82:02:14.19	1.506	0.035	0.023	2.282	0.020	0.009	6457	160	0.025	\checkmark
214	RZ Cha	2	10:42:24.10	-82:02:14.19	1.514	0.040	0.026	2.282	0.020	0.009	6457	160	0.025	\checkmark
215	DW Car	1	10:43:10.07	-60:02:11.74	11.341	0.120	0.011	4.561	0.045	0.010	27900	1000	0.036	\checkmark
216	DW Car	2	10:43:10.07	-60:02:11.74	10.626	0.140	0.013	4.299	0.055	0.013	26500	1000	0.038	\checkmark
217	UW LMi	1	10:43:30.20	+28:41:09.08	1.156	0.022	0.019	1.269	0.052	0.041	6500	250	0.038	\checkmark
218	UW LMi	2	10:43:30.20	+28:41:09.08	1.136	0.022	0.019	1.248	0.062	0.050	6500	250	0.038	\checkmark
219	GZ Leo	1	11:02:02.27	+22:35:45.50	0.932	0.011	0.012	0.819	0.031	0.038	5120			\checkmark
220	GZ Leo	2	11:02:02.27	+22:35:45.50	0.919	0.011	0.012	0.850	0.031	0.036	5120			\checkmark
221	chi02 Hya	1	11:05:57.57	-27:17:16.27	3.605	0.080	0.022	4.484	0.041	0.009	11750	190	0.016	\checkmark
222	chi02 Hya	2	11:05:57.57	-27:17:16.27	2.632	0.050	0.019	2.206	0.041	0.019	11100	230	0.021	\checkmark
223	EM Car	1	11:12:04.51	-61:05:42.93	22.833	0.319	0.014	9.356	0.170	0.018	34000	2000	0.059	\checkmark
224	EM Car	2	11:12:04.51	-61:05:42.93	21.376	0.329	0.015	8.345	0.160	0.019	34000	2000	0.059	\checkmark
225	LSPM J1112+7626	1	11:12:42.32	+76:26:56.40	0.395	0.002	0.005	0.381	0.005	0.013	3061	162	0.053	\checkmark
226	LSPM J1112+7626	2	11:12:42.32	+76:26:56.40	0.274	0.001	0.004	0.300	0.005	0.017	2952	163	0.055	-
227	FM Leo	1	11:12:45.09	+00:20:52.84	1.318	0.007	0.005	1.649	0.043	0.026	6316	240	0.038	\checkmark
228	FM Leo	2	11:12:45.09	+00:20:52.84	1.287	0.007	0.005	1.512	0.049	0.032	6190	211	0.034	\checkmark
229	V346 Cen	1	11:42:49.68	-62:26:05.40	11.744	1.393	0.119	8.252	0.302	0.037	26500	1000	0.038	\checkmark
230	V346 Cen	2	11:42:49.68	-62:26:05.40	8.344	0.795	0.095	4.227	0.201	0.048	24000	1000	0.042	\checkmark

Ek	2'nin devamı													
Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±Δτ	ΔT/T	Açıklama
231	MW UMa	1	11:43:02.28	+60:34:36.64	1.257	0.095	0.076	1.258	0.010	0.008	6514	130	0.020	\checkmark
232	MW UMa	2	11:43:02.28	+60:34:36.64	1.124	0.091	0.081	1.138	0.010	0.009	6112	22	0.004	\checkmark
233	EP Cru	1	12:37:16.75	-56:47:17.38	5.019	0.130	0.026	3.590	0.035	0.010	15700	500	0.032	\checkmark
234	EP Cru	2	12:37:16.75	-56:47:17.38	4.83	0.130	0.027	3.495	0.034	0.010	15400	500	0.032	\checkmark
235	IM Vir	1	12:49:38.70	-06:04:44.86	0.981	0.012	0.012	1.062	0.016	0.015	5570	100	0.018	\checkmark
236	IM Vir	2	12:49:38.70	-06:04:44.86	0.664	0.005	0.008	0.681	0.013	0.019	4250	130	0.031	\checkmark
237	HY Vir	1	13:08:29.92	-02:40:44.38	1.838	0.009	0.005	2.830	0.008	0.003	7870			\checkmark
238	HY Vir	2	13:08:29.92	-02:40:44.38	1.404	0.006	0.004	1.532	0.008	0.005	6546			\checkmark
239	eta Mus	1	13:15:14.94	-67:53:40.52	3.283	0.040	0.012	2.140	0.020	0.009	12700	100	0.008	\checkmark
240	eta Mus	2	13:15:14.94	-67:53:40.52	3.282	0.040	0.012	2.130	0.040	0.019	12550	300	0.024	\checkmark
241	NSVS 01031772	1	13:45:34.89	+79:23:48.28	0.54	0.003	0.006	0.526	0.003	0.006	3615	72	0.020	\checkmark
242	NSVS 01031772	2	13:45:34.89	+79:23:48.28	0.497	0.002	0.004	0.509	0.003	0.006	3513	31	0.009	\checkmark
243	SZ Cen	1	13:50:35.09	-58:29:57.11	2.272	0.025	0.011	4.555	0.023	0.005	8000	300	0.038	\checkmark
244	SZ Cen	2	13:50:35.09	-58:29:57.11	2.311	0.021	0.009	3.622	0.021	0.006	8280	300	0.036	\checkmark
245	ZZ Boo	1	13:56:09.52	+25:55:07.36	1.616	0.010	0.006	2.164	0.070	0.032	6670	30	0.004	\checkmark
246	ZZ Boo	2	13:56:09.52	+25:55:07.36	1.568	0.010	0.006	2.164	0.070	0.032	6670	30	0.004	\checkmark
247	BH Vir	1	13:58:24.86	-01:39:38.95	1.178	0.018	0.015	1.228	0.050	0.041	6100	100	0.016	\checkmark
248	BH Vir	2	13:58:24.86	-01:39:38.95	1.05	0.015	0.014	1.118	0.040	0.036	5500	200	0.036	\checkmark
249	DM Vir	1	14:07:52.43	-11:09:07.49	1.454	0.008	0.006	1.764	0.017	0.010	6500	100	0.015	\checkmark
250	DM Vir	2	14:07:52.43	-11:09:07.49	1.448	0.008	0.006	1.764	0.017	0.010	6500	300	0.046	\checkmark
251	V636 Cen	1	14:16:57.91	-49:56:42.36	1.052	0.005	0.005	1.024	0.004	0.004	5900	85	0.014	\checkmark
252	V636 Cen	2	14:16:57.91	-49:56:42.36	0.854	0.003	0.004	0.835	0.004	0.005	5000	100	0.020	\checkmark
253	Psi Cen	1	14:20:33.43	-37:53:07.06	3.114	0.016	0.005	3.634	0.007	0.002	10450	300	0.029	\checkmark

E	Ek 2'nin devamı													
Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±Δτ	ΔT/T	Açıklama
254	Psi Cen	2	14:20:33.43	-37:53:07.06	1.909	0.030	0.016	1.811	0.004	0.002	8800	300	0.034	\checkmark
255	AD Boo	1	14:35:12.78	+24:38:21.35	1.414	0.009	0.006	1.614	0.014	0.009	6575	120	0.018	\checkmark
256	AD Boo	2	14:35:12.78	+24:38:21.35	1.209	0.006	0.005	1.218	0.010	0.008	6145	120	0.020	\checkmark
257	ASAS J150145-5242.2	1	15:01:44.67	-52:42:10.81	1.767	0.021	0.012	2.875	0.141	0.049				\checkmark
258	ASAS J150145-5242.2	2	15:01:44.67	-52:42:10.81	1.771	0.021	0.012	2.825	0.141	0.050				\checkmark
259	GG Lup	1	15:18:56.37	-40:47:17.60	4.106	0.040	0.010	2.379	0.025	0.011	14750	450	0.031	\checkmark
260	GG Lup	2	15:18:56.37	-40:47:17.60	2.504	0.024	0.010	1.725	0.019	0.011	11000	600	0.055	\checkmark
261	GU Boo	1	15:21:55.17	+33:56:04.20	0.609	0.007	0.011	0.628	0.016	0.025	3920	130	0.033	\checkmark
262	GU Boo	2	15:21:55.17	+33:56:04.20	0.599	0.006	0.010	0.625	0.020	0.032	3810	130	0.034	\checkmark
263	CV Boo	1	15:26:19.54	+36:58:53.43	1.045	0.013	0.012	1.269	0.023	0.018	5760	150	0.026	\checkmark
264	CV Boo	2	15:26:19.54	+36:58:53.43	0.995	0.012	0.012	1.180	0.023	0.019	5670	150	0.026	\checkmark
265	alpha CrB	1	15:34:41.27	+26:42:52.90	2.581	0.045	0.017	3.059	0.302	0.099	9700	200	0.021	\checkmark
266	alpha CrB	2	15:34:41.27	+26:42:52.90	0.922	0.025	0.027	0.906	0.040	0.044	5800	300	0.052	\checkmark
267	RT CrB	1	19:38:41.18	+54:58:25.66	1.344	0.010	0.007	4.256	0.074	0.017	5134	100	0.019	х
268	RT CrB	2	15:38:03.03	+29:29:13.95	1.359	0.009	0.007	3.778	0.064	0.017	5781	100	0.017	х
269	ASAS J155259-6637.8	1	15:52:58.42	-66:37:47.26	1.35	0.003	0.002	1.837	0.151	0.082				\checkmark
270	ASAS J155259-6637.8	2	15:52:58.42	-66:37:47.26	1.639	0.004	0.002	2.821	0.151	0.054				\checkmark
271	ASAS J155358-5553.4	1	15:53:57.57	-55:53:21.75	1.847	0.006	0.003	2.731	0.280	0.103				\checkmark
272	ASAS J155358-5553.4	2	15:53:57.57	-55:53:21.75	1.927	0.006	0.003	2.991	0.300	0.100				\checkmark
273	V335 Ser	1	15:59:05.76	+00:35:44.55	2.029	0.010	0.005	2.039	0.020	0.010	9506	289	0.030	\checkmark
274	V335 Ser	2	15:59:05.76	+00:35:44.55	1.844	0.020	0.011	1.607	0.010	0.006	8872	248	0.028	\checkmark
275	TV Nor	1	16:04:09.24	-51:32:39.99	2.048	0.022	0.011	1.851	0.012	0.006	9120	148	0.016	\checkmark
276	TV Nor	2	16:04:09.24	-51:32:39.99	1.661	0.018	0.011	1.560	0.014	0.009	7798	108	0.014	\checkmark

E	Ek 2'nin devamı													
Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±Δτ	ΔΤ/Τ	Açıklama
277	M4-V65	1	16:23:28.39	-26:30:22.00	0.803	0.009	0.011	1.147	0.010	0.009	6088	108	0.018	x
278	M4-V65	2	16:23:28.39	-26:30:22.00	0.605	0.004	0.007	0.611	0.009	0.015	4812	125	0.026	\checkmark
279	M4-V66	1	16:23:32.23	-26:31:41.30	0.784	0.004	0.005	0.934	0.005	0.005	6162	98	0.016	\checkmark
280	M4-V66	2	16:23:32.23	-26:31:41.30	0.743	0.004	0.005	0.830	0.005	0.006	5938	105	0.018	\checkmark
281	M4-V69	1	16:23:58.01	-26:37:18.00	0.766	0.005	0.007	0.866	0.010	0.012	6084	121	0.020	\checkmark
282	M4-V69	2	16:23:58.01	-26:37:18.00	0.728	0.004	0.005	0.807	0.008	0.010	5915	137	0.023	\checkmark
283	V760 Sco	1	16:24:43.72	-34:53:37.53	4.969	0.090	0.018	3.028	0.060	0.020	16900	500	0.030	\checkmark
284	V760 Sco	2	16:24:43.72	-34:53:37.53	4.61	0.070	0.015	2.656	0.050	0.019	16300	500	0.031	\checkmark
285	ASAS J162637-5042.8	1	16:26:37.40	-50:42:49.32	1.469	0.008	0.005	2.551	0.330	0.129				\checkmark
286	ASAS J162637-5042.8	2	16:26:37.40	-50:42:49.32	1.246	0.007	0.006	2.251	0.330	0.147				х
287	CM Dra	1	16:34:20.41	+57:09:43.94	0.231	0.001	0.004	0.253	0.001	0.004	3130	70	0.022	-
288	CM Dra	2	16:34:20.41	+57:09:43.94	0.214	0.001	0.005	0.239	0.001	0.004	3120	70	0.022	-
289	2MASSJ16502074 +4639013	1	16:50:20.75	+46:39:01.40	0.49	0.003	0.006	0.907	0.120	0.132	3500			х
290	2MASSJ16502074 +4639013	2	16:50:20.75	+46:39:01.40	0.486	0.003	0.006	0.905	0.100	0.110	3395			х
291	V1292 Sco	1	16:53:55.56	-41:52:51.29	26.257	0.424	0.016	12.581	1.236	0.098	31900	900	0.028	\checkmark
292	V1292 Sco	2	16:53:55.56	-41:52:51.29	10.385	0.142	0.014	5.841	3.033	0.519	21800	4100	0.188	\checkmark
293	V1034 Sco	1	16:54:19.85	-41:50:09.40	17.977	0.450	0.025	7.441	0.449	0.060	34000	150	0.004	\checkmark
294	V1034 Sco	2	16:54:19.85	-41:50:09.40	9.97	0.220	0.022	5.383	0.429	0.080	26260	150	0.006	\checkmark
295	V2626 Oph	1	17:05:32.03	+10:32:47.29	1.758	0.130	0.074	3.239	0.081	0.025	7760	64	0.008	\checkmark
296	V2626 Oph	2	17:05:32.03	+10:32:47.29	1.276	0.110	0.086	1.289	0.033	0.026	7205	64	0.009	\checkmark
297	WZ Oph	1	17:06:39.04	+07:46:57.78	1.227	0.007	0.006	1.401	0.012	0.009	6165	100	0.016	\checkmark
298	WZ Oph	2	17:06:39.04	+07:46:57.78	1.22	0.006	0.005	1.419	0.012	0.008	6115	100	0.016	\checkmark
299	V2365 Oph	1	17:08:45.78	+09:11:10.14	1.964	0.017	0.009	2.191	0.009	0.004	9500	200	0.021	\checkmark

Ek 2	2'nin devamı													
Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata($\pm\Delta$ R)	(ΔR/R)	Teff	±Δτ	ΔT/T	Açıklama
300	V2365 Oph	2	17:08:45.78	+09:11:10.14	1.055	0.010	0.009	0.934	0.004	0.004	6400	210	0.033	\checkmark
301	V2368 Oph	1	17:16:14.26	+02:11:10.33	2.417	0.018	0.007	3.857	0.019	0.005	9300	200	0.022	\checkmark
302	V2368 Oph	2	17:16:14.26	+02:11:10.33	2.525	0.065	0.026	3.740	0.019	0.005	9500	200	0.021	\checkmark
303	U Oph	1	17:16:31.72	+01:12:37.96	4.831	0.049	0.010	3.244	0.059	0.018	16900	1500	0.089	\checkmark
304	U Oph	2	17:16:31.72	+01:12:37.96	4.29	0.038	0.009	2.968	0.049	0.017	16000	1500	0.094	\checkmark
305	TX Her	1	17:18:36.45	+41:53:17.10	1.607	0.040	0.025	1.688	0.030	0.018	7534	200	0.027	\checkmark
306	TX Her	2	17:18:36.45	+41:53:17.10	1.441	0.030	0.021	1.428	0.030	0.021	6678	211	0.032	\checkmark
307	LV Her	1	17:35:32.40	+23:10:30.60	1.192	0.010	0.008	1.358	0.012	0.009	6060	150	0.025	\checkmark
308	LV Her	2	17:35:32.40	+23:10:30.60	1.169	0.008	0.007	1.313	0.011	0.008	6030	150	0.025	\checkmark
309	V624 Her	1	17:44:17.25	+14:24:36.24	2.277	0.014	0.006	3.028	0.030	0.010	8150	150	0.018	\checkmark
310	V624 Her	2	17:44:17.25	+14:24:36.24	1.876	0.013	0.007	2.208	0.030	0.014	7945	150	0.019	\checkmark
311	BD-00 3357	1	17:46:19.42	-00:18:38.10	1.724	0.040	0.023	1.780	0.200	0.112	7250	30	0.004	\checkmark
312	BD-00 3357	2	17:46:19.42	-00:18:38.10	1.339	0.030	0.022	1.320	0.070	0.053	6425	30	0.005	\checkmark
313	BD-11 4457	1	17:46:25.75	-11:52:58.08	1.692	0.035	0.021	2.015	0.122	0.061				\checkmark
314	BD-11 4457	2	17:46:25.75	-11:52:58.08	1.401	0.024	0.017	2.673	0.172	0.064				х
315	V539 Ara	1	17:50:28.39	-53:36:44.66	6.265	0.070	0.011	4.436	0.120	0.027	18200	1300	0.071	\checkmark
316	V539 Ara	2	17:50:28.39	-53:36:44.66	5.326	0.060	0.011	3.735	0.250	0.067	16982	1215	0.072	\checkmark
317	V906 Sco	1	17:53:54.77	-34:45:09.80	3.37	0.071	0.021	4.525	0.035	0.008	10400	500	0.048	\checkmark
318	V906 Sco	2	17:53:54.77	-34:45:09.80	3.246	0.069	0.021	3.518	0.039	0.011	10700	500	0.047	\checkmark
319	Z Her	1	17:58:06.98	+15:08:21.90	1.611	0.070	0.043	1.859	0.060	0.032	6397	75	0.012	\checkmark
320	Z Her	2	17:58:06.98	+15:08:21.90	1.312	0.030	0.023	2.743	0.080	0.029	4977	175	0.035	х
321	V1647 Sgr	1	17:59:13.47	-36:56:19.84	2.184	0.040	0.018	1.908	0.021	0.011	9600	310	0.032	\checkmark
322	V1647 Sgr	2	17:59:13.47	-36:56:19.84	1.967	0.030	0.015	1.741	0.021	0.012	9100	300	0.033	\checkmark

Ek 2	2'nin devamı													
Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±Δτ	ΔT/T	Açıklama
323	V3903 Sgr	1	18:09:17.70	-23:59:18.22	27.204	0.549	0.020	8.120	0.086	0.011	38000	1900	0.050	\checkmark
324	V3903 Sgr	2	18:09:17.70	-23:59:18.22	18.964	0.439	0.023	6.149	0.060	0.010	34100	1700	0.050	\checkmark
325	EG Ser	1	18:26:02.20	-01:40:51.42	2.2	0.050	0.023	1.689	0.010	0.006	9900	200	0.020	\checkmark
326	EG Ser	2	18:26:02.20	-01:40:51.42	1.99	0.030	0.015	1.549	0.010	0.006	9100	200	0.022	\checkmark
327	V994 Her-B	1	18:27:45.89	+24:41:50.68	1.868	0.120	0.064	1.583	0.080	0.051	9000	250	0.028	\checkmark
328	V994 Her-B	2	18:27:45.89	+24:41:50.68	1.859	0.120	0.065	1.493	0.080	0.054	8450	70	0.008	\checkmark
329	V994 Her-A	1	18:27:45.89	+24:41:50.67	2.828	0.200	0.071	2.123	0.049	0.023	12000	250	0.021	\checkmark
330	V994 Her-A	2	18:27:45.89	+24:41:50.67	2.299	0.160	0.070	1.688	0.039	0.023	9450	90	0.010	\checkmark
331	V451 Oph	1	18:29:14.04	+10:53:31.44	2.769	0.060	0.022	2.646	0.030	0.011	10800	800	0.074	\checkmark
332	V451 Oph	2	18:29:14.04	+10:53:31.44	2.351	0.050	0.021	2.032	0.030	0.015	9800	500	0.051	\checkmark
333	RX Her	1	18:30:39.26	+12:36:40.34	2.748	0.090	0.033	2.458	0.111	0.045	11100			\checkmark
334	RX Her	2	18:30:39.26	+12:36:40.34	2.326	0.064	0.028	1.998	0.111	0.056	10016	71	0.007	\checkmark
335	UNSW-TR 2	1	18:30:51.92	+07:09:18.75	0.512	0.034	0.066	0.646	0.050	0.077				х
336	UNSW-TR 2	2	18:30:51.92	+07:09:18.75	0.529	0.036	0.068	0.613	0.060	0.098				x
337	V413 Ser	1	18:35:08.21	+00:02:34.82	3.654	0.050	0.014	3.200	0.050	0.016	11100	300	0.027	\checkmark
338	V413 Ser	2	18:35:08.21	+00:02:34.82	3.318	0.040	0.012	2.921	0.050	0.017	10350	280	0.027	\checkmark
339	HD 172189	1	18:38:37.55	+05:27:55.34	2.06	0.150	0.073	4.017	0.094	0.023	7920	15	0.002	\checkmark
340	HD 172189	2	18:38:37.55	+05:27:55.34	1.869	0.140	0.075	2.969	0.070	0.024	7608	15	0.002	\checkmark
341	V1331 Aql	1	18:44:12.79	-01:33:15.56	10.079	0.110	0.011	4.253	0.030	0.007	25400	100	0.004	\checkmark
342	V1331 Aql	2	18:44:12.79	-01:33:15.56	5.282	0.100	0.019	4.043	0.030	0.007	20100	140	0.007	\checkmark
343	YY Sgr	1	18:44:35.86	-19:23:22.71	3.897	0.130	0.033	2.576	0.030	0.012	14800	700	0.047	\checkmark
344	YY Sgr	2	18:44:35.86	-19:23:22.71	3.482	0.090	0.026	2.344	0.050	0.021	14125	670	0.047	\checkmark
345	BF Dra	1	18:50:59.35	+69:52:57.48	1.413	0.003	0.002	2.999	0.017	0.006	6360	150	0.024	х

]	Ek 2'nin devamı													
Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±Δτ	ΔT/T	Açıklama
346	BF Dra	2	18:50:59.35	+69:52:57.48	1.374	0.003	0.002	2.763	0.017	0.006	6400	150	0.023	x
347	BD+03 3821	1	18:52:40.31	+04:03:11.75	4.261	0.116	0.027	3.830	0.030	0.008	13140	1500	0.114	\checkmark
348	BD+03 3821	2	18:52:40.31	+04:03:11.75	2.819	0.114	0.040	2.073	0.020	0.010	12044	100	0.008	\checkmark
349	DI Her	1	18:53:26.24	+24:16:40.80	5.173	0.100	0.019	2.679	0.050	0.019	16980	800	0.047	\checkmark
350	DI Her	2	18:53:26.24	+24:16:40.80	4.524	0.060	0.013	2.479	0.050	0.020	15135	715	0.047	\checkmark
351	HP Dra	1	18:54:53.48	+51:18:29.79	1.056	0.005	0.005	1.340	0.012	0.009	6000	150	0.025	x
352	HP Dra	2	18:54:53.48	+51:18:29.79	1.024	0.007	0.007	1.028	0.010	0.010	5895	150	0.025	\checkmark
353	BD-03 4412	1	18:55:12.26	-03:33:43.14	1.814	0.006	0.003	1.701	0.300	0.176				\checkmark
354	BD-03 4412	2	18:55:12.26	-03:33:43.14	1.513	0.005	0.003	1.501	0.400	0.266				\checkmark
355	V1182 Aql	1	18:55:23.13	+09:20:48.08	30.884	0.598	0.019	9.059	0.181	0.020	43000	500	0.012	\checkmark
356	V1182 Aql	2	18:55:23.13	+09:20:48.08	16.592	0.400	0.024	4.892	0.181	0.037	30500	500	0.016	\checkmark
357	V1665 Aql	1	18:56:09.90	+07:56:08.21	3.965	0.399	0.101	4.131	0.100	0.024	12300	350	0.028	\checkmark
358	V1665 Aql	2	18:56:09.90	+07:56:08.21	3.656	0.370	0.101	2.601	0.060	0.023	11650	310	0.027	\checkmark
359	V805 Aql	1	19:06:18.20	-11:38:57.33	2.114	0.040	0.019	2.122	0.121	0.057	8185	330	0.040	\checkmark
360	V805 Aql	2	19:06:18.20	-11:38:57.33	1.628	0.020	0.012	1.760	0.121	0.069	7178	300	0.042	\checkmark
361	2MASSJ19071662 +4639532	1	19:07:16.62	+46:39:53.21	0.679	0.010	0.015	0.634	0.043	0.068	4150			\checkmark
362	2MASSJ19071662 +4639532	2	19:07:16.62	+46:39:53.21	0.523	0.006	0.011	0.525	0.052	0.099	3700			\checkmark
363	V526 Sgr	1	19:08:15.03	-31:20:54.94	2.275	0.070	0.031	1.901	0.020	0.011	10140	190	0.019	\checkmark
364	V526 Sgr	2	19:08:15.03	-31:20:54.94	1.683	0.060	0.036	1.569	0.020	0.013	8710	100	0.011	\checkmark
365	KIC 4247791-1	1	19:08:39.57	+39:22:36.96	1.7	0.020	0.012	2.508	0.010	0.004				\checkmark
366	KIC 4247791-1	2	19:08:39.57	+39:22:36.96	1.538	0.010	0.007	2.408	0.010	0.004				\checkmark
367	KIC 4247791-2	1	19:08:39.57	+39:22:36.96	1.301	0.020	0.015	1.464	0.130	0.089				\checkmark
368	KIC 4247791-2	2	19:08:39.57	+39:22:36.96	1.261	0.020	0.016	1.354	0.120	0.089				\checkmark

Ek	2'nin devamı													
Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±Δτ	ΔΤ/Τ	Açıklama
369	FL Lyr	1	19:12:04.86	+46:19:26.87	1.218	0.016	0.013	1.282	0.030	0.023	6150	100	0.016	\checkmark
370	FL Lyr	2	19:12:04.86	+46:19:26.87	0.958	0.011	0.011	0.962	0.030	0.031	5300	95	0.018	\checkmark
371	TYC3121-1659-1	1	19:19:04.38	+38:40:57.00	1.369	0.230	0.168	1.602	0.090	0.056	6700	150	0.022	\checkmark
372	TYC3121-1659-1	2	19:19:04.38	+38:40:57.00	0.324	0.041	0.127	0.861	0.060	0.070	3170	150	0.047	x
373	V565 Lyr	1	19:20:49.10	+37:46:09.30	0.995	0.003	0.003	1.101	0.007	0.006	5600	95	0.017	\checkmark
374	V565 Lyr	2	19:20:49.10	+37:46:09.30	0.929	0.003	0.003	0.971	0.009	0.009	5430	125	0.023	\checkmark
375	V568 Lyr	1	19:20:54.30	+37:45:34.70	1.075	0.008	0.007	1.400	0.016	0.011	5665	100	0.018	x
376	V568 Lyr	2	19:20:54.30	+37:45:34.70	0.827	0.004	0.005	0.768	0.006	0.008	4900	100	0.020	\checkmark
377	V1430 Aql	1	19:21:48.49	+04:32:56.92	0.957	0.010	0.010	1.101	0.010	0.009	5262	150	0.029	\checkmark
378	V1430 Aql	2	19:21:48.49	+04:32:56.92	0.859	0.020	0.023	0.851	0.010	0.012	4930	100	0.020	\checkmark
379	UZ Dra	1	19:25:55.05	+68:56:07.15	1.345	0.020	0.015	1.311	0.030	0.023	6210	110	0.018	\checkmark
380	UZ Dra	2	19:25:55.05	+68:56:07.15	1.236	0.020	0.016	1.150	0.020	0.017	5985	110	0.018	\checkmark
381	V2080 Cyg	1	19:26:47.95	+50:08:43.77	1.19	0.017	0.014	1.596	0.008	0.005	6000	75	0.013	x
382	V2080 Cyg	2	19:26:47.95	+50:08:43.77	1.156	0.017	0.015	1.599	0.008	0.005	5987	75	0.013	x
383	V415 Aql	1	19:30:43.73	+13:40:20.78	1.798	0.160	0.089	2.972	0.901	0.303	6590			\checkmark
384	V415 Aql	2	19:30:43.73	+13:40:20.78	1.676	0.150	0.089	2.341	0.800	0.342	6050			\checkmark
385	V2083 Cyg	1	19:31:16.36	+47:28:52.24	2.159	0.139	0.064	2.293	0.184	0.080	7630			\checkmark
386	V2083 Cyg	2	19:31:16.36	+47:28:52.24	2.105	0.114	0.054	2.650	0.216	0.082	7623	45	0.006	\checkmark
387	WTS 19e-3-08413	1	19:32:43.20	+36:36:53.50	0.463	0.025	0.054	0.480	0.022	0.046	3506	140	0.040	\checkmark
388	WTS 19e-3-08413	2	19:32:43.20	+36:36:53.50	0.351	0.019	0.054	0.375	0.020	0.053	3338	140	0.042	-
389	V885 Cyg	1	19:32:49.86	+30:01:17.03	2.000	0.029	0.015	2.487	0.013	0.005	8375	150	0.018	\checkmark
390	V885 Cyg	2	19:32:49.86	+30:01:17.03	2.228	0.026	0.012	3.591	0.028	0.008	8150	150	0.018	\checkmark
391	WTS 19b-2-01387	1	19:34:15.50	+36:28:27.30	0.498	0.019	0.038	0.496	0.013	0.026	3498	100	0.029	\checkmark

Ek	2'nin devamı													
Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±Δτ	ΔΤ/Τ	Açıklama
392	WTS 19b-2-01387	2	19:34:15.50	+36:28:27.30	0.481	0.017	0.035	0.479	0.013	0.027	3436	100	0.029	\checkmark
393	WTS 19c-3-01405	1	19:36:40.70	+36:42:46.00	0.41	0.023	0.056	0.398	0.019	0.048	3309	130	0.039	\checkmark
394	WTS 19c-3-01405	2	19:36:40.70	+36:42:46.00	0.376	0.024	0.064	0.393	0.019	0.048	3305	130	0.039	-
395	KIC 6131659	1	19:37:06.98	+41:26:12.86	0.922	0.007	0.008	0.880	0.003	0.003	5660	140	0.025	\checkmark
396	KIC 6131659	2	19:37:06.98	+41:26:12.86	0.685	0.005	0.007	0.640	0.006	0.009	4780	105	0.022	\checkmark
397	V1143 Cyg	1	19:38:41.18	+54:58:25.66	1.388	0.016	0.012	1.347	0.023	0.017	6460	100	0.015	\checkmark
398	V1143 Cyg	2	19:38:41.18	+54:58:25.66	1.344	0.013	0.010	1.324	0.023	0.017	6400	100	0.016	\checkmark
399	V541 Cyg	1	19:42:29.45	+31:19:40.20	2.24	0.090	0.040	1.892	0.030	0.016	9885	230	0.023	\checkmark
400	V541 Cyg	2	19:42:29.45	+31:19:40.20	2.238	0.080	0.036	1.801	0.040	0.022	9955	230	0.023	\checkmark
401	V1765 Cyg	1	19:48:50.60	+33:26:14.22	24.873	0.348	0.014	21.189	0.780	0.037				\checkmark
402	V1765 Cyg	2	19:48:50.60	+33:26:14.22	12.191	0.240	0.020	5.897	0.217	0.037				\checkmark
403	V380 Cyg	1	19:50:37.33	+40:35:59.13	13.015	0.586	0.045	15.344	0.209	0.014	21350	400	0.019	х
404	V380 Cyg	2	19:50:37.33	+40:35:59.13	7.488	0.269	0.036	3.904	0.073	0.019	20500	500	0.024	\checkmark
405	BD-20 5728	1	19:51:12.79	-20:30:-10.21	1.646	0.008	0.005	2.741	0.130	0.047				\checkmark
406	BD-20 5728	2	19:51:12.79	-20:30:-10.21	1.187	0.006	0.005	2.031	0.110	0.054				х
407	KIC 10935310	1	19:51:39.82	+48:19:55.38	0.678	0.021	0.031	0.614	0.007	0.011	4320	100	0.023	\checkmark
408	KIC 10935310	2	19:51:39.82	+48:19:55.38	0.347	0.012	0.035	0.898	0.012	0.013	2750	65	0.024	x
409	BS Dra	1	19:56:28.77	+73:36:57.52	1.36	0.083	0.061	1.442	0.022	0.015	6618	153	0.023	\checkmark
410	BS Dra	2	19:56:28.77	+73:36:57.52	1.358	0.098	0.072	1.423	0.072	0.051	6626	153	0.023	\checkmark
411	V477 Cyg	1	20:05:27.69	+31:58:18.11	1.772	0.119	0.067	1.580	0.050	0.032	8700	300	0.034	\checkmark
412	V477 Cyg	2	20:05:27.69	+31:58:18.11	1.329	0.069	0.052	1.278	0.040	0.031	6700	235	0.035	\checkmark
413	V453 Cyg	1	20:06:34.97	+35:44:26.28	14.377	0.200	0.014	8.564	0.055	0.006	26600	500	0.019	\checkmark
414	V453 Cyg	2	20:06:34.97	+35:44:26.28	11.119	0.130	0.012	5.497	0.063	0.011	25500	800	0.031	\checkmark

D1	· ·	1
- Li Iz ()	nin	doumi
I'K Z		ucvann
		~~ · ~ · · · · · · · · · · · ·

Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±Δτ	ΔT/T	Açıklama
415	2MASSJ20115132 +0337194	1	20:11:51.40	+03:37:20.00	0.557	0.001	0.002	0.519	0.011	0.021	3690	80	0.022	\checkmark
416	2MASSJ20115132 +0337194	2	20:11:51.40	+03:37:20.00	0.535	0.001	0.002	0.456	0.007	0.015	3610	80	0.022	\checkmark
417	TYC 4589-2999-1	1	20:15:00.23	+76:54:18.31	1.815	0.101	0.056	2.011	0.040	0.020	5830	40	0.007	\checkmark
418	TYC 4589-2999-1	2	20:15:00.23	+76:54:18.31	0.838	0.105	0.125	0.846	0.020	0.024	4616	116	0.025	\checkmark
419	V478 Cyg	1	20:19:38.75	+38:20:09.20	16.628	0.902	0.054	7.478	0.121	0.016	30550	1070	0.035	\checkmark
420	V478 Cyg	2	20:19:38.75	+38:20:09.20	16.277	0.899	0.055	7.478	0.121	0.016	30550	1070	0.035	\checkmark
421	MY Cyg	1	20:20:03.39	+33:56:35.02	1.805	0.030	0.017	2.215	0.020	0.009	7050	200	0.028	\checkmark
422	MY Cyg	2	20:20:03.39	+33:56:35.02	1.794	0.030	0.017	2.275	0.020	0.009	7000	200	0.029	\checkmark
423	V399 Vul	1	20:25:10.80	+21:29:18.84	7.55	0.080	0.011	6.498	0.033	0.005	19000	320	0.017	\checkmark
424	V399 Vul	2	20:25:10.80	+21:29:18.84	5.44	0.030	0.006	3.506	0.089	0.025	18250	520	0.028	\checkmark
425	BP Vul	1	20:25:33.25	+21:02:17.97	1.737	0.015	0.009	1.853	0.014	0.008	7709	150	0.019	\checkmark
426	BP Vul	2	20:25:33.25	+21:02:17.97	1.408	0.009	0.006	1.489	0.014	0.009	6823	150	0.022	\checkmark
427	V442 Cyg	1	20:27:52.30	+30:47:28.30	1.56	0.020	0.013	2.072	0.030	0.014	6900	82	0.012	\checkmark
428	V442 Cyg	2	20:27:52.30	+30:47:28.30	1.407	0.020	0.014	1.662	0.030	0.018	6808	79	0.012	\checkmark
429	MP Del	1	20:28:26.57	+11:43:14.52	1.559	0.085	0.055	2.429	0.046	0.019	7400	120	0.016	\checkmark
430	MP Del	2	20:28:26.57	+11:43:14.52	1.248	0.074	0.059	1.576	0.030	0.019	6927	120	0.017	\checkmark
431	V456 Cyg	1	20:28:50.84	+39:09:13.69	1.863	0.060	0.032	1.681	0.020	0.012	7750	100	0.013	\checkmark
432	V456 Cyg	2	20:28:50.84	+39:09:13.69	1.58	0.050	0.032	1.471	0.020	0.014	6755	400	0.059	\checkmark
433	MR Del	1	20:31:13.47	+05:13:08.50	0.686	0.065	0.095	0.649	0.020	0.031	4900			\checkmark
434	MR Del	2	20:31:13.47	+05:13:08.50	0.628	0.064	0.102	0.829	0.020	0.024	4400	20	0.005	x
435	IO Aqr	1	20:40:45.47	+00:56:21.02	1.624	0.020	0.012	2.538	0.060	0.024	6600			\checkmark
436	IO Aqr	2	20:40:45.47	+00:56:21.02	1.52	0.020	0.013	2.089	0.130	0.062	6425	300	0.047	\checkmark
437	V379 Cep	1	20:43:13.38	+57:06:50.39	10.873	0.237	0.022	7.986	0.121	0.015	22025	428	0.019	\checkmark

E	k 2'nin devamı													
Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±Δτ	ΔΤ/Τ	Açıklama
438	V379 Cep	2	20:43:13.38	+57:06:50.39	6.233	0.133	0.021	3.070	0.040	0.013	20206	374	0.019	\checkmark
439	Y Cyg	1	20:52:03.58	+34:39:27.47	17.275	0.395	0.023	6.006	0.300	0.050	31000	2000	0.065	\checkmark
440	Y Cyg	2	20:52:03.58	+34:39:27.47	17.275	0.300	0.017	5.706	0.300	0.053	31570	2000	0.063	\checkmark
441	CG Cyg	1	20:58:13.45	+35:10:29.66	0.948	0.012	0.013	0.896	0.013	0.015	5260	185	0.035	\checkmark
442	CG Cyg	2	20:58:13.45	+35:10:29.66	0.821	0.013	0.016	0.846	0.014	0.017	4720	66	0.014	\checkmark
443	ER Vul	1	21:02:25.91	+27:48:26.44	1.093	0.070	0.064	1.161	0.060	0.052	6000	52	0.009	\checkmark
444	ER Vul	2	21:02:25.91	+27:48:26.44	1.055	0.060	0.057	1.181	0.140	0.119	5883	52	0.009	\checkmark
445	V1061 Cyg	1	21:07:20.52	+52:02:58.42	1.281	0.015	0.012	1.616	0.017	0.011	6180	100	0.016	\checkmark
446	V1061 Cyg	2	21:07:20.52	+52:02:58.42	0.931	0.007	0.008	0.974	0.020	0.021	5300	150	0.028	\checkmark
447	El Cep	1	21:28:28.21	+76:24:12.59	1.772	0.007	0.004	2.898	0.048	0.017	6750	100	0.015	\checkmark
448	El Cep	2	21:28:28.21	+76:24:12.59	1.68	0.006	0.004	2.330	0.044	0.019	6950	100	0.014	\checkmark
449	2MASS J21295384 -620038	1	21:29:54.00	-56:20:03.87	0.839	0.017	0.020	0.847	0.012	0.014	4750	150	0.032	\checkmark
450	2MASS J21295384 -620038	2	21:29:54.00	-56:20:03.87	0.714	0.013	0.018	0.720	0.017	0.024	4220	180	0.043	\checkmark
451	BD-07 5586	1	21:34:28.99	-07:04:33.74	1.096	0.030	0.027	1.269	0.230	0.181				\checkmark
452	BD-07 5586	2	21:34:28.99	-07:04:33.74	1.036	0.030	0.029	1.239	0.220	0.178				\checkmark
453	EE Peg	1	21:40:01.88	+09:11:05.11	2.151	0.020	0.009	2.103	0.030	0.014	8700	200	0.023	\checkmark
454	EE Peg	2	21:40:01.88	+09:11:05.11	1.332	0.010	0.008	1.321	0.010	0.008	6450	300	0.047	\checkmark
455	EK Cep	1	21.51	+69:41:34.11	2.024	0.020	0.010	1.579	0.015	0.009	9000	200	0.022	\checkmark
456	EK Cep	2	21:41:21.51	+69:41:34.11	1.122	0.010	0.009	1.315	0.015	0.011	5700	190	0.033	\checkmark
457	OO Peg	1	21:41:37.70	+14:39:30.75	1.759	0.031	0.018	2.204	0.081	0.037	8770	150	0.017	\checkmark
458	OO Peg	2	21:41:37.70	+14:39:30.75	1.7	0.030	0.018	1.379	0.050	0.036	8683	180	0.021	\checkmark
459	VZ Cep	1	21:50:11.14	+71:26:38.30	1.402	0.015	0.011	1.558	0.012	0.008	6670	160	0.024	\checkmark
460	VZ Cep	2	21:50:11.14	+71:26:38.30	1.108	0.008	0.007	1.058	0.040	0.038	5720	120	0.021	\checkmark

Ek 2	2'nin devamı													
Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±Δτ	ΔΤ/Τ	Açıklama
461	V497 Cep	1	21:53:26.55	+62:35:13.16	6.473	0.432	0.067	3.713	0.030	0.008	19500	400	0.021	\checkmark
462	V497 Cep	2	21:53:26.55	+62:35:13.16	5	0.371	0.074	2.938	0.030	0.010	17756	405	0.023	\checkmark
463	BG Ind	1	21:58:30.08	-59:00:43.71	1.502	0.008	0.005	2.326	0.017	0.007	6353	270	0.042	\checkmark
464	BG Ind	2	21:58:30.08	-59:00:43.71	1.343	0.008	0.006	1.706	0.039	0.023	6653	233	0.035	\checkmark
465	CM Lac	1	22:00:04.45	+44:33:07.74	1.971	0.060	0.030	1.509	0.030	0.020	9000	300	0.033	\checkmark
466	CM Lac	2	22:00:04.45	+44:33:07.74	1.503	0.100	0.067	1.549	0.030	0.019	4586	160	0.035	\checkmark
467	V398 Lac	1	22:07:12.41	+52:38:08.46	3.834	0.350	0.091	4.893	0.180	0.037	11000	500	0.045	\checkmark
468	V398 Lac	2	22:07:12.41	+52:38:08.46	3.291	0.320	0.097	2.452	0.110	0.045	10900	450	0.041	\checkmark
469	BD-22 5866	1	22:14:38.36	-21:41:53.15	0.594	0.029	0.049	0.616	0.045	0.073				\checkmark
470	BD-22 5866	2	22:14:38.36	-21:41:53.15	0.594	0.029	0.049	0.600	0.045	0.075				\checkmark
471	BW Aqr	1	22:23:15.93	-15:19:56.22	1.479	0.020	0.014	2.057	0.040	0.019	6350	100	0.016	\checkmark
472	BW Aqr	2	22:23:15.93	-15:19:56.22	1.377	0.020	0.015	1.788	0.040	0.022	6450	100	0.016	\checkmark
473	WX Cep	22:31:	22:31:15.78	+63:31:21.55	2.324	0.046	0.020	3.997	0.030	0.008	8150	225	0.028	\checkmark
474	WX Cep	2	22:31:15.78	+63:31:21.55	2.533	0.049	0.019	2.708	0.025	0.009	8872	250	0.028	\checkmark
475	LL Aqr	1	22:34:42.15	-03:35:58.17	1.223	0.058	0.047	1.325	0.020	0.015	6680	160	0.024	\checkmark
476	LL Aqr	2	22:34:42.15	-03:35:58.17	1.055	0.051	0.048	1.005	0.016	0.016	6200	160	0.026	\checkmark
477	RW Lac	1	22:44:57.10	+49:39:27.57	0.928	0.006	0.006	1.193	0.004	0.003	5760	100	0.017	x
478	RW Lac	2	22:44:57.10	+49:39:27.57	0.87	0.004	0.005	0.970	0.004	0.004	5560	150	0.027	\checkmark
479	DH Cep	1	22:46:54.11	+58:05:03.50	32.601	1.695	0.052	11.884	0.410	0.035	41000	2000	0.049	\checkmark
480	DH Cep	2	22:46:54.11	+58:05:03.50	29.738	1.597	0.054	11.733	0.410	0.035	39550	2000	0.051	\checkmark
481	АН Сер	1	22:47:52.94	+65:03:43.80	15.565	0.202	0.013	6.385	0.110	0.017	29900	1000	0.033	\checkmark
482	АН Сер	2	22:47:52.94	+65:03:43.80	13.714	0.202	0.015	5.864	0.130	0.022	28600	1000	0.035	\checkmark
483	V364 Lac	1	22:52:14.81	+38:44:44.64	2.334	0.015	0.006	3.308	0.038	0.011	8250	150	0.018	\checkmark

]	Ek 2'nin devamı													
Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±ΔT	∆T/T	Açıklama
484	V364 Lac	2	22:52:14.81	+38:44:44.64	2.296	0.025	0.011	2.986	0.035	0.012	8500	150	0.018	✓
485	V453 Cep	1	22:52:45.80	+60:54:58.61	2.575	0.050	0.019	2.112	0.201	0.095	10300	500	0.049	\checkmark
486	V453 Cep	2	22:52:45.80	+60:54:58.61	2.478	0.050	0.020	2.011	0.201	0.100	10400	500	0.048	\checkmark
487	NY Cep	1	22:58:39.80	+63:04:37.73	13.152	1.012	0.077	6.843	0.704	0.103	28500	1000	0.035	\checkmark
488	NY Cep	2	22:58:39.80	+63:04:37.73	9.323	1.036	0.111	5.434	0.503	0.093	23100	1000	0.043	\checkmark
489	EF Aqr	1	23:01:19.09	-06:26:15.35	1.244	0.008	0.006	1.338	0.012	0.009	6150	65	0.011	\checkmark
490	EF Aqr	2	23:01:19.09	-06:26:15.35	0.946	0.006	0.006	0.956	0.012	0.013	5185	110	0.021	\checkmark
491	CW Cep	1	23:04:02.22	+63:23:48.76	11.797	0.140	0.012	5.524	0.121	0.022	28300	1000	0.035	\checkmark
492	CW Cep	2	23:04:02.22	+63:23:48.76	11.067	0.140	0.013	5.030	0.121	0.024	27700	1000	0.036	\checkmark
493	PV Cas	1	23:10:02.58	+59:12:06.15	2.757	0.049	0.018	2.298	0.021	0.009	10200	250	0.025	\checkmark
494	PV Cas	2	23:10:02.58	+59:12:06.15	2.816	0.061	0.022	2.257	0.016	0.007	10200	250	0.025	\checkmark
495	RT And	1	23:11:10.10	+53:01:33.04	1.24	0.030	0.024	1.268	0.015	0.012	6095	214	0.035	\checkmark
496	RT And	2	23:11:10.10	+53:01:33.04	0.907	0.020	0.022	0.906	0.013	0.014	4732	110	0.023	\checkmark
497	V396 Cas	1	23:13:35.98	+56:44:17.20	2.397	0.022	0.009	2.592	0.013	0.005	9225	150	0.016	\checkmark
498	V396 Cas	2	23:13:35.98	+56:44:17.20	1.901	0.016	0.008	1.779	0.010	0.006	8550	120	0.014	\checkmark
499	2MASSJ23143816 +0339493	1	23:14:38.16	+03:39:49.33	0.469	0.002	0.004	0.441	0.002	0.005	3460	180	0.052	\checkmark
500	2MASSJ23143816 +0339493	2	23:14:38.16	+03:39:49.33	0.383	0.001	0.003	0.374	0.002	0.005	3320	180	0.054	\checkmark
501	NSVS 11868841	1	23:17:57.56	+19:17:02.86	0.87	0.074	0.085	0.985	0.030	0.030	5250	135	0.026	\checkmark
502	NSVS 11868841	2	23:17:57.56	+19:17:02.86	0.607	0.053	0.087	0.903	0.026	0.029	5020	135	0.027	х
503	AR Cas	1	23:30:01.94	+58:32:56.11	5.902	0.200	0.034	5.064	0.060	0.012	17200	500	0.029	\checkmark
504	AR Cas	2	23:30:01.94	+58:32:56.11	1.869	0.060	0.032	1.604	0.030	0.019	8150	200	0.025	\checkmark

<u>Ek 2</u>	<u>'nin devamı</u>													
Sıra	Yıldız Adı	Bileşen	α(2000)	δ(2000)	Kütle(M)	Hata(±∆M)	(ΔM/M)	Yarıçap(R)	Hata(±∆R)	(ΔR/R)	Teff	±ΔT	∆T/T	Açıklama
505	V731 Cep	1	23:37:43.55	+64:18:11.20	2.577	0.098	0.038	1.823	0.030	0.016	10700	200	0.019	\checkmark
506	V731 Cep	2	23:37:43.55	+64:18:11.20	2.017	0.084	0.042	1.717	0.025	0.015	9265	220	0.024	\checkmark
507	IT Cas	1	23:42:01.40	+51:44:36.80	1.33	0.009	0.007	1.603	0.015	0.009	6470	110	0.017	\checkmark
508	IT Cas	2	23:42:01.40	+51:44:36.80	1.328	0.008	0.006	1.569	0.040	0.025	6470	110	0.017	\checkmark
509	BK Peg	1	23:47:08.46	+26:33:59.92	1.414	0.007	0.005	1.985	0.008	0.004	6265	85	0.014	\checkmark
510	BK Peg	2	23:47:08.46	+26:33:59.92	1.257	0.005	0.004	1.472	0.017	0.012	6320	30	0.005	\checkmark
511	AL Scl	1	23:55:16.58	-31:55:17.28	3.617	0.110	0.030	3.241	0.050	0.015	13550	350	0.026	\checkmark
512	AL Scl	2	23:55:16.58	-31:55:17.28	1.703	0.040	0.023	1.401	0.020	0.014	10300	360	0.035	\checkmark
513	V821 Cas	1	23:58:49.17	+53:40:19.82	1.996	0.166	0.083	2.296	0.109	0.047	9400	400	0.043	\checkmark
514	V821 Cas	2	23:58:49.17	+53:40:19.82	1.597	0.187	0.117	1.382	0.119	0.086	8450	380	0.045	\checkmark

M(M ₀)	Z (K)	T (K)	Z' (K)	T' (K)	CC1	CC2
0.35	3266	3274	2705	2666	15.62233	-0.01458
0.4	3350	3364	3009	2952	7.02738	-0.0334
0.45	3446	3471	3274	3201	3.32358	-0.10095
0.5	3567	3623	3521	3425	1.48739	-0.38921
0.55	3728	3852	3766	3566	0.80817	-0.7627
0.6	3930	4268	4014	3825	0.55454	-3.22097
0.65	4182	4618	4296	3958	0.6628	-1.94471
0.7	4459	5012	4592	3949	0.79269	-1.08739
0.75	4759	5240	4918	4062	0.81358	-0.69116
0.8	4983	5399	5171	4279	0.78962	-0.58962
0.85	5202	5543	5419	4489	0.76774	-0.47718
0.9	5410	5676	5657	4691	0.74417	-0.37039
0.95	5598	5800	5871	4887	0.72183	-0.28509
1	5779	5917	6058	5077	0.71507	-0.19763
1.05	5951	6028	6224	5261	0.71715	-0.10977
1.1	6109	6135	6404	5453	0.68971	-0.03914
1.15	6249	6244	6539	5605	0.68931	0.00781
1.2	6392	6232	6652	5709	0.7252	0.23521
1.25	6538	6201	6769	5668	0.79023	0.38718
1.3	6673	6159	6883	5609	0.83563	0.48267
1.35	6824	6140	7014	5561	0.86925	0.54195
1.4	6982	6112	7159	5500	0.89331	0.58683
1.45	7168	6081	7345	5428	0.90759	0.62506
1.5	7385	6123	7560	5472	0.91626	0.6598
1.55	7622	6156	7805	5507	0.92051	0.69322
1.6	7861	6191	8047	5540	0.92586	0.7191
1.65	8089	6228	8290	5576	0.92622	0.7403
1.7	8318	6271	8526	5619	0.92831	0.75839
1.75	8537	6314	8759	5660	0.92837	0.77274
1.8	8754	6363	8989	5703	0.92859	0.78381
1.85	8958	6414	9217	5749	0.92524	0.79261
1.9	9161	6478	9442	5811	0.92265	0.80082
1.95	9364	6557	9663	5883	0.92073	0.80635
2	9557	6657	9881	5977	0.91679	0.81017
2.05	9743	6759	10098	6068	0.91193	0.81176
2.1	9925	6874	10307	6172	0.90761	0.81293
2.15	10109	6996	10518	6285	0.9035	0.81413
2.2	10289	7113	10725	6391	0.8993	0.8146
2.25	10467	7234	10931	6501	0.89518	0.81523
2.3	10641	7354	11137	6611	0.89032	0.81569
2.4	10979	7596	11433	6767	0.9026	0.80305

Ek	3.	Birinci	ve	ikinci	sıkıştırma	parametreleri	(CC1,	CC2)	ve	bu	parametro	elerin
		hesapla	ndığ	ğı teoril	k kütle (M)	ve limit sıcaklı	ıklar (Z	, T, Z',	T')	liste	esi	

Ek 3'ün devamı

Gürkan	ASLAN

M(M ₀)	Z (K)	T (K)	Z'(K)	T' (K)	CC1	CC2
2.6	11630	8095	12136	7170	0.89803	0.79255
2.8	12251	8567	12814	7554	0.89275	0.78433
3	12846	9028	13474	7928	0.88687	0.77621
3.2	13418	9487	14117	8308	0.87968	0.76927
3.4	13971	9938	14743	8686	0.87254	0.76302
3.6	14505	10376	15362	9055	0.86398	0.75755
3.8	15022	10804	15963	9423	0.85612	0.75335
4	15526	11225	16566	9793	0.84656	0.75028
4.2	16024	11631	17159	10150	0.83805	0.74793
4.4	16485	12030	17726	10508	0.8282	0.74538
4.6	16960	12422	18305	10865	0.81928	0.74446
4.8	17416	12801	18865	11215	0.81051	0.74432
5	17844	13166	19417	11555	0.7999	0.74394
5.2	18275	13521	19964	11894	0.79066	0.74498
5.4	18687	13866	20504	12225	0.78049	0.74596
5.6	19097	14205	21037	12554	0.77129	0.74767
5.8	19485	14534	21564	12876	0.76071	0.74914
6	19882	14851	22086	13189	0.75235	0.75167
6.2	20271	15160	22603	13499	0.7439	0.75466
6.4	20631	15455	23115	13797	0.73351	0.75734
7	21706	16302	24623	14690	0.70636	0.77018
8	23357	17567	27066	16083	0.66233	0.79593
9	24876	18653	28360	16760	0.69961	0.76673
10	26260	19607	29571	17357	0.72897	0.7472
11	27541	20420	30710	17879	0.75288	0.7371
12	28702	21128	31799	18339	0.7699	0.73082
14	30831	22157	33822	19103	0.79926	0.70214
16	32700	23228	35679	19861	0.81284	0.73067
18	34346	23480	37415	20223	0.82248	0.76117
20	35817	23723	39034	20547	0.82836	0.77634
24	38344	23637	41985	20818	0.83283	0.81947
28	40362	22665	44700	20424	0.83073	0.86743
30	41256	21956	45958	20024	0.83178	0.88526
35	43202	19564	48884	18394	0.83715	0.93686
40	44749	16208	51568	15691	0.83934	1.0212

EKLI	ER
------	----

				Yayınlanmış Sıcaklıklar			Hesaj	olanmış Sıca Klasik yönte	ıklıklar m	İyileştirilmiş Sıcaklıklar HSY			
Carro	Katalok	V.1	Dilanan	т	۸T	۸ T /T	т	۸T	۸ . ۳/۳	т	۸ .T		
Sira	Numarasi	Y lidiz Adi	Bileşen	I eff	Δl eff		I eff	ΔI_{eff}	Δ1/1	I eff	Δl eff		
1	1	DV Psc	1	4450	8	0.002	4513	268	0.059	4500	159	0.035	
2	3	MU Cas	1	14750	500	0.034	13588	499	0.037	14300	277	0.019	
3	4	MU Cas	2	15100	500	0.033	14284	524	0.037	14663	271	0.018	
4	7	YZ Cas	1	9200	300	0.033	9085	323	0.036	9050	39	0.004	
5	8	YZ Cas	2	6700	250	0.037	6952	249	0.036	6734	51	0.008	
6	11	V364 Cas	1	7816	86	0.011	8155	287	0.035	7942	480	0.060	
7	12	V364 Cas	2	7780	86	0.011	7503	264	0.035	7361	485	0.066	
8	15	Zet pHE	1	14550	350	0.024	14054	512	0.036	13961	142	0.010	
9	16	Zet pHE	2	11910	200	0.017	11692	429	0.037	11111	103	0.009	
10	19	Co And	1	6140	130	0.021	5880	210	0.036	6229	34	0.005	
11	20	Co And	2	6170	130	0.021	5813	206	0.035	6210	40	0.006	
12	21	V459 Cas	1	9140	300	0.033	8832	311	0.035	8677	141	0.016	
13	22	V459 Cas	2	9100	300	0.033	8677	306	0.035	8532	138	0.016	
14	23	2MASS J01132817-3821024	1	3750	250	0.067	4267	246	0.058	4016	249	0.062	
15	24	2MASS J01132817-3821024	2	3085	300	0.097	3292	202	0.061	3452	188	0.054	
16	25	UV Psc	1	5780	100	0.017	5666	317	0.056	5835	66	0.011	
17	26	UV Psc	2	4750	80	0.017	4763	277	0.058	5086	45	0.009	
18	30	2MASS J01542930+0053266	2	3600			3773	354	0.094	3802	221	0.058	
19	31	NSVS 06507557	1	3960	80	0.020	4622	280	0.061	4136	686	0.166	
20	33	V615 Per	1	15000	500	0.033	16244	772	0.048	15494	186	0.012	
21	34	V615 Per	2	11000	500	0.045	14166	621	0.044	13392	198	0.015	

Ek 4. Homojen Sıkıştırma Yöntemi (HSY) ile hesaplanmış sıcaklık (°K) ve hatalarının, yayınlanmış sıcaklık ve klasik yöntem sonuçlarıyla karşılaştırılması

				He Yayınlanmış Sıcaklıklar		Hesaplanmış Sıcaklıklar İyileştirilmiş Sıcak Klasik yöntem HSY					lıklar	
Sira	Katalok	Vildiz Adı	Bilecon	Τ	ΔТ		Τ	ΔT	Δ Τ/Τ	Τ	ΔТ	ΔΤ / Τ
22	25	V619 Dor	1	11000	1000	0.001	11/62	470	0.041	10762	151	0.014
22	35	V618 Der	1	8000	1000	0.091	9261	470	0.041	7820	125	0.014
25	30 27	V505 Der	2 1	6000	21	0.125	6712	228	0.044	/039 6510	155	0.017
24	20	V 505 Per	1	0312	12	0.005	0/12	238	0.030	0319	7	0.001
25	38	v 505 Per	2	6462	12	0.002	0004	237	0.036	6477	/	0.001
26	39	AG Ari	l	10300	250	0.024	9052	321	0.035	8931	309	0.035
27	40	AG Ari	2	9800	230	0.023	9316	331	0.036	9112	325	0.036
28	41	BD+11359	1				6047	634	0.105	6323	41	0.006
29	42	BD+11359	2				5960	706	0.118	6215	40	0.006
30	43	XY Cet	1	7870	115	0.015	7962	289	0.036	7889	77	0.010
31	44	XY Cet	2	7620	125	0.016	7398	267	0.036	7360	72	0.010
32	45	CW Eri	1	6840	86	0.013	6669	247	0.037	6855	96	0.014
33	46	CW Eri	2	6561	100	0.015	6366	265	0.042	6446	56	0.009
34	47	V799 Cas	1	11550	14	0.001	10567	446	0.042	10866	1305	0.120
35	48	V799 Cas	2	11210	14	0.001	10263	435	0.042	10545	1315	0.125
36	49	AE For	1	4100			4215	251	0.060	4399	33	0.008
37	50	AE For	2	4055	б	0.001	4243	255	0.060	4214	27	0.006
38	51	V570 Per	1	6842	25	0.004	7046	358	0.051	6896	30	0.004
39	52	V570 Per	2	6580	70	0.011	6858	368	0.054	6662	36	0.005
40	53	TV Cet	1	6902	150	0.022	6855	245	0.036	6742	277	0.041
41	54	TV Cet	2	6575	150	0.023	6853	242	0.035	6555	283	0.043
42	55	TZ For	1	6350	100	0.016	6046	223	0.037	6601	107	0.016
43	59	2MASS J03262072+0312362	1	3330	60	0.018	3828	214	0.056	3634	18	0.005

Ek 4'ün devamı

							Hesap	planmış Sıca	klıklar	İyileştirilmiş Sıcaklıklar		
	Vatalal.			Yayınlanmış Sıcaklıklar			I	Klasik yönte	m		HSY	
Sıra	Numarası	Yıldız Adı	Bileşen	T_{eff}	ΔT_{eff}	$\Delta T/T$	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$	T _{eff}	ΔT_{eff}	$\Delta T/T$
44	60	2MASS J03262072+0312362	2	3270	60	0.018	3625	203	0.056	3531	9	0.003
45	63	EY Cep	1	7090	150	0.021	7656	270	0.035	7405	40	0.005
46	64	EY Cep	2	6970	150	0.022	7513	265	0.035	7280	71	0.010
47	65	V1229 Tau	1	10025	620	0.062	10243	374	0.037	9825	127	0.013
48	66	V1229 Tau	2	7262	380	0.052	7565	284	0.038	7409	80	0.011
49	67	V1130 Tau	1	6650	70	0.011	6421	226	0.035	6449	42	0.006
50	68	V1130 Tau	2	6625	70	0.011	6287	222	0.035	6463	42	0.006
51	69	IQ Per	1	12300	200	0.016	13657	502	0.037	13345	136	0.010
52	70	IQ Per	2	7670	100	0.013	8661	309	0.036	8346	108	0.013
53	73	AG Per	1	18200	800	0.044	15532	592	0.038	15377	426	0.028
54	74	AG Per	2	17400	800	0.046	15284	591	0.039	14899	372	0.025
55	75	SZ Cam	1	30360			25502	1074	0.042	27630	708	0.026
56	76	SZ Cam	2	27244	255	0.009	23582	1013	0.043	24979	606	0.024
57	77	V818 Tau	1	5470			6844	813	0.119	5931	1186	0.200
58	78	V818 Tau	2	3977	22	0.006	4921	418	0.085	4966	892	0.180
59	79	BD-02 873	1				6147	600	0.098	6331	48	0.008
60	80	BD-02 873	2				5867	571	0.097	6247	54	0.009
61	81	WW Cam	1	8360	140	0.017	8593	304	0.035	8443	64	0.008
62	82	WW Cam	2	8240	140	0.017	8600	304	0.035	8416	91	0.011
63	85	2MASS J04480963+0317480	1	3920	80	0.020	4017	224	0.056	3795	19	0.005
64	86	2MASS J04480963+0317480	2	3810	80	0.021	3775	210	0.056	3697	19	0.005
65	87	TYC 4749-560-1	1	5340	200	0.037	5281	292	0.055	5284	47	0.009

				Voumlonmus Succhilder			Hesap	olanmış Sıca	klıklar	İyileştirilmiş Sıcaklıklar			
	Vatalak			Yayınlanmış Sıcaklıklar		I	Clasik yönte	m		HSY			
Sıra	Numarası	Yıldız Adı	Bileşen	T_{eff}	ΔT_{eff}	$\Delta T/T$	T _{eff}	ΔT_{eff}	$\Delta T/T$	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$	
66	88	TYC 4749-560-1	2	5125	200	0.039	5280	292	0.055	5249	47	0.009	
67	89	HP Aur	1	5790	80	0.014	5658	314	0.056	5753	80	0.014	
68	90	HP Aur	2	5270	90	0.017	5142	286	0.056	5180	79	0.015	
69	91	V1236 Tau	1	4200	200	0.048	5172	290	0.056	5046	83	0.016	
70	92	V1236 Tau	2	4133	250	0.060	4914	273	0.056	5056	64	0.013	
71	93	CD Tau	1	6200	50	0.008	6501	230	0.035	6618	79	0.012	
72	94	CD Tau	2	6200	50	0.008	6537	233	0.036	6564	85	0.013	
73	95	AR Aur	1	10950	300	0.027	11622	438	0.038	10992	406	0.037	
74	96	AR Aur	2	10350	300	0.029	10659	389	0.036	10161	450	0.044	
75	97	EW Ori	1	6070	95	0.016	6455	227	0.035	6295	61	0.010	
76	98	EW Ori	2	5900	95	0.016	6354	224	0.035	6176	53	0.009	
77	99	2MASS J05282082+0338327	1	5103	26	0.005	6074	214	0.035	6341	55	0.009	
78	100	2MASS J05282082+0338327	2	4751	26	0.005	6054	213	0.035	6311	41	0.006	
79	101	AS Cam	1	12000	600	0.050	12553	465	0.037	12429	344	0.028	
80	102	AS Cam	2	10700	520	0.049	11126	419	0.038	10676	394	0.037	
81	103	UX Men	1	6200	100	0.016	6353	225	0.035	6362	34	0.005	
82	104	UX Men	2	6150	100	0.016	6312	224	0.035	6312	41	0.006	
83	105	TZ Men	1	10400	500	0.048	10953	401	0.037	10529	97	0.009	
84	106	TZ Men	2	7200	300	0.042	7604	270	0.036	7334	55	0.008	
85	110	V432 Aur	2	6685	8	0.001	6584	232	0.035	6405	90	0.014	
86	111	GG Ori	1	9950	200	0.020	10824	387	0.036	10315	78	0.008	
87	112	GG Ori	2	9950	200	0.020	10864	389	0.036	10339	78	0.008	

Ek 4'ün devamı

				Yayınlanmış Sıcaklıklar			Hesaj	olanmış Sıca Klasik yönte	klıklar m	İyileştirilmiş Sıcaklıklar HSY		
Sıra	Katalok Numarası	Yıldız Adı	Bileşen	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$	T_{eff}	ΔT_{eff}	$\Delta T/T$	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$
88	113	V1031 Ori	1	7850	500	0.064	6865	243	0.035	7442	56	0.008
89	114	V1031 Ori	2	8400	500	0.060	8922	337	0.038	9082	59	0.006
90	115	beta Aur	1	9350	200	0.021	8974	316	0.035	9020	107	0.012
91	116	beta Aur	2	9200	200	0.022	8993	317	0.035	8974	116	0.013
92	117	V1388 Ori	1	20500	500	0.024	18647	786	0.042	19122	142	0.007
93	118	V1388 Ori	2	18500	500	0.027	15756	575	0.036	16028	89	0.006
94	119	FT Ori	1	9600	400	0.042	9907	350	0.035	9551	103	0.011
95	120	FT Ori	2	8600	300	0.035	8552	302	0.035	8308	99	0.012
96	121	V404 CMa	1	4200	100	0.024	5008	281	0.056	4865	43	0.009
97	122	V404 CMa	2	3940	20	0.005	4371	248	0.057	4455	45	0.010
98	123	IM Mon	1	17500	350	0.020	18295	674	0.037	17807	724	0.041
99	124	IM Mon	2	14500	550	0.038	13311	490	0.037	12960	575	0.044
100	125	RR Lyn	1	7570	100	0.013	7463	264	0.035	7629	33	0.004
101	126	RR Lyn	2	6980	100	0.014	7309	266	0.036	7187	23	0.003
102	127	V578 Mon	1	30000	500	0.017	23943	1015	0.042	23948	81	0.003
103	128	V578 Mon	2	26400	400	0.015	33343	1427	0.043	31714	128	0.004
104	129	WW Aur	1	7960	420	0.053	8771	309	0.035	8602	37	0.004
105	130	WW Aur	2	7670	410	0.053	8236	290	0.035	8115	35	0.004
106	131	SV Cam	1	6038	58	0.010	7914	312	0.039	7647	339	0.044
107	132	SV Cam	2	4804	143	0.030	5610	358	0.064	5667	495	0.087
108	133	GX Gem	1	6194	100	0.016	5907	208	0.035	6318	48	0.008
109	134	GX Gem	2	6166	100	0.016	5932	209	0.035	6320	48	0.008

				Yayınlanmış Sıcaklıklar		Hesaj I	Hesaplanmış Sıcaklıklar Klasik yöntem			İyileştirilmiş Sıcaklıklar HSY		
Sıra	Katalok Numarası	Yıldız Adı	Bileşen	T_{eff}	ΔT_{eff}	$\Delta T/T$	T _{eff}	ΔT_{eff}	$\Delta T/T$	T_{eff}	ΔT_{eff}	$\Delta T/T$
110	135	HS Aur	1	5350	70	0.013	5327	301	0.056	5587	148	0.027
111	136	HS Aur	2	5200	72	0.014	5544	321	0.058	5427	130	0.024
112	137	HI Mon	1	30000	500	0.017	27024	1172	0.043	26453	375	0.014
113	138	HI Mon	2	29000	500	0.017	24814	1057	0.043	24218	261	0.011
114	139	LT CMa	1	17000	500	0.029	17360	652	0.038	17308	576	0.033
115	140	LT CMa	2	13140	800	0.061	14402	551	0.038	13712	532	0.039
116	141	SW CMa	1	8200	150	0.018	8085	285	0.035	8286	54	0.006
117	142	SW CMa	2	8100	150	0.019	8309	300	0.036	8353	81	0.010
118	143	HW CMa	1	7560	150	0.020	8213	292	0.036	8019	52	0.006
119	144	HW CMa	2	7700	150	0.019	8474	302	0.036	8258	62	0.008
120	145	GZ CMa	1	8810	350	0.040	8729	311	0.036	8723	104	0.012
121	146	GZ CMa	2	8531	340	0.040	8515	310	0.036	8438	109	0.013
122	148	TYC 176-2950-1	2				5937	332	0.056	5989	61	0.010
123	149	CW CMa	1				9449	346	0.037	9174	99	0.011
124	150	CW CMa	2				9130	367	0.040	8872	96	0.011
125	151	FS Mon	1	6715	100	0.015	6946	245	0.035	7074	53	0.008
126	152	FS Mon	2	6550	100	0.015	6920	244	0.035	6877	52	0.008
127	153	YY Gem	1	3820	100	0.026	4051	225	0.055	4148	42	0.010
128	154	YY Gem	2	3820	100	0.026	4130	229	0.055	4061	41	0.010
129	155	2MASS J07431157+0316220	1	3730	90	0.024	4144	229	0.055	3820	15	0.004
130	156	2MASS J07431157+0316220	2	3610	90	0.025	3958	219	0.055	3667	19	0.005
131	157	PV Pup	1	6920	300	0.043	7551	268	0.035	7363	64	0.009

Ek 4'ün devamı

	17 . 1 1			Yayınlanmış Sıcaklıklar		Hesaj	olanmış Sıca Klasik yönte	klıklar m	İyileştirilmiş Sıcaklıklar HSY			
Sıra	Katalok Numarasi	Yıldız Adı	Bileşen	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$	T_{eff}	ΔT_{eff}	$\Delta T/T$
132	158	PV Pup	2	6930	300	0.043	7595	270	0.036	7372	72	0.010
133	159	V392 Car	1	8850	200	0.023	9221	335	0.036	8885	125	0.014
134	160	V392 Car	2	8650	200	0.023	9042	329	0.036	8721	122	0.014
135	163	AI Hya	1	7100	60	0.008	7366	260	0.035	7582	164	0.022
136	164	AI Hya	2	6700	60	0.009	6756	239	0.035	7253	149	0.021
137	167	TYC 5998-1918-1	1	4350	200	0.046	4703	262	0.056	4606	23	0.005
138	168	TYC 5998-1918-1	2	4090	200	0.049	4551	255	0.056	4569	23	0.005
139	169	AY Cam	1	7250	100	0.014	7231	255	0.035	7467	169	0.023
140	170	AY Cam	2	7395	100	0.014	7339	259	0.035	7401	168	0.023
141	171	VV Pyx	1	9500	200	0.021	8876	314	0.035	8760	85	0.010
142	172	VV Pyx	2	9500	200	0.021	8863	514	0.058	8748	85	0.010
143	173	HD 71636	1	6950	140	0.020	7408	261	0.035	7262	47	0.006
144	174	HD 71636	2	6440	140	0.022	6670	235	0.035	6540	35	0.005
145	175	CU Cnc	1	3160	150	0.047	3168	176	0.056	3422	22	0.006
146	176	CU Cnc	2	3125	150	0.048	3007	170	0.056	3347	13	0.004
147	177	VZ Hya	1	6645	150	0.023	6637	233	0.035	6492	49	0.008
148	178	VZ Hya	2	6290	150	0.024	6451	227	0.035	6237	34	0.005
149	179	TZ Pyx	1	7468	203	0.027	8420	301	0.036	8415	173	0.021
150	180	TZ Pyx	2	7521	208	0.028	8740	314	0.036	8604	362	0.042
151	181	RS Cha	1	7638	76	0.010	7949	301	0.038	7957	43	0.005
152	182	RS Cha	2	7228	72	0.010	7493	280	0.037	7614	41	0.005
153	183	V467 Vel	1	37870			33070	1957	0.059	33015	735	0.022

	W . 1 .			Yayınlanmış Sıcaklıklar		Hesaplanmış Sıcaklıklar Klasik yöntem			İyileştirilmiş Sıcaklıklar HSY			
Sıra	Katalok Numarası	Yıldız Adı	Bileşen	T_{eff}	ΔT_{eff}	$\Delta T/T$	T _{eff}	ΔT_{eff}	$\Delta T/T$	T_{eff}	ΔT_{eff}	$\Delta T/T$
154	184	V467 Vel	2	25500	500	0.020	23165	2512	0.108	22996	1721	0.075
155	185	NSVS 02502726	1	4300	200	0.047	4854	269	0.055	4597	157	0.034
156	187	delta Vel	1	9450			10953	404	0.037	11237	83	0.007
157	188	delta Vel	2	9830			11186	421	0.038	11194	93	0.008
158	191	CV Vel	1	18000	500	0.028	17502	637	0.036	17724	196	0.011
159	192	CV Vel	2	17780	500	0.028	17712	645	0.036	17780	197	0.011
160	193	XY UMa	1	5200	7	0.001	6025	218	0.036	6114	443	0.072
161	194	XY UMa	2	4125	7	0.002	4601	257	0.056	4277	254	0.059
162	195	PT Vel	1	9247	150	0.016	9507	337	0.035	9282	70	0.008
163	196	PT Vel	2	7638	180	0.024	7952	284	0.036	7739	50	0.006
164	197	KW Hya	1	8000	200	0.025	8388	296	0.035	8328	162	0.019
165	198	KW Hya	2	6900	200	0.029	7387	265	0.036	7181	85	0.012
166	199	2MASS J09381349-0104281	1	4360	150	0.034	4914	274	0.056	4969	264	0.053
167	200	2MASS J09381349-0104281	2	4360	150	0.034	4949	277	0.056	4972	176	0.035
168	203	QX Car	1	23800	500	0.021	24710	1053	0.043	23717	208	0.009
169	204	QX Car	2	22600	500	0.022	23952	1022	0.043	22676	214	0.009
170	205	HS Hya	1	6500	50	0.008	6641	234	0.035	6471	42	0.006
171	206	HS Hya	2	6400	50	0.008	6587	232	0.035	6397	41	0.006
172	208	ZZ UMa	2	5097	60	0.012	5400	300	0.056	5803	73	0.013
173	209	2MASS J10305521+0334265	1	3720	20	0.005	3756	209	0.056	3501	18	0.005
174	210	2MASS J10305521+0334265	2	3630	20	0.006	3352	186	0.055	3430	22	0.006
175	211	UV Leo	1	6129	67	0.011	6823	254	0.037	6179	534	0.086

Ek 4'ün devamı

	77 / 1 1			Hesa Yayınlanmış Sıcaklıklar			olanmış Sıca Klasik yönte	klıklar m	İyileştirilmiş Sıcaklıklar HSY			
Sıra	Katalok Numarası	Yıldız Adı	Bileşen	T_{eff}	ΔT_{eff}	$\Delta T/T$	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$
176	212	UV Leo	2	5741	59	0.010	5835	229	0.039	6081	591	0.097
177	213	RZ Cha	1	6457	160	0.025	6052	214	0.035	6415	159	0.025
178	214	RZ Cha	2	6457	160	0.025	6087	215	0.035	6440	181	0.028
179	215	DW Car	1	27900	1000	0.036	27512	1164	0.042	26692	198	0.007
180	216	DW Car	2	26500	1000	0.038	27121	1153	0.043	26038	228	0.009
181	217	UW LMi	1	6500	250	0.038	6099	248	0.041	6252	128	0.021
182	218	UW LMi	2	6500	250	0.038	6035	260	0.043	6212	128	0.021
183	219	GZ Leo	1	5120			6185	361	0.058	5535	84	0.015
184	220	GZ Leo	2	5120			5964	347	0.058	5523	84	0.015
185	221	chi02 Hya	1	11750	190	0.016	10371	379	0.037	11268	229	0.020
186	222	chi02 Hya	2	11100	230	0.021	11057	414	0.037	10753	189	0.018
187	223	EM Car	1	34000	2000	0.059	30791	1324	0.043	31778	300	0.009
188	224	EM Car	2	34000	2000	0.059	31185	1344	0.043	31951	323	0.010
189	225	LSPM J1112+7626	1	3061	162	0.053	3060	170	0.056	3338	21	0.006
190	227	FM Leo	1	6316	240	0.038	6164	231	0.037	6353	34	0.005
191	228	FM Leo	2	6190	211	0.034	6274	243	0.039	6376	34	0.005
192	229	V346 Cen	1	26500	1000	0.038	20941	960	0.046	23047	1849	0.080
193	230	V346 Cen	2	24000	1000	0.042	23237	1122	0.048	22183	1421	0.064
194	231	MW UMa	1	6514	130	0.020	6705	237	0.035	6494	533	0.082
195	232	MW UMa	2	6112	22	0.004	6248	221	0.035	6180	541	0.088
196	233	EP Cru	1	15700	500	0.032	15734	576	0.037	15910	382	0.024
197	234	EP Cru	2	15400	500	0.032	15391	563	0.037	15558	388	0.025

	17 . 1 1			Yayınlanmış Sıcaklıklar			Hesaj I	Hesaplanmış Sıcaklıklar Klasik yöntem			İyileştirilmiş Sıcaklıklar HSY		
Sıra	Katalok Numarası	Yıldız Adı	Bileşen	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$	T_{eff}	ΔT_{eff}	$\Delta T/T$	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$	
198	235	IM Vir	1	5570	100	0.018	5796	323	0.056	5808	88	0.015	
199	236	IM Vir	2	4250	130	0.031	4417	248	0.056	4459	45	0.010	
200	237	HY Vir	1	7870			6739	237	0.035	7053	38	0.005	
201	238	HY Vir	2	6546			6847	241	0.035	6763	29	0.004	
202	239	eta Mus	1	12700	100	0.008	13769	503	0.037	13217	147	0.011	
203	240	eta Mus	2	12550	300	0.024	13797	517	0.037	13235	147	0.011	
204	241	NSVS 01031772	1	3615	72	0.020	3869	214	0.055	3694	28	0.008	
205	242	NSVS 01031772	2	3513	31	0.009	3541	196	0.055	3609	18	0.005	
206	243	SZ Cen	1	8000	300	0.038	6679	235	0.035	7302	87	0.012	
207	244	SZ Cen	2	8280	300	0.036	7629	269	0.035	8013	78	0.010	
208	245	ZZ Boo	1	6670	30	0.004	6706	259	0.039	6904	45	0.006	
209	246	ZZ Boo	2	6670	30	0.004	6492	251	0.039	6728	44	0.006	
210	247	BH Vir	1	6100	100	0.016	6327	257	0.041	6292	102	0.016	
211	248	BH Vir	2	5500	200	0.036	6156	358	0.058	5993	106	0.018	
212	249	DM Vir	1	6500	100	0.015	6627	235	0.035	6701	43	0.006	
213	250	DM Vir	2	6500	300	0.046	6597	234	0.035	6678	43	0.006	
214	251	V636 Cen	1	5900	85	0.014	6132	216	0.035	5999	32	0.005	
215	252	V636 Cen	2	5000	100	0.020	5484	303	0.055	5325	27	0.005	
216	253	Psi Cen	1	10450	300	0.029	10063	365	0.036	10557	49	0.005	
217	254	Psi Cen	2	8800	300	0.034	8777	308	0.035	8569	148	0.017	
218	255	AD Boo	1	6575	120	0.018	6722	238	0.035	6710	43	0.006	
219	256	AD Boo	2	6145	120	0.020	6534	231	0.035	6369	34	0.005	

Ek 4'ün devamı

				H		Hesap	Hesaplanmış Sıcaklıklar			İyileştirilmiş Sıcaklıklar			
	Vatalala			Yayınlanmış Sıcaklıklar			I	Klasik yöntem			HSY		
Sıra	Numarası	Yıldız Adı	Bileşen	T _{eff}	ΔT_{eff}	$\Delta T/T$	T _{eff}	ΔT_{eff}	$\Delta T/T$	T_{eff}	ΔT_{eff}	$\Delta T/T$	
220	257	ASAS J150145-5242.2	1				6408	274	0.043	6782	88	0.013	
221	258	ASAS J150145-5242.2	2				6480	279	0.043	6835	89	0.013	
222	259	GG Lup	1	14750	450	0.031	16057	588	0.037	15398	142	0.009	
223	260	GG Lup	2	11000	600	0.055	11941	438	0.037	11246	104	0.009	
224	261	GU Boo	1	3920	130	0.033	4122	234	0.057	4184	58	0.014	
225	262	GU Boo	2	3810	130	0.034	4047	233	0.058	4172	53	0.013	
226	263	CV Boo	1	5760	150	0.026	5743	322	0.056	6010	91	0.015	
227	264	CV Boo	2	5670	150	0.026	5598	314	0.056	5884	89	0.015	
228	265	alpha CrB	1	9700	200	0.021	9222	565	0.061	9417	148	0.016	
229	266	alpha CrB	2	5800	300	0.052	5801	345	0.060	5574	190	0.034	
230	269	ASAS J155259-6637.8	1				5994	324	0.054	6295	14	0.002	
231	270	ASAS J155259-6637.8	2				5964	263	0.044	6422	14	0.002	
232	271	ASAS J155358-5553.4	1				6897	429	0.062	7171	23	0.003	
233	272	ASAS J155358-5553.4	2				6899	422	0.061	7213	23	0.003	
234	273	V335 Ser	1	9506	289	0.030	8835	313	0.035	8688	47	0.005	
235	274	V335 Ser	2	8872	248	0.028	8975	316	0.035	8667	103	0.012	
236	275	TV Nor	1	9120	148	0.016	9366	330	0.035	9086	108	0.012	
237	276	TV Nor	2	7798	108	0.014	8137	288	0.035	7904	94	0.012	
238	278	M4-V65	2	4812	125	0.026	4145	231	0.056	4094	36	0.009	
239	279	M4-V66	1	6162	98	0.016	4654	257	0.055	5261	33	0.006	
240	280	M4-V66	2	5938	105	0.018	4612	255	0.055	5023	32	0.006	
241	281	M4-V69	1	6084	121	0.020	4693	261	0.056	5134	45	0.009	
	17			Yayınlanmış Sıcaklıklar			Hesaplanmış Sıcaklıklar Klasik yöntem			İyileştirilmiş Sıcaklıklar HSY			
------	---------------------	---------------------	---------	-------------------------	------------------	--------------	--	------------------	--------------	-----------------------------------	------------------	--------------	
Sıra	Katalok Numarasi	Yıldız Adı	Bileşen	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$	T_{eff}	ΔT_{eff}	$\Delta T/T$	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$	
242	282	M4-V69	2	5915	137	0.023	4558	253	0.055	4938	31	0.006	
243	283	V760 Sco	1	16900	500	0.030	16975	638	0.038	16631	277	0.017	
244	284	V760 Sco	2	16300	500	0.031	16912	634	0.037	16328	226	0.014	
245	285	ASAS J162637-5042.8	1				5572	410	0.074	6116	33	0.005	
246	291	V1292 Sco	1	31900	900	0.028	29176	1886	0.065	30499	329	0.011	
247	292	V1292 Sco	2	21800	4100	0.188	22910	6025	0.263	23460	221	0.009	
248	293	V1034 Sco	1	34000	150	0.004	29385	1520	0.052	30273	510	0.017	
249	294	V1034 Sco	2	26260	150	0.006	23217	1345	0.058	23382	347	0.015	
250	295	V2626 Oph	1	7760	64	0.008	6004	224	0.037	6492	519	0.080	
251	296	V2626 Oph	2	7205	64	0.009	6732	252	0.037	6532	607	0.093	
252	297	WZ Oph	1	6165	100	0.016	6190	219	0.035	6314	41	0.006	
253	298	WZ Oph	2	6115	100	0.016	6113	216	0.035	6292	34	0.005	
254	299	V2365 Oph	1	9500	200	0.021	8228	289	0.035	8206	80	0.010	
255	300	V2365 Oph	2	6400	210	0.033	6440	227	0.035	5985	58	0.010	
256	301	V2368 Oph	1	9300	200	0.022	7729	281	0.036	8184	53	0.006	
257	302	V2368 Oph	2	9500	200	0.021	8173	297	0.036	8619	207	0.024	
258	303	U Oph	1	16900	1500	0.089	15979	597	0.037	15921	147	0.009	
259	304	U Oph	2	16000	1500	0.094	14969	557	0.037	14855	124	0.008	
260	305	TX Her	1	7534	200	0.027	7548	273	0.036	7451	201	0.027	
261	306	TX Her	2	6678	211	0.032	7294	267	0.037	7055	160	0.023	
262	307	LV Her	1	6060	150	0.025	6094	216	0.035	6276	54	0.009	
263	308	LV Her	2	6030	150	0.025	6068	215	0.035	6261	47	0.008	

Ek 4'ün devamı

	17 . 1 1	ıtalok		Yayı	nlanmış Sıcal	clıklar	Hesaplanmış Sıcaklıklar Klasik yöntem		klıklar m	İyileştirilmiş Sıcaklıklar HSY		
Sıra	Katalok Numarasi	Yıldız Adı	Bileşen	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$	T_{eff}	ΔT_{eff}	$\Delta T/T$	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$
264	309	V624 Her	1	8150	150	0.018	8211	291	0.035	8403	54	0.006
265	310	V624 Her	2	7945	150	0.019	7800	279	0.036	7839	59	0.008
266	311	BD-00 3357	1	7250	30	0.004	7930	525	0.066	7825	194	0.025
267	312	BD-00 3357	2	6425	30	0.005	7008	308	0.044	6746	160	0.024
268	313	BD-11 4457	1				7304	339	0.046	7365	167	0.023
269	315	V539 Ara	1	18200	1300	0.071	17373	672	0.039	17773	181	0.010
270	316	V539 Ara	2	16982	1215	0.072	16296	804	0.049	16480	167	0.010
271	317	V906 Sco	1	10400	500	0.048	9700	354	0.036	10581	205	0.019
272	318	V906 Sco	2	10700	500	0.047	10627	390	0.037	11073	215	0.019
273	319	Z Her	1	6397	75	0.012	7212	279	0.039	7234	336	0.046
274	321	V1647 Sgr	1	9600	310	0.032	9889	351	0.036	9548	186	0.019
275	322	V1647 Sgr	2	9100	300	0.033	9246	329	0.036	8951	145	0.016
276	323	V3903 Sgr	1	38000	1900	0.050	37194	1575	0.042	36458	492	0.013
277	324	V3903 Sgr	2	34100	1700	0.050	33512	1418	0.042	33200	515	0.016
278	325	EG Ser	1	9900	200	0.020	10594	373	0.035	10066	250	0.025
279	326	EG Ser	2	9100	200	0.022	9926	350	0.035	9462	153	0.016
280	327	V994 Her-B	1	9000	250	0.028	9170	397	0.043	8825	610	0.069
281	328	V994 Her-B	2	8450	70	0.008	9393	415	0.044	8979	630	0.070
282	329	V994 Her-A	1	12000	250	0.021	12044	458	0.038	11628	763	0.066
283	330	V994 Her-A	2	9450	90	0.010	11113	411	0.037	10491	793	0.076
284	331	V451 Oph	1	10800	800	0.074	10580	388	0.037	10559	215	0.020
285	332	V451 Oph	2	9800	500	0.051	10376	372	0.036	10003	227	0.023

	V. d. 1.1			Yayınlanmış Sıcaklıklar		Hesaplanmış Sıcaklıklar Klasik yöntem		klıklar m	İyileştirilmiş Sıcaklıkla HSY		lıklar	
Sıra	Katalok Numarasi	Yıldız Adı	Bileşen	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$	T_{eff}	ΔT_{eff}	$\Delta T/T$	T_{eff}	ΔT_{eff}	$\Delta T/T$
286	333	RX Her	1	11100			10901	466	0.043	10759	328	0.030
287	334	RX Her	2	10016	71	0.007	10344	463	0.045	9961	301	0.030
288	337	V413 Ser	1	11100	300	0.027	12430	461	0.037	12666	164	0.013
289	338	V413 Ser	2	10350	280	0.027	11901	443	0.037	11999	133	0.011
290	339	HD 172189	1	7920	15	0.002	6398	237	0.037	6934	547	0.079
291	340	HD 172189	2	7608	15	0.002	6700	248	0.037	7039	570	0.081
292	341	V1331 Aql	1	25400	100	0.004	26312	1110	0.042	25220	187	0.007
293	342	V1331 Aql	2	20100	140	0.007	15543	567	0.036	15994	281	0.018
294	343	YY Sgr	1	14800	700	0.047	14703	540	0.037	14359	438	0.030
295	344	YY Sgr	2	14125	670	0.047	13891	525	0.038	13473	324	0.024
296	347	BD+03 3821	1	13140	1500	0.114	13095	478	0.036	13645	340	0.025
297	348	BD+03 3821	2	12044	100	0.008	12153	445	0.037	11695	432	0.037
298	349	DI Her	1	16980	800	0.047	18730	701	0.037	17845	313	0.018
299	350	DI Her	2	15135	715	0.047	17203	648	0.038	16442	197	0.012
300	352	HP Dra	2	5895	150	0.025	6219	345	0.055	5902	52	0.009
301	353	BD-03 4412	1				8570	813	0.095	8355	27	0.003
302	354	BD-03 4412	2				7500	1033	0.138	7292	24	0.003
303	355	V1182 Aql	1	43000	500	0.012	38359	1657	0.043	37154	476	0.013
304	356	V1182 Aql	2	30500	500	0.016	34334	1576	0.046	33134	536	0.016
305	357	V1665 Aql	1	12300	350	0.028	11798	451	0.038	12546	1171	0.093
306	358	V1665 Aql	2	11650	310	0.027	13795	525	0.038	13561	1265	0.093
307	359	V805 Aql	1	8185	330	0.040	9053	409	0.045	8899	183	0.021

Ek 4'ün devamı

				Yavınlanmış Şıcaklıklar			Hesaj	planmış Sıca	klıklar	İyileşti	rilmiş Sıcak	lıklar
	W . (. 1 . 1			Yayınlanmış Sıcaklıklar]	Klasik yönte	m		HSY	
Sıra	Numarası	Yıldız Adı	Bileşen	T_{eff}	ΔT_{eff}	$\Delta T/T$	T_{eff}	ΔT_{eff}	$\Delta T/T$	T_{eff}	ΔT_{eff}	$\Delta T/T$
308	360	V805 Aql	2	7178	300	0.042	7496	368	0.049	7438	96	0.013
309	361	2MASS J19071662+4639532	1	4150			4709	305	0.065	4339	82	0.019
310	362	2MASS J19071662+4639532	2	3700			3719	276	0.074	3672	51	0.014
311	363	V526 Sgr	1	10140	190	0.019	10354	368	0.036	9936	333	0.033
312	364	V526 Sgr	2	8710	100	0.011	8229	294	0.036	7993	311	0.039
313	365	KIC 4247791-1	1				6580	231	0.035	6870	89	0.013
314	366	KIC 4247791-1	2				6027	212	0.035	6417	49	0.008
315	367	KIC 4247791-2	1				6451	365	0.057	6455	105	0.016
316	368	KIC 4247791-2	2				6485	367	0.057	6429	111	0.017
317	369	FL Lyr	1	6150	100	0.016	6420	238	0.037	6359	89	0.014
318	370	FL Lyr	2	5300	95	0.018	5909	339	0.057	5704	79	0.014
319	371	TYC3121-1659-1	1	6700	150	0.022	6516	293	0.045	6556	1190	0.181
320	373	V565 Lyr	1	5600	95	0.017	5795	321	0.055	5857	22	0.004
321	374	V565 Lyr	2	5430	125	0.023	5657	314	0.055	5636	21	0.004
322	376	V568 Lyr	2	4900	100	0.020	5491	304	0.055	5162	33	0.006
323	377	V1430 Aql	1	5262	150	0.029	5516	306	0.055	5772	73	0.013
324	378	V1430 Aql	2	4930	100	0.020	5473	304	0.056	5356	156	0.029
325	379	UZ Dra	1	6210	110	0.018	7066	261	0.037	6783	110	0.016
326	380	UZ Dra	2	5985	110	0.018	6887	249	0.036	6506	112	0.017
327	383	V415 Aql	1	6590			6422	999	0.156	6807	654	0.096
328	384	V415 Aql	2	6050			6707	1170	0.174	6943	668	0.096
329	385	V2083 Cyg	1	7630			8909	475	0.053	8824	610	0.069

				Yayınlanmış Sıcaklıklar		Hesaplanmış Sıcaklıklar Klasik yöntem			İyileştirilmiş Sıcaklıklar HSV			
	Vatalalı			Үауı	nlanmış Sıcal	klıklar]	Klasik yönte	m		HSY	
Sıra	Numarası	Yıldız Adı	Bileşen	T_{eff}	ΔT_{eff}	$\Delta T/T$	T_{eff}	ΔT_{eff}	$\Delta T/T$	T_{eff}	ΔT_{eff}	$\Delta T/T$
330	386	V2083 Cyg	2	7623	45	0.006	8063	434	0.054	8176	477	0.058
331	387	WTS 19e-3-08413	1	3506	140	0.040	3333	199	0.060	3521	241	0.068
332	389	V885 Cyg	1	8375	150	0.018	7876	277	0.035	7970	129	0.016
333	390	V885 Cyg	2	8150	150	0.018	7365	260	0.035	7760	101	0.013
334	391	WTS 19b-2-01387	1	3498	100	0.029	3596	204	0.057	3584	172	0.048
335	392	WTS 19b-2-01387	2	3436	100	0.029	3502	199	0.057	3540	157	0.044
336	393	WTS 19c-3-01405	1	3309	130	0.039	3139	189	0.060	3369	239	0.071
337	395	KIC 6131659	1	5660	140	0.025	5886	325	0.055	5555	56	0.010
338	396	KIC 6131659	2	4780	105	0.022	4739	263	0.055	4381	39	0.009
339	397	V1143 Cyg	1	6460	100	0.015	7212	261	0.036	6926	90	0.013
340	398	V1143 Cyg	2	6400	100	0.016	7026	254	0.036	6763	73	0.011
341	399	V541 Cyg	1	9885	230	0.023	10206	367	0.036	9810	424	0.043
342	400	V541 Cyg	2	9955	230	0.023	10450	385	0.037	9985	388	0.039
343	401	V1765 Cyg	1				21675	994	0.046	25141	237	0.009
344	402	V1765 Cyg	2				25404	1165	0.046	25903	349	0.013
345	404	V380 Cyg	2	20500	500	0.024	22477	968	0.043	21298	517	0.024
346	405	BD-20 5728	1				6079	258	0.042	6501	35	0.005
347	407	KIC 10935310	1	4320	100	0.023	4776	265	0.056	4264	167	0.039
348	409	BS Dra	1	6618	153	0.023	6819	245	0.036	6691	441	0.066
349	410	BS Dra	2	6626	153	0.023	6854	297	0.043	6705	521	0.078
350	411	V477 Cyg	1	8700	300	0.034	8670	334	0.039	8391	607	0.072
351	412	V477 Cyg	2	6700	235	0.035	7065	272	0.038	6754	379	0.056

Ek 4'ün devamı

	77 / 1 1			Yayınlanmış Sıcaklıklar			Hesaplanmış Sıcaklıklar Klasik yöntem			İyileştirilmiş Sıcaklıklar HSY		
Sıra	Numarası	Yıldız Adı	Bileşen	T_{eff}	ΔT_{eff}	$\Delta T/T$	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$	T_{eff}	ΔT_{eff}	$\Delta T/T$
352	413	V453 Cyg	1	26600	500	0.019	23560	993	0.042	25835	244	0.009
353	414	V453 Cyg	2	25500	800	0.031	24729	1049	0.042	24948	202	0.008
354	415	2MASS J20115132+0337194	1	3690	80	0.022	4050	228	0.056	3689	9	0.003
355	416	2MASS J20115132+0337194	2	3610	80	0.022	4106	229	0.056	3522	9	0.003
356	417	TYC 4589-2999-1	1	5830	40	0.007	7887	288	0.036	7865	476	0.060
357	418	TYC 4589-2999-1	2	4616	116	0.025	5320	301	0.057	5292	837	0.158
358	419	V478 Cyg	1	30550	1070	0.035	27811	1190	0.043	28997	1056	0.036
359	420	V478 Cyg	2	30550	1070	0.035	27413	1173	0.043	28680	1064	0.037
360	421	MY Cyg	1	7050	200	0.028	7470	264	0.035	7561	139	0.018
361	422	MY Cyg	2	7000	200	0.029	7322	259	0.035	7449	137	0.018
362	423	V399 Vul	1	19000	320	0.017	17519	738	0.042	18545	138	0.007
363	424	V399 Vul	2	18250	520	0.028	17152	659	0.038	17076	95	0.006
364	425	BP Vul	1	7709	150	0.019	7835	277	0.035	7770	76	0.010
365	426	BP Vul	2	6823	150	0.022	6967	247	0.035	6830	44	0.006
366	427	V442 Cyg	1	6900	82	0.012	6598	237	0.036	6789	95	0.014
367	428	V442 Cyg	2	6808	79	0.012	6589	239	0.036	6632	100	0.015
368	429	MP Del	1	7400	120	0.016	6089	221	0.036	6467	384	0.059
369	430	MP Del	2	6927	120	0.017	5944	216	0.036	6254	399	0.064
370	431	V456 Cyg	1	7750	100	0.013	8873	316	0.036	8606	298	0.035
371	432	V456 Cyg	2	6755	400	0.059	7939	284	0.036	7670	265	0.035
372	433	MR Del	1	4900			4715	270	0.057	4414	531	0.120
373	435	IO Aqr	1	6600			6226	231	0.037	6590	85	0.013

	Katalok			Yayı	nlanmış Sıca	klıklar	Hesa	planmış Sıca Klasik yönte	aklıklar em	İyileşti	rilmiş Sıcak HSY	lıklar
Sıra	Katalok Numarasi	Yıldız Adı	Bileşen	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$	T_{eff}	ΔT_{eff}	$\Delta T/T$	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$
374	436	IO Aqr	2	6425	300	0.047	6389	300	0.047	6628	93	0.014
375	437	V379 Cep	1	22025	428	0.019	20209	863	0.043	22184	329	0.015
376	438	V379 Cep	2	20206	374	0.019	20784	766	0.037	19744	383	0.019
377	439	Y Cyg	1	31000	2000	0.065	31841	1556	0.049	31723	492	0.016
378	440	Y Cyg	2	31570	2000	0.063	32667	1619	0.050	32258	370	0.011
379	441	CG Cyg	1	5260	185	0.035	6042	337	0.056	5638	93	0.016
380	442	CG Cyg	2	4720	66	0.014	5183	290	0.056	5246	106	0.020
381	443	ER Vul	1	6000	52	0.009	6001	262	0.044	6105	422	0.069
382	444	ER Vul	2	5883	52	0.009	5727	395	0.069	6034	372	0.062
383	445	V1061 Cyg	1	6180	100	0.016	6038	214	0.036	6287	81	0.013
384	446	V1061 Cyg	2	5300	150	0.028	5664	318	0.056	5643	57	0.010
385	447	EI Cep	1	6750	100	0.015	6402	231	0.036	6780	29	0.004
386	448	EI Cep	2	6950	100	0.014	6740	245	0.036	6969	30	0.004
387	449	2MASS J21295384-5620038	1	4750	150	0.032	5325	297	0.056	5296	134	0.025
388	450	2MASS J21295384-5620038	2	4220	180	0.043	4709	266	0.057	4713	107	0.023
389	451	BD-07 5586	1				5757	560	0.097	6120	179	0.029
390	452	BD-07 5586	2				5749	601	0.105	5985	220	0.037
391	453	EE Peg	1	8700	200	0.023	9265	332	0.036	9077	88	0.010
392	454	EE Peg	2	6450	300	0.047	6966	246	0.035	6716	58	0.009
393	455	EK Cep	1	9000	200	0.022	10013	355	0.035	9544	103	0.011
394	456	EK Cep	2	5700	190	0.033	5801	206	0.036	6180	60	0.010
395	457	OO Peg	1	8770	150	0.017	7283	289	0.040	7397	144	0.019

Ek 4'ün devamı

				Yayınlanmış Sıcaklıklar		Hesaplanmış Sıcaklıklar Klasik yöntem		ıklıklar m	İyileştirilmiş Sıcaklıklar HSY			
Sıra	Katalok Numarası	Yıldız Adı	Bileşen	T _{eff}	ΔT_{eff}	$\Delta T/T$	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$
396	458	OO Peg	2	8683	180	0.021	8874	351	0.040	8458	164	0.019
397	459	VZ Cep	1	6670	160	0.024	6779	239	0.035	6725	80	0.012
398	460	VZ Cep	2	5720	120	0.021	6380	254	0.040	6135	46	0.008
399	461	V497 Cep	1	19500	400	0.021	19570	714	0.036	19172	1187	0.062
400	462	V497 Cep	2	17756	405	0.023	17332	635	0.037	16872	1153	0.068
401	463	BG Ind	1	6353	270	0.042	5977	211	0.035	6368	34	0.005
402	464	BG Ind	2	6653	233	0.035	6185	228	0.037	6379	41	0.006
403	465	CM Lac	1	9000	300	0.033	9953	363	0.036	9469	307	0.032
404	466	CM Lac	2	4586	160	0.035	7330	267	0.036	7175	519	0.072
405	467	V398 Lac	1	11000	500	0.045	10509	427	0.041	11588	974	0.084
406	468	V398 Lac	2	10900	450	0.041	12892	550	0.043	12636	1132	0.090
407	469	BD-22 5866	1				4033	267	0.066	4113	255	0.062
408	470	BD-22 5866	2				4087	273	0.067	4029	250	0.062
409	471	BW Aqr	1	6350	100	0.016	6251	228	0.036	6513	98	0.015
410	472	BW Aqr	2	6450	100	0.016	6207	229	0.037	6412	104	0.016
411	473	WX Cep	1	8150	225	0.028	7307	258	0.035	7795	168	0.022
412	474	WX Cep	2	8872	250	0.028	9632	352	0.037	9653	169	0.018
413	475	LL Aqr	1	6680	160	0.024	6343	228	0.036	6347	322	0.051
414	476	LL Aqr	2	6200	160	0.026	6209	224	0.036	6001	311	0.052
415	478	RW Lac	2	5560	150	0.027	5209	288	0.055	5494	35	0.006
416	479	DH Cep	1	41000	2000	0.049	34735	1578	0.045	34037	1193	0.035
417	480	DH Cep	2	39550	2000	0.051	32857	1495	0.046	32991	1201	0.036

	Katalok			Yayı	nlanmış Sıca	klıklar	Hesaplanmış Sıcaklıklar Klasik yöntem			İyileştirilmiş Sıcaklıklar HSY		
Sıra	Katalok Numarasi	Yıldız Adı	Bileşen	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$	T_{eff}	ΔT_{eff}	$\Delta T/T$	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$
418	481	АН Сер	1	29900	1000	0.033	28786	1235	0.043	29347	257	0.009
419	482	AH Cep	2	28600	1000	0.035	27580	1199	0.043	27961	283	0.010
420	483	V364 Lac	1	8250	150	0.018	8069	287	0.036	8347	54	0.006
421	484	V364 Lac	2	8500	150	0.018	8343	297	0.036	8511	101	0.012
422	485	V453 Cep	1	10300	500	0.049	11074	663	0.060	10708	188	0.018
423	486	V453 Cep	2	10400	500	0.048	10953	676	0.062	10525	194	0.018
424	487	NY Cep	1	28500	1000	0.035	24820	1649	0.066	26048	1352	0.052
425	488	NY Cep	2	23100	1000	0.043	22086	1381	0.063	22291	1668	0.075
426	489	EF Aqr	1	6150	65	0.011	6429	228	0.035	6393	41	0.006
427	490	EF Aqr	2	5185	110	0.021	5834	324	0.056	5670	43	0.008
428	491	CW Cep	1	28300	1000	0.035	25672	1115	0.043	25858	209	0.008
429	492	CW Cep	2	27700	1000	0.036	25769	1126	0.044	25527	224	0.009
430	493	PV Cas	1	10200	250	0.025	11308	413	0.037	11050	184	0.017
431	494	PV Cas	2	10200	250	0.025	11635	424	0.036	11335	230	0.02
432	495	RT And	1	6095	214	0.035	6581	234	0.036	6430	167	0.026
433	496	RT And	2	4732	110	0.023	5682	317	0.056	5536	154	0.028
434	497	V396 Cas	1	9225	150	0.016	9381	330	0.035	9333	91	0.01
435	498	V396 Cas	2	8550	120	0.014	8815	311	0.035	8591	74	0.009
436	499	2MASS J23143816+0339493	1	3460	180	0.052	3535	195	0.055	3467	18	0.005
437	500	2MASS J23143816+0339493	2	3320	180	0.054	2970	164	0.055	3320	13	0.004
438	501	NSVS 11868841	1	5250	135	0.026	5169	296	0.057	5507	592	0.108
439	503	AR Cas	1	17200	500	0.029	15387	565	0.037	16358	514	0.031

				Va	winlanmıs Sı	caklıklar	Hesaplanmış Sıcaklıklar Klasik yöntem			İyileştir	ilmiş Sıca	klıklar
	Katalok			10	ty initalining 51	Cuklikiui	IN IN	liusik yontei	in the second se		1151	
Sıra	Numarası	Yıldız Adı	Bileşen	$T_{\rm eff}$	ΔT_{eff}	$\Delta T/T$	T_{eff}	ΔT_{eff}	$\Delta T/T$	T_{eff}	ΔT_{eff}	$\Delta T/T$
440	504	AR Cas	2	8150	200	0.025	9115	331	0.036	8786	304	0.035
441	505	V731 Cep	1	10700	200	0.019	11928	444	0.037	11308	397	0.035
442	506	V731 Cep	2	9265	220	0.024	9566	343	0.036	9214	418	0.045
443	507	IT Cas	1	6470	110	0.017	6314	224	0.035	6426	49	0.008
444	508	IT Cas	2	6470	110	0.017	6371	238	0.037	6450	42	0.006
445	509	BK Peg	1	6265	85	0.014	6062	213	0.035	6361	34	0.005
446	510	BK Peg	2	6320	30	0.005	6199	221	0.036	6334	27	0.004
447	511	AL Scl	1	13550	350	0.026	12236	454	0.037	12504	347	0.028
448	512	AL Scl	2	10300	360	0.035	8821	316	0.036	8424	209	0.025
449	513	V821 Cas	1	9400	400	0.043	8179	347	0.042	8190	734	0.09
450	514	V821 Cas	2	8450	380	0.045	8286	460	0.056	7922	1001	0.126

ÖZGEÇMİŞ

Gürkan ASLAN 1987 yılında Bursa'da doğdu. İlk, orta, lise öğrenimini Bursa'da tamamladı. 2007 yılında girdiği Ege Üniversitesi Fen Fakültesi Astronomi ve Uzay Bilimleri Bölümü'nden 2012 yılında mezun oldu. Ayrıca aynı yıllarda çift anadal yaptığı matematik bölümünden de 2013 yılında mezun oldu. 2013 yılında Akdeniz Üniversitesi Fen Bilimleri Enstitüsü Uzay Bilimleri ve Teknolojileri Anabilim Dalı'nda Yüksek Lisans öğrencisi olarak kaydolmuştur ve halen devam etmektedir.