YOĞUNLUK AYARLI RADYOTERAPİ TEKNİĞİNİN UYGULANMASINDA KULLANILAN KÜÇÜK ALANLARIN KARAKTERİSTİKLERİNİN İNCELENMESİ

Hülya ÖZDEMİR

YÜKSEK LİSANS TEZİ FİZİK ANABİLİM DALI

YOĞUNLUK AYARLI RADYOTERAPİ TEKNİĞİNİN UYGULANMASINDA KULLANILAN KÜÇÜK ALANLARIN KARAKTERİSTİKLERİNİN İNCELENMESİ

Hülya ÖZDEMİR

YÜKSEK LİSANS TEZİ FİZİK ANABİLİM DALI

(Bu tez Akdeniz Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından 2014.02.0121.008 nolu proje ile desteklenmiştir.)

YOĞUNLUK AYARLI RADYOTERAPİ TEKNİĞİNİN UYGULANMASINDA KULLANILAN KÜÇÜK ALANLARIN KARAKTERİSTİKLERİNİN İNCELENMESİ

Hülya ÖZDEMİR

YÜKSEK LİSANS TEZİ FİZİK ANABİLİM DALI

Bu tez 09/09/2014 tarihinde aşağıdaki jüri tarafından Oybirliği/Oyçokluğu ile kabul edilmiştir.

Yrd. Doç. Dr. Nina TUNÇEL Prof. Dr. Nuri ÜNAL Prof. Dr. Ali Aydın YAVUZ

YOĞUNLUK AYARLI RADYOTERAPİ TEKNİĞİNİN UYGULANMASINDA KULLANILAN KÜÇÜK ALANLARIN KARAKTERİSTİKLERİNİN İNCELENMESİ

Hülya ÖZDEMİR

YÜKSEK LİSANS TEZİ FİZİK ANABİLİM DALI

Bu tez 09/09/2014 tarihinde aşağıdaki jüri tarafından Oybirliği/Oyçokluğu ile kabul edilmiştir.

Yrd. Doç. Dr. Nina TUNÇEL Prof. Dr. Nuri ÜNAL Prof. Dr. Ali Aydın YAVUZ

ÖZET

YOĞUNLUK AYARLI RADYOTERAPİ TEKNİĞİNİN UYGULANMASINDA KULLANILAN KÜÇÜK ALANLARIN KARAKTERİSTİKLERİNİN İNCELENMESİ

Hülya ÖZDEMİR

Yüksek Lisans Tezi, Fizik Anabilim Dalı Danışman: Yrd. Doç. Dr. Nina TUNÇEL Ağustos 2014, 122 sayfa

Bu çalışma, Elekta marka Synergy lineer hızlandırıcı cihazında üretilen fotonların 6 MV demet enerjisi kullanıldı. Çalışmada yoğunluk ayarlı radyoterapi tekniğinde kullanılan küçük alanların karakteristiklerini incelemek için rölatif ve mutlak doz ölçümleri yapıldı ve birbirleriyle karşılaştırıldı.

Çalışma kapsamındaki alanlar (1x1 cm²-10x10 cm²), cihazın merkezi ekseninde ve merkezi eksenin dışında üç farklı kolimatör ekseni üzerinde kaydırılarak yerleştirildi. Bu alanların yüzde derin dozunu (dozun derinliğe bağlı yüzde değişimi) ve profillerini belirlemek için, CC04 iyon odası ile Iba marka Blue su fantomu kullanıldı. Derin doz ve profillerden enerji tayini, d_{Dmax} derinliği, D_{20}/D_{10} oranı, simetri, düzgünlük, penumbra ve FWHM verileri bulundu. Havada kolimatör saçılma faktörünü ölçmek için, CC04 iyon odası ile pirinç alaşımlı "build-up" başlık ve su fantomunun boş tankı kullanıldı. Doz verim ölçümleri için, katı su fantomda CC04 iyon odası ve termolüminesans dozimetri (TLD) kullanıldı. Ayrıca TLD ile 6 mm derinlikteki dozlar ölçüldü.

Merkezi eksende yerleşmiş olan alanların küçülmesiyle d_{Dmax} derinliğinin ve D_{20}/D_{10} oranının düştüğü görüldü. Demet simetrisinin tüm alanlarda limitler (±%3) içinde olduğu tespit edildi. Düzgünlük parametresinin 5x5 cm²'den küçük alanlarda %3 limitini aştığı bulundu. Bu nedenle düzgünlük parametresi yerine FWHM parametresinin kullanımının küçük alanlar için daha etkin olduğu tespit edildi. 10x10 cm²'nin kolimatör saçılma faktörü değerlerine göre, alan boyutunun küçülmesiyle kolimatör saçılma faktörü değerlerinin düştüğü görüldü. 16 mm derinlikteki doz verim değerleri alanın küçülmesiyle lineer bir azalım gösterdi. Aynı durum TLD ile ölçülen 6 mm derinlikteki (yüzey dozu) dozun değerlerinde de gözlendi.

Alanların yerleşimleri merkezi eksenden uzaklaştıkça tüm kaydırmalarda d_{Dmax} derinliği yüzeye yaklaştı. X2, Y1 ve Diagonal düzlem kaydırmalarındaki her bir alanın profillerinden bulunan D_{20}/D_{10} oranının düştüğü görüldü. Alanların merkezi eksenden kaymasına göre kolimatör saçılma faktörünün değeri %3-%6 oranında arttı. İyon odası ve TLD ile elde edilen doz verim sonuçlarında da bu artış oranı görüldü. Ayrıca, 2x2 cm² alan boyutuna kadar bu dedektörlerin sonuçları birbirleriyle uyumluluk gösterdi. Genel olarak, alanların yüzey dozu tüm alan kaydırmalarında arttı.

Konvansiyonel tekniklerle kıyaslandığında, YART tekniğinin dozimetrisi alan boyutlarının çok küçük olmasından dolayı önemlidir. Dolayısıyla, YART'ta doğru doz hesaplaması için küçük alanlar ve onların dozimetrik özellikleri TPS'de uygun bir şekilde modellenmeli ve sonrasında kalite kontrolü sağlanmalıdır.

Tez kapsamındaki dozimetrik çalışmalar Akdeniz Üniversitesi Tıp Fakültesi Radyasyon Onkolojisi Anabilim Dalı'nda ve Denizli Devlet Hastanesi Radyoterapi Merkezi'nde yürütülmüştür.

ANAHTAR KELİMELER: Küçük Alan Dozimetrisi, Termolüminesans Dozimetri, Yoğunluk Ayarlı Radyoterapi, Yüzde Derin Doz, Doz Verimi

JÜRİ: Yrd. Doç. Dr. Nina TUNÇEL (Danışman) Prof. Dr. Nuri ÜNAL Prof. Dr. Ali Aydın YAVUZ

ABSTRACT

EXAMINATION OF THE CHARACTERISTICS OF SMALL FIELDS USED IN INTENSITY MODULATED RADIOTHERAPY TECHNIQUE

Hülya ÖZDEMİR

MSc. Thesis in Physics Supervisor: Asst Prof. Dr. Nina TUNÇEL August 2014, 122 pages

This study was performed by 6 MV photons produced by Elekta Synergy linear accelerator. The characteristics of the small fields, used in intensity modulated radiotherapy technique, were compared with each other in this study by relative and absolute dose measurements.

Some of the fields in the scope of this study $(1x1 \text{ cm}^2-10x10 \text{ cm}^2)$ were placed on central axis of the device and some of them were placed away from central axis of beam by shifting toward 3 different collimator axis. The IBA CC04 ion chamber and Blue water phantom were used to perform measurement of percentage depth dose (the percentage of dose depend on depths) and profiles on mentioned fields. The energy, d_{Dmax} , D_{20}/D_{10} , symmetry, flatness, penumbra and FWHM values were obtained from percentage depth dose and profiles. The CC04 ion chamber with brass alloy "build-up" cap and empty water phantom tank were used to define collimator scattering factor in the air. The output measurements of selected fields were performed by CC04 ion chamber and thermoluminescent dosimeter (TLD) in the solid water phantom. In addition, the 6 mm depth dose of each field was measured by TLDs.

The d_{Dmax} depth and D_{20}/D_{10} ratio were decreased depending on decreasing in size of fields that placed on the central axis. The beam symmetry value for all fields was found in the limit (+3%). The flatness parameter exceeded 3% limit value in fields smaller than 5x5 cm². So, the FWHM was found to be much more effective parameter for small fields. According to the collimator scattering factor value of 10x10 cm², the collimator scattering factor was decreased by decreasing the field size. Also, it was shown that the d_{Dmax} (16 mm) namely output values were linearly decreased by decreasing field size. The same behavior at the 6 mm (surface dose) was observed by TLD dose measurement values.

When the field placements were moved away from central axis, the d_{Dmax} depth (16 mm) approached to the surface. Decreasing of D_{20}/D_{10} ratio that calculated from profile of each field placed on the X2, Y1 and Diagonal directions, were seen. According to field displacement from central axis on all directions, the collimator scatter factor increased about 3% to 6%. The increment rate on output was detected in ion chamber and TLD results. Also, the detector results showed compatibility with each other up to

 $2x2 \text{ cm}^2$. In general, the surface dose on each field increased by shifting in all direction.

Compared to the conventional techniques, IMRT technique has more complicated dosimetry measurements because it employs smaller fields. Therefore, in order to calculate the correct dose in IMRT techniques the small fields and their dosimetric characteristics would be modeled appropriately in the treatment planning system and then the quality control should be provided.

Dosimetric studies within the scope of the thesis were carried out at Akdeniz University Faculty of Medicine Department of Radiation Oncology and Denizli State Hospital Radiotherapy Centre.

KEYWORDS: Small field dosimetry, Thermoluminescence dosimetry, Intensity modulated radiotherapy, Percentage depth dose, Output

COMMITTEE: Asst. Prof. Nina TUNÇEL (Supervisor) Prof. Dr. Nuri ÜNAL Prof. Dr. Ali Aydın YAVUZ

ÖNSÖZ

Yoğunluk ayarlı radyoterapi tekniğinin uygulanmasında kullanılan küçük alanların karakteristiklerini incelemeyi amaçlayan bu çalışma Akdeniz Üniversitesi Tıp Fakültesi Radyasyon Onkolojisi Anabilim Dalı'nda ve Denizli Devlet Hastanesi Radyoterapi Merkezi'nde yapıldı.

Çalışmalarım sırasında da bilgi ve önerileriyle beni yönlendirerek çalışma olanağı sağlayan, her türlü desteği veren danışmanım Sayın Yrd. Doç. Dr. Nina TUNÇEL'e sonsuz saygı, minnet ve teşekkürlerimi sunarım.

Çalışma süresince yardımlarını esirgemeyen Akdeniz Üniversitesi Tıp Fakültesi Radyasyon Onkolojisi Anabilim Dalı'na, Denizli Devlet Hastanesi Radyoterapi Merkezi'ne ve yüksek lisans arkadaşlarıma teşekkür ederim.

Ayrıca her zaman yanımda olarak bana destek veren annem Zehra ÖZDEMİR, babam Mustafa Kemal ÖZDEMİR, ağabeylerim Biomedikal Mühendisi Gökhan ÖZDEMİR ve Heykeltıraş Doğan ÖZDEMİR'e sonsuz teşekkürlerimi sunarım.

ÖZET	i
ABSTRACT	iii
ÖNSÖZ	v
İÇİNDEKİLER	vi
SİMGELER ve KISALTMALAR DİZİNİ	viii
SEKİLLER DİZİNİ	X
, CIZELGELER DIZINI	xiv
1. GİRİS	1
2. KURAMSAL BİLGİLER VE KAYNAK TARAMALARI	3
2.1. Radyasyon	
2.1.1. Radyasyonun sınıflandırılması	
2.1.2. İyonize edici fotonların madde ile etkileşim türleri	4
2.1.3. İyonize edici fotonların ortam icinde soğurulması	6
2.1.4. Radvasvon birimleri ve hesaplama vöntemleri	6
2.2. Radvasvon Doz Ölcüm Protokolleri	7
2.3. Radvoterapi	
2.3.1. Radvoterapinin tanımı ve tarihcesi	
2.3.2. İnternal tedavi cihazları	
2.3.3. External tedavi cihazları	
2.3.3.1. Kobalt-60 (Co-60) teleterapi cihazlari	
2.3.3.2. Lineer hizlandiricilar	
2.4 Lineer Hızlandırıcılarda Kalite Kontrol İslemleri	
2.5. External Radvoterani Teknikleri	
2.4.1. Konformal (Geleneksel) radvoterani	
2.4.2. Yoğunluk ayarlı radyoterapi (YART)	
2.5 Kücük Alanlar ve Kücük Alanların YART Tekniğindeki Yeri	
2.6. Radvoterapide Dozimetrik Tanımlar	
2.6.1. Yüzde derin doz	
2 6 2 Doz olusum (Build up) Bölgesi	
2.6.3. Doz maksimum derinliği	
2.6.4. Yüzev dozu	
265 Isin alan	
2.6.6. Doz verim (output) faktörü	
2.67 Kolimatör sacılma faktörü (S _c)	
2 6 8 Doku fantom oranı	
2.6.9. Fotonun enerii tavini	
2.6.10. Merkezi eksenden uzaklık oranı (OAR) ve ısın profilleri	
2.6.10.1. Isın düzgünlüğü (F)	
2.6.10.2. Isin simetrisi (S)	
2.6.10.3. Penumbra	
2.6.10.4. Alan dısı dozlar	
27 Kücük Foton Alanlarındaki Zorluklar.	
2.7.1. Kücük foton alanının karakteristiği	
2.7.1. Kücük foton alanlarında ısın spektrumu	
2.7.2. Profiller	
2.7.3. Işın verimi	
,	-

İÇİNDEKİLER

2.7.4. Penumbra genişliği	37
2.8. Doz Ölçüm Araçları: Dozimetreler	38
2.8.1. İyon odası ve elektrometre	38
2.8.2. Termolüminesans dozimetre (TLD)	40
2.8.3. Fantomlar	43
3. MATERYAL VE METOT	44
3.1. Materyal	44
3.1.1. Elekta marka Synergy Platform lineer hızlandırıcı	44
3.1.2. RADOS 2000RT sistemi ve LiF-100 TLD	46
3.1.3. CC04 iyon odası	47
3.1.4. İba marka Dose-1 Elektrometre	48
3.1.5. İba marka Blue fantom	49
3.1.5. RW-3 Su eşdeğeri katı fantom	49
3.2. Metot	50
3.2.1. Rölatif doz ölçümleri: Merkezi eksen ve merkez dışı eksenler	50
3.2.1.1. Yüzde derin doz ve enerji tayini	50
3.2.1.2. Demet profilleri	52
3.2.1.3. Kolimatör saçılma faktörü (Sc) ölçümleri	52
3.2.2. Mutlak (Absolute) doz ölcümleri: Merkezi eksen ve merkez dısı eksenle	r 53
3.2.1.1. İyon odası ile verim ölçümü	53
3.2.1.2. Termolüminesans dozimetre ile verim ölçümü ve yüzey dozu	54
4. BULGULAR	57
4.1. Rölatif Doz Ölçümleri: Merkezi Eksen ve Merkez Dışı Eksenler	57
4.1.1. Yüzde derin doz ve enerji tayini	57
4.1.2. Demet profilleri	60
4.1.3. Kolimatör saçılma faktörü (Sc) ölçümleri	66
4.2. Mutlak (Absolute) doz ölçümleri: Merkezi eksen ve merkez dışı eksenler	68
4.2.1. İyon odası ile verim ölçümü	68
4.2.2. Termolüminesans dozimetre ile verim ölçümü ve yüzey dozu	71
5. TARTIŞMA	75
5.1. Rölatif Doz Ölçümleri: Merkezi Eksen ve Merkez Dışı Eksenler	75
5.1.1. Yüzde derin doz ve enerji tayini	75
5.1.2. Demet profilleri	78
5.1.3. Kolimatör saçılma faktörü (Sc) ölçümleri	86
5.2. Mutlak (Absolute) doz ölçümleri: Merkezi eksen ve merkez dışı eksenler	87
5.2.1. İyon odası ile verim ölçümü	88
5.2.2. Termolüminesans dozimetre ile verim ölçümü ve yüzey dozu	90
6. SONUC	93
7. KAYNAKLAR	94
8. EKLER	100
Ek 1: Tüm Alanlar için Merkezi Eksende Yüzde Derin Doz Eğrileri	100
Ek 2: Çalışmaya Alınan Alanların Kaydırma Düzlemlerindeki	
Yüzde Derin Doz Eğrilerinden Elde Edilen Veriler	100
Ek 3: Calısmaya Alınan Alanların Kaydırma Düzlemlerindeki	
Demet Profillerinden Elde Edilen Veriler	102
Ek 4: Çalışmaya Alınan Alanların Kaydırma Düzlemlerindeki	
Demet Profillerinden Elde Edilen Sag ve Sol Penumbra Verileri	104
ÖZGEÇMİŞ	

SİMGELER VE KISALTMALAR DİZİNİ

<u>Simgeler</u>

А	Kütle Numarası
Bq	Becquerel
С	Coulomb
cGy	Santi Gray
E	Enerji
E _{ab}	Soğurulan Enerji
E _{tr}	Transfer Enerji
erg	Enerji birimi
eV	Elektron Volt
Gy	Gray
J	Joule
KeV	Kilo Elektron Volt
kg	Kilogram
MeV	Mega Elektron Volt
MV	Mega Volt
N _A	Avogadro Sayısı
Р	Basınç
R	Röntgen
Rad	Soğurulan Dozun Birimi
RBE	Rölatif Biyolojik Etkinlik Faktörü
Rem	Eşdeğer Doz
Sv	Sievert
Т	Sıcaklık
Z	Atom Numarası
μ	Kesit Görüntüleri Azalım Katsayısı
γ	Gama Işını
θ	Açı
aσC	Atomik Compton zayıflama sabiti
eσC	Elektronik Compton azaltma sabiti
σC/ρ	Kütlesel Compton azaltma sabiti

<u>Kısaltmalar</u>

AAPM	American Association Of Physicists In Medicine
CAX	Demet Merkezi ekseni
CPE	Yüklü Parçacık Dengesi
ÇYK	Çok Yapraklı Kolimatör (Multi Leaf Colimator, MLC)
D	Doz
Dhava	Doz Havada
Dmaks	Dozun Maksimum Olduğu Derinlik
F	Düzgünlük
FWHM	Yarı maksimum tam genişliği (Full width at half maximum)
IAEA	International Atomic Energy Agency
ICRU	Uluslararası Radyasyon Ve Ölçümleri Komisyonu (International

	Commission On Radiation Units And Measurements)
IPEM	Institute of Physics and Engineering in Medicine
HVL	Yarı Değer Kalınlığı (Half Value Layer)
KERMA	Kütle Başına Serbest Bırakılan Kinetik Enerji (Kinetic Energy
	Released per unit Mass)
LED	Yanal Elektron Dengesizliği
LEE	Yanal Elektron Dengesi
LiF	Lityum Fluorid
MU	Monitor Unit
NDair	Soğurulan Doz Kalibrasyon Faktörü
NK	Kerma Cinsinden Kalibrasyon Faktörü
OAR	Merkezi eksenden Uzaklık Oranı
PMT	Foto Çoğaltıcı Tüp
PMMA	Poly-Methyl MethAcrylate
RDF	Rölatif Doz Faktörü
S	Simetri
SAD	Kaynak-Eksen Mesafesi
Sc	Kolimatör Saçılma Faktörü (CF)
SSD	Kaynak-Cilt Mesafesi (Source-Skin Distance)
TLD	Termolüminesans Dozimetre
TPR	Doku Fantom Oranı (Tissue Phantom Ratio)
TPS	Tedavi Planlama Sistemi
VF	Verim(output) Faktörü
YDD	Yüzde Derin Doz (PDD)
YART	Yoğunluk Ayarlı Radyoterapi
%DD	Derin Doz Yüzdesi
3BKRT	Üç Boyutlu Konformal Radyoterapi
3D	Üç Boyut

ŞEKİLLER DİZİNİ

Şekil 2.1. Radyasyonun sınıflandırılması
Şekil 2.2. Fotoelektrik etki
Şekil 2.3. Compton saçılması
Şekil 2.4. Çift oluşum5
Şekil 2.5. 60-Cobalt izotopunun bozunumu11
Şekil 2.6. 60-Cobalt tedavi cihazının bileşenleri 11
Şekil 2.7. Genel bir lineer hızlandırıcının elektron üreten elektron tabancası, dalga kılavuzu, demet saptırıcı ve kolimasyon sistemleriyle birlikte demet yolunun şematik gösterimi
Şekil 2.8. Lineer hızlandırıcı ışınlama kafasında (a) x-ışını, (b) elektron üretimi sırasında kullanılan bileşenleri
Şekil 2.9. Lineer hızlandırıcıda foton demeti için (a) FFF' doz dağılım profili üzerine etkisi (b) FF'in doz dağılım profili üzerine etkisinin şematik gösterimi 13
Şekil 2.10. Çok yapraklı kolimatörler 14
Şekil 2.11. İntrakraniel bir lezyonun tedavi alanını göstermektedir. (a) 3 mm genişliğindeki ÇYK (b) 5 mm genişliğindeki ÇYK (Monk 2003) 15
 Şekil 2.12. Prostat kanserinin radyasyon tedavisinde konformal planlama tekniğiyle 6 farklı açıda oluşturulan alanların (a) üç boyutlu ve (b) DRR görüntüleri (Michalski vd 1996)
Şekil 2.13. Statik (Dur ve ışınla) tekniğinin şematik gösterimi 17
Şekil 2.14. Dinamik (Koyan pencere) tekniğinin şematik gösterimi 17
Şekil 2.15. %DD tanımı ve ölçüm düzeneği 19
Şekil 2.16. 6 ve 15 MV foton ışınları için, SSD=100 cm ve 5x5-30x30 cm ² alan boyutunda sudaki %DD değerleri
Şekil 2.17. Yüzde derin doz eğrisinden elde edilem verilerin şematik gösterimi
Şekil 2.18. Dokuda da megavoltaj foton ışını için yüzde doz değişimi (Khan 2003) 22
Şekil 2.19. RDF(A)'nın ölçüm düzeneği. Fantom d _{max} derinliğinde P noktasındaki doz, (a) A alan boyutunda ve (b) 10x10 cm ² alan boyutunda23

Şekil 2.20	. (a) S_c ve b) S_{cp} faktörlerinin ölçüm düzeneği	. 24
Şekil 2.21	. TPR ölçüm düzeneği (a) fantomda bir d derinliğinde (b) fantomda bir d _{ref} derinliğinde	. 25
Şekil 2.22	. Merkezi eksenden uzaklık oranının şematik gösterimi	. 26
Şekil 2.23	. Asimetrik alanlarda yarıkesici alanın şematik gösterimi	. 27
Şekil 2.24	. Merkezi eksende yerleşmiş örnek bir alanın (a) X2 düzlemi boyunca kayması (b) Y1 düzlemi boyunca kayması (c) Diagonal düzlem boyunca kaymanın şematik gösterimi	. 27
Şekil 2.25	. 6 MV foton demeti için karşı çeneden 50 mm uzaklıktaki değere normalize edilen profiller	. 28
Şekil 2.26	. 6 MV Foton demeti için 10x10 alan profili ve ilgili tanımlamalar	. 29
Şekil 2.27	. Işın profilinden elde edilebilecek olan parametrelerin gösterimi (Merkezi eksen, alan genişliği, düzgünlük, penumbra ve alan dışı dozlar)	. 30
Şekil 2.28	. Demet kaynağının kapanması	. 31
Şekil 2.29	. Dar ve geniş demetlerin dedektör boyutu ile ilişkisinin şematik gösterimi	. 32
Şekil 2.30	. Her enerji için alana bağlı yanal elektron dengesi (LEE)'nin oluşumu	. 33
Şekil 2.31	. Alan boyutuna göre dedektör seçimi	. 34
Şekil 2.32	. Her bir foton enerjisi için alana bağlı doz maksimum derinliğinin değişimi (Sixel vd 1994)	. 35
Şekil 2.33	. 6 MV foton demeti için suda 50 mm derinlikte saçılan ve ikincil elektron akısı	. 36
Şekil 2.34	. 6 MV için suda 100 mm derinlikte fotondiod ile ölçülen profiller	. 37
Şekil 2.35	. Fotondiod ile ölçülen simetrik alan profilleri	. 38
Şekil 2.36	. İyon odasının iç yapısı (Khan 2010)	. 38
Şekil 2.37	. Iba marka dose-1 elektrometre ve iyon odası	. 39
Şekil 2.38	. Fosforesans ve limünesans maddelerde uyarılma enerji seviyeleri	. 40
Şekil 2.39	. TLD okuyucu sistem şeması	.41

Şekil 2.40. TLD-100 kristalinin 90Sr/90Y kaynakla ışınlanması sonucu elde edilen parlayış eğrisi (Glow curve)	41
Şekil 2.41. LiF ve CaF2: Mn kristalleri için enerji duyarlılığı	42
Şekil 2.42. Katı su fantomu	43
Şekil 3.1. Lineer hızlandırıcıda oluşturulan alan ve ilgili eksen tanımları	44
Şekil 3.2. Bir lineer hızlandırıcının koordinat sisteminin tanımı görülmektedir. (inline, crossline ve derinlik)	45
Şekil 3.3. Elekta marka Platform lineer hızlandırıcı cihazı	45
Şekil 3.4. A:Fıırın tepsisi, TLD ve kaset B:TLD'lerin metal tepsiye yerleştirilmesi C:RADOS 2000 TLD okuyucu D:PTW-TLDO Termolümünesans dozimetre firini	46
Şekil 3.5. Scanditronix- wellhofer marka CC04 kompakt iyon odası	48
Şekil 3.6. CC04 iyon odasının "build-up" başlığı	48
Şekil 3.7. Iba marka dose-1 elektrometre	48
Şekil 3.8. Iba Blue fantom	49
Şekil 3.9. RW-3 su eşdeğeri katı fantom	49
Şekil 3.10. Havada Sc ölçüm düzeneği	53
Şekil 3.11.Verim ölçüm düzeneği	. 54
Şekil 3.12. Çalışmada kullanılması planlanan TLD'lerin gruplama işlemleri için lineer hızlandırıcı cihazında 6 MV foton enerjisinde ışınlama düzeneği	55
Şekil 3.13. TLD ışınlama düzeneği	56
Şekil 4.1. Su fantomundan elde edilen SSD=100 cm ve 10x10 cm ² alan için %DD grafiği	57
Şekil 4.2. 10x10 cm ² alan için X2 düzlemindeki kaydırmalardan elde edilen yüzde derin doz eğrilerini göstermektedir.	58
Şekil 5.1. Her bir kare alan için elde edilen maksimum doz derinlik değerleri 10 cm ² 'ye normalize edilmiştir. Beklenen maksimum doz derinlik değerlerinin eğrisini icermektedir	76
Sekil 5.2. Her bir kare alan için D_{20}/D_{10} oranının değişimini gösteren grafik	

Şekil 5.3. Geometrik alan ile radyasyon alanı arasındaki merkez kaymasının şematik gösterimi	78
Şekil 5.4. Küçük alanlarda demet düzğünlüğünün şematik gösterimi	79
Şekil 5.5. 6 MV foton demetinin farklı alan boyutları için düzleştirici filtre bulunmayan cihazdan elde edilen demet profilleri	80
Şekil 5.6. 2x2, 5x5, 10x10, 20x20 ve 30x30 alanlar için düzleştirici filtre olan ve olmayan profillerin karşılaştırılması	80
 Şekil 5.7. Çalışmaya alınan alanlar için (a) X2 düzlemdeki kaymasına göre (b) Y1 düzlemindeki kaymasına göre (c) Diagonal düzlemdeki kaymasına göre D₂₀/D₁₀ oranının değişimini gösteren grafik 	
Şekil 5.8. Inline profillerin elde edilmesinde tarama ekseni ile ÇYK'ler arasındaki boşluğun ilişkisi	
Şekil 5.9. Y1 düzleminde 10 cm kayma için 10 cm derinlikteki profillerde sol penumbra hesaplanmasındaki sorunun gösterimi	85
Şekil 5.10. Her bir alanın kaymasından elde edilen normalize değerler (a) X2 düzleminde, (b) Y1 düzleminde, (c) Diagonal düzlemde	
Şekil 5.11. Her bir alanın kaymasından elde edilen mutlak doz değerleri (a) X2 düzleminde, (b) Y1 düzleminde, (c) Diagonal düzlemde	
Şekil 5.12. Her bir alanın kaymasından TLD ve iyon odası ile elde edilen mutlak doz değerleri (a) X2 düzleminde, (b) Y1 düzleminde, (c) Diagonal düzlemde	91
Şekil 8.1. Tüm Alanlar için Merkezi Eksende Yüzde Derin Doz Eğrileri	100
 Şekil 8.2. Tüm alanların Merkezi eksende (a) d_{Dmax} derinliğinde (b) 10 cm derinlikte (c) 20 cm derinlikte demet pofilleri 	100

ÇİZELGELER DİZİNİ

Çizelge 2.1. Bir Farklı foton enerjileri için 5x5 cm ² alan boyutunda d _{Dmax} derinlikleri (Podgorsak 2006)	
Çizelge 2.2. TL kristal türleri ve özellikleri	
Çizelge 3.1. Farklı alan boyutları için (a) X2 düzlemindeki kayma Miktar (b) Y1düzlemindeki kayma miktarlarında (c) Diagonal düzlem kayma miktarlarında yapılacak ölçümlerin tablosu	larında ndeki 51
Çizelge 4.1. Farklı alan boyutları için merkezi eksen yüzde derin doz eğrilerinden elde edilen d _{Dmax} , D ₁₀ , D ₂₀ ve D ₂₀ /D ₁₀ oranının değerleri	
Çizelge 4.2. 10x10 cm ² alanın (a) X2 düzlemindeki, (b) Y1 düzlemindeki (c) Diagonal düzlemdeki kaymaları için elde edilen veriler	ve 58
Çizelge 4.3. 2x2 cm2 alanın (a) X2 düzlemindeki, (b) Y1 düzlemindeki kaymaları için elde edilen veriler	
Çizelge 4.4. Crossline profilinin (a) d _{Dmax} derinliğindeki verileri (b) 10 cm derinliğindeki verileri (c) 20 cm derinliğindeki ve	rileri61
Çizelge 4.5. Inline profilinin (a) d _{Dmax} derinliğindeki verileri (b) 10 cm derinliğindeki verileri (c) 20 cm derinliğindeki ve	rileri62
 Çizelge 4.6. 10x10 cm² alanın crossline profilinin (a) X2 kayma miktarlar (b) Y1 kayma miktarında (c) Diagonal kayma miktarında elde edilen veriler 	rında e 64
Çizelge 4.7. 2x2 cm ² alanın crossline profilinin (a) X2 kayma miktarlarında ve (b) Y1 kayma miktarında elde edilen verile	r 64
Çizelge 4.8. 10x10 cm ² alanın 10 cm derinlikte crossline ve inline Profilla (a) X2 kayma miktarlarında, (b) Y1 kayma Miktarlarında (c kayma miktarlarında elde edilen sağ ve sol penumbra değer	erinden) Diagonal leri 65
Çizelge 4.9. 2x2 cm ² alanın 10 cm derinlikte crossline ve inline profillerin (a)X2 kayma miktarlarında,(b)Y1 kayma miktarlarında elde e sağ ve sol penumbra değerleri	nden dilen 66
Çizelge 4.10.Farklı alanlar için (a) X2 kayma miktarlarında (b) Y1 kayma miktarlarında (c) Diagonal kayma miktarlarında elde edilen M _u değerleri	a 67
Çizelge 4.11. Farklı alanların 6 MV foton demet enerjisi için M_u ve S_c de	ğerleri 68

Çizelge 4.12. Farklı alanlar için (a) X2 kayma miktarlarında (b)Y1 kayma miktarlarında (c) Diagonal kayma miktarlarında elde edilen M _u ve doz değerleri
Çizelge 4.13. 16 mm derinlikte alanların (a) X2 kaymasının (b) Y1 kaymasının ve (c) Diagonal kaymasının TLD mutlak doz değerleri72
Çizelge 4.14. 6 mm derinlikte alanların (a) X2 kaymasının (b) Y1 kaymasının ve (c) Diagonal kaymasının TLD mutlak doz değerleri73
Çizelge 5.1. Farklı alan boyutları için merkezi eksen yüzde derin doz eğrilerinde elde edilen d _{Dmax} , D ₁₀ , D ₂₀ ve D ₂₀ /D ₁₀ oranının değerleri
Çizelge 5.2. Alan boyutunun uygunluğu (a) crossline düzlemlerinde (b) Inline düzlemlerinde
Çizelge 5.3. Alan boyutuna göre (a) 10 cm derinlikte (b) d _{Dmax} derinliğinde crossline ve inline yönündeki penumbra değerleri
Çizelge 8.1. 6x6 cm2 alanın (a) X2 düzlemindeki kaymalar için (b) Y1 düzlemindeki kaymalar için (c) Diagonal düzlemdeki kaymalar için elde edilen veriler
Çizelge 8.2. 4x4 cm ² alanın (a) X2 düzlemindeki kaymalar için (b) Y1 düzlemindeki kaymalar için (c) Diagonal düzlemdeki kaymalar için elde edilen veriler
Çizelge 8.3. 6x6 cm ² alanın crossline profilinin (a) X2 kayma miktarlarında (b) Y1 kayma miktarlarında (c) Diagonal kayma miktarlarında elde edilen veriler
Çizelge 8.4. 4x4 cm ² alanın crossline profilinin (a) X2 kayma miktarlarında (b) Y1 kayma miktarlarında (c) Diagonal kayma miktarlarında elde edilen veriler
Çizelge 8.5. 6x6 cm ² alanın 10 cm derinlikte crossline ve inline profillerinden (a) X2 kayma miktarlarında (b) Y1 kayma miktarlarında (c) Diagonal kayma miktarlarında elde edilen sağ ve sol penumbra değerleri
Çizelge 8.5. 4x4 cm ² alanın 10 cm derinlikte crossline ve inline profillerinden (a) X2 kayma miktarlarında (b) Y1 kayma miktarlarında (c) Diagonal kayma miktarlarında elde edilen sağ ve sol penumbra değerleri

1. GİRİŞ

İyonlaştırıcı radyasyonun hücreler üzerinde tahrip edici özelliğinden yararlanarak kötü veya iyi huylu tümörlerin tedavisine imkan sağlayan radyoterapi, radyasyon tedavi yöntemlerinden biridir. Radyasyon tedavi yöntemi, cerrahi ve kemoterapi ile birlikte ya da tek başına uygulanan kanser tedavi biçimidir. Radyoterapi'de temel amaç hedef hacme optimum radyasyon dozu verirken hedef hacim çevresinde bulunan kritik organ ve dokuları korumaktır. Bunun için hedef hacmin doğru lokalize edilmesi kadar dozun doğru ölçülmesi de önemlidir.

Günümüzde radyasyon tedavisinde kullanılan üç boyutlu (3D) konformal radyoterapi tekniğinde tedavinin başarılı olabilmesi için hedef hacme uygulanan radyasyon dozlarında yüksek dozlara çıkılmak istenmektedir. Fakat konformal radyoterapide yüksek dozlara çıkılamamaktadır. Bu nedenle, gelişen teknolojiyle beraber daha yüksek dozlara çıkılabilecek tedavi teknikleri gelişmiştir. Bu teknikler, hedef hacimde daha iyi radyasyon doz dağılımı sağlamaya yardımcı olmaktadır. Daha ivi radvasvon doz dağılımı icin cok savıda kücük demetler kullanılması söz konusu olmuştur. Bunun üzerine yoğunluk ayarlı radyoterapi (YART) tekniği gibi teknikler gelişmiştir. YART tekniğinde kullanılan alan sayısı konvansiyonel radyoterapiye göre fazladır. Alan sayısının fazla olması, kullanılan alanların daha küçük boyutlara inmesine neden olmaktadır. Konvansiyonel Radyoterapi'de kullanılan alan boyutları 3x3 cm² den büyükken YART'da daha küçük alanlar kullanılmaktadır (Das vd 2008). Bu tedavi tekniğinde kullanılan her bir alan, her yerinde aynı demet şiddetine sahip küçük alt alanlardan oluşur. Bu alt alanlar, tedavi planlama sistemi (TPS) kullanılarak tasarlanır. Tedavi cihazının kolimatör tasarımında bulunan cok yapraklı kolimatörler (CYK) ile TPS'de şekillendirilir. Her bir alt alanın doz yoğunluğu farklı olacak şekilde ayarlanabilir ve sonuçta farklı şiddetlere sahip ışın demetleri oluşturulur. Böylece, bir ışın demetinden verilecek doz, küçük alanlar ve onların farklı yoğunluk oranları göz önüne alınarak ayarlanır (Webb vd 2001). Sonuç olarak, YART tekniğinin uygulamasında küçük alanların dozimetrisi önemlidir. Bu durum radyasyon dozunun ölçümündeki belirsizlikleri azaltmak için yeni kavramları ortaya koymuştur (IPEM 2010).

Radyasyon dozimetrisinde küçük alanlar için uluslararası bir tanım gelişmiştir (IPEM 2010). Genellikle $3x3 \text{ cm}^2$ ve altındaki kare alan boyutları küçük alan olarak kabul edilmektedir (Das vd 2008). YART tekniğinde de bu alanların alt sınırı $1x1 \text{ cm}^2$ ye kadar indirilmiştir. Ancak bu teknikte her zaman kare alanlar kullanılmamaktadır. Ancak kullanılan alanların kare eşdeğeri hesaplandığında $3x3 \text{ cm}^2$ den küçük olanlar küçük alan olarak dalandırılır (Niyomthai vd 2012).

Radyasyon dozimetrisinde dozun doğru bir şekilde algılayıcı tarafından algılanabilmesi için elektronik dengenin sağlanması istenir. Fakat küçük alanların dozimetrisinde, yanal elektronik dengeye ulaşılamaması ve kullanılan dozimetri sisteminde algılayıcının boyutunun alan boyutuna oranla büyük olmasından dolayı ciddi boyutlara varan belirsizlikler oluşmaktadır (Das vd 2008). Ölçüm noktasından kaynağın bir kısmının görülememesi, elektronik dengenin kurulmasına engel olmaktadır. Bu durum verim faktörünün, ölçüm noktasından kaynağın tamamen görüldüğü durumdaki verim faktörüne göre daha küçük olmasına neden olacaktır (Wu vd 1993, Li vd 1995,

Yuen 2009, IAEA 2010). Verim faktörü için farklı doz ölçüm araç gereçleri kullanılarak yapılan ölçümler sonucunda % 10'a varan farklılıklar bulunmuştur (Das vd 2000, IPEM 2010).

Radyasyon tedavi planlamasında, tedavi planlama sistemine (TPS) yüklenmiş olan radyasyon demetinin temel verileri kullanılmaktadır. YART gibi küçük alanların kullanıldığı tekniklerde küçük alanla ilgili bilgilerin TPS'in temel verilerine eklenmesi ve kontrol edilmesi gerekir. Bu durumda tedavi dozundaki belirsizlikler minimuma iner. Böylece tümörün ve komşuluğunda bulunan sağlıklı doku ve organların aldıkları radyasyon dozları daha doğru ve sağlıklı incelenebilir (IPEM 2010).

Bu tez çalışmasında, Elekta marka lineer hızlandırıcı cihazında, yoğunluk ayarlı radyoterapi tekniğinin uygulanmasında kullanılan küçük alanların karakteristiklerini incelemek için gereken dozimetrik niceliklerin (verim oranı, merkezi eksenden uzaklık oranı (OAR), yüzde derin doz (PDD)), farklı dozimetreler kullanılarak ölçülmesi ve kalite kontrol kapsamında sonuçların karşılaştırılması amaçlanmıştır.

2. KURAMSAL BİLGİLER VE KAYNAK TARAMALARI

2.1. Radyasyon

Radyasyon yaklaşık 1900`lere kadar elektromanyetik dalganın tanımı olarak kullanıldı. Yüzyılın başlarında elektronlar, X – ışınları ve doğal radyoaktivite keşfedildi ve bunlar radyasyon terimi kapsamında toplandı.

Dalga olarak tanımlanan elektromanyetik radyasyonun tersine, yeni tanımlanan radyasyon parçacık özelliği gösterdi. 1920'lerde de Broglie madde – dalga ikililiği teorisini geliştirdi, bu teori elektron difraksiyon deneyi ile kanıtlandı ve parçacıklar ile dalgalar arasındaki ayrım önemli olmaktan çıktı. Bu bilgiye dayanarak günümüzde radyasyon, keşfedilen bütün atomik ve atomaltı parçacıkları içeren elektromanyetik spektruma ilave edildi (Taylor ve Francis 1995).

Elektromanyetik radyasyon, bir sinüs dalga modeli kullanılarak rahatlıkla tanımlanan bir değişken elektrik ve manyetik alan ile temsil edilebilir. Elektromanyetik radyasyon enerjisine göre farklı bölgelere sınıflandırılmıştır. Bunlar: Radyo dalgaları, mikrodalgalar, kızılötesi, görünür, ultraviyole, x ve γ (gama) ışınları ve kozmik ışınlardır (Podgorsak 2005).

2.1.1. Radyasyonun sınıflandırılması

Radyasyon maddeyi iyonize edilebilirliğine bağlı olarak iyonize edici ve iyonize edici olmayan olarak iki ana grupta sınıflandırılır (IAEA 2005).

- İyonize etmeyen radyasyon
- İyonize eden radyasyon. Kendi arasında ikiye ayrılır.

— Direkt iyonize eden radyasyon (yüklü parçacıklar): elektronlar, protonlar, ağır parçacıklar ve iyonlar.

— Endirekt iyonize eden radyasyon (yüksüz parçacıklar): Fotonlar (X- ışını ve gama ışınları), nötronlar.

Direkt iyonizasyon yapan radyasyon, ortamdaki atomun orbital elektronları ile yüklü parçacıklar arasındaki direkt etkileşmeleri sayesinde ortama enerji verir. Endirekt iyonizasyon yapan radyasyon (fotonlar veya nötronlar) iki aşamada ortama enerji verir:

• Birinci aşamada yüklü bir parçacık ortama bırakılmış olur (fotonlar elektronları veya pozitronları serbest bırakırlar, nötronlar ise protonları veya daha ağır iyonları serbest bırakırlar).

• İkinci aşamada serbest kalmış yüklü parçacıklar ortamdaki atomların yörünge elektronları ile direkt olarak coulomb etkileşimi yoluyla enerjilerini ortama verir.

Şekil 2.1. Radyasyonun sınıflandırılması

2.1.2. İyonize edici fotonların madde ile etkileşim türleri

Bir foton, maddenin atomları ile farklı olası etkileşimlere girebilirler; her etkileşim için tesir kesiti veya etkileşim olasılığı foton enerjisi (E) ve maddenin atom numarasına (Z) bağlıdır.

Foton etkileşmeleri, yörüngeye sıkı bağlı elektronla veya çekirdekle olabilir. Etkileşim sırasında foton tamamen yok olabilir (fotoelektrik, çift oluşum, üçlü oluşum) veya uyumlu (koharent saçılma) ve uyumsuz (compton saçılması) saçılabilir. Açıklanan etkileşimlerin üç temel türü sırasıyla şöyledir:

Fotoelektrik etki

Fotoelektrik etkide bir yörüngede sıkı bağlı bir elektron ile fotonun etkileşimi söz konusudur. Radyasyon en iç yörüngedeki elektron tarafından soğrulur. Bu olay düşük enerjilerde (35 KeV den az) meydana gelir. Fotoelektrik olayın gerçekleşme olasılığı, foton enerjisi hv ve ortamın atom numarası Z 'ye fazlasıyla bağlıdır. Bu süreçte yörüngesel elektron bir E_K kinetik enerjisi ile bir fotoelektron şeklinde atomdan ayrılır. Fotoelektrik etki için atomik zayıflama sabiti $Z^4/(hv)^3$ ile orantılı olup, kütle zayıflama sabiti ise (Z/hv)³ ile orantılıdır (IAEA 2005).

Şekil 2.2. Fotoelektrik etki

Compton Saçılması

Gelen radyasyon atomdan atılan zayıf bağlı elektronlar tarafından saçılır. Bu olay radyasyon tedavisinde iyonize edici radyasyonun soğrulmasının en önemli kavramıdır. Dokuda geniş bir aralıkta (35-50 MeV) geçerlidir. Soğuran maddenin atom numarasına bağlı değildir. Dolayısıyla verilen tüm radyasyonu, yumuşak doku ve kemik hemen hemen aynı oranda soğurur. Bu olayda foton enerjisinin bir kısmını kopan elektrona verir ve diğer kısmını E_{γ} enerjili θ saçılma açısına sahip olan bir foton yayılımı ile kaybeder. Atomik Compton zayıflama sabiti a σ C; zayıflatıcının atom numarasına lineer olarak bağlıdır, e σ C ve σ C/ ρ sırasıyla elektronik ve kütle azaltma sabitleridir (IAEA 2005).

Şekil 2.3. Compton saçılması

Çift Oluşum

Çift oluşum'da gelen foton, çekirdeğin çekim alanı etkisinde kaybolurken bir elektron-pozitron çifti oluşur. Bir elektron ve bir pozitron (+ yüklü elektron) çift oluşumu en az 1.02 MeV enerjide gerçekleşir ve yüksek enerji (10 MeV den fazla) aralığında önemli hale gelir. Çift oluşum için atomik zayıflama sabiti ak ve kütle azalma sabiti κ/ρ sırasıyla Z² ve Z ile değişir.

Şekil 2.4. Çift Oluşum

2.1.3. İyonize edici fotonların ortam içinde soğrulması

I(x) şiddetindeki mono enerjik foton huzmesinin x kalınlığında zayıflatıcı bir madde de azalması matematiksel olarak aşağıdaki şekilde ifade edilir.

$$I(x) = I(0)e^{-\mu(hv,Z)x}$$
(2.1)

Burada I(0), X-ışınının ortama girmeden önceki ilk şiddetidir. m(hv, Z) lineer zayıflama sabiti ise foton enerjisine hv ve zayıflatıcının atom numarasına Z bağlıdır.

Yarı tabaka kalınlığı (HVL), foton huzmesinin ilk şiddetini % 50'ye düşüren zayıflatıcı maddenin kalınlığı olarak tanımlanır:

$$HVL = \left(\frac{\ln 2}{\mu}\right) \tag{2.2}$$

Kütle zayıflama sabiti μ_{m} , atomik zayıflama sabiti $_{a} \mu$ ve elektronik zayıflama sabiti $_{e} \mu$ aşağıda verilen denklem ile lineer zayıflama sabiti μ ile orantılıdır:

$$\mu = \rho \mu_{m} = \frac{\rho N_A}{A} a^\mu = \frac{\rho N_A Z}{A} e^\mu$$
(2.3)

Burada r, Z ve A sırasıyla zayıflatıcı maddenin yoğunluğu, atom numarası ve kütle numarasıdır. Buna ek olarak iki zayıflama sabiti tanımlanır. Enerji transfer sabiti μ_{tr} ve enerji absorbsiyon sabiti μ_{ab} sabileri m ile aşağıda verilen şekilde bağlantılıdır.

$$\mu_{tr}=\mu\frac{\bar{E}_{tr}}{h\upsilon} \qquad \mu_{ab}=\mu\frac{\bar{E}_{ab}}{h\upsilon}$$
(2.4)

Burada E_{tr} zayıflatıcı ortamda yüklü parçacıklara (elektronlar ve pozitronlar) transfer olan ortalama enerjidir. E_{ab} zayıflatıcı ortamda soğrulan ortalama enerjidir (IAEA 2005).

2.1.4. Radyasyon birimleri ve hesaplama yöntemi

X ışınlarının tıpta kullanılmaya başlaması radyasyon birimlerine olan ihtiyacı ortaya çıkarmıştır. İlk defa 1928 yılında Röntgen (R) tarif edilmiştir. X-ışın tüpünden çıkan X-ışınları havada iyonizasyona sebep olmaktadır. Işınlama birimi olan Röntgenin tanımlamasında; bir Röntgen (R) 1 cm³ havada 2.08x10⁹ iyonizasyon oluşmasıdır. Röntgen değeri X-ışınının sayısını veya enerjisini belirlemede kullanılmaz. SI biriminde 1 Röntgen 1 kg havada 2.58x10⁻⁴C'luk yük birikmesi demektir.

$$1R = 2.58 x \, 10^{-4} \frac{c}{kg} \tag{2.5}$$

Dokuda absorbe edilen enerji miktarına doz denir. Birimi rad'dır; 1 rad absorbe eden maddenin 1 gramında 100 erg lik enerji oluşturan radyasyon miktarıdır.

$$1 \, rad = 100 \, \frac{erg}{g} \tag{2.6}$$

Yeni doz birimi Gray'dir (Gy). Işınlanan maddenin 1 kg da 1 joule'luk enerji birikimine neden olan radyasyon miktarıdır. 1 Gy, 100 rad'a eşittir. Rad eş değeri olarak santigray (cGy) kullanılmaktadır.

$$1 Gy = 100 rad = 1 \frac{J}{kg}$$
(2.7)

Değişik dokular aynı kalitede ışını değişik oranlarda absorbe ederler, ayrıca yüksek enerjili ışınlar daha az absorbsiyona uğrarlar. O hâlde gelen ışın miktarını belirleyen R doz birimi olarak kullanılamaz. Fakat ışının enerjisi bilinirse R kullanılarak doz hesaplanabilir.

Bir diğer doz birimi de REM'dir. 1 REM enerjisini biyolojik ortama veren ve canlı maddenin her gramında 1 rad'lık enerji birikimine yol açan X ışınları ile aynı biyolojik etkinliğe sahip ışın miktarıdır. REM radyobiyolojide ve radyasyon zararlarını hesaplamada kullanılır. RBE, rölatif biyolojik etkinlik faktörü (radiobiological equivalent) ile radın çarpımı REM'i verir.

$$REM = Rad \ x \ RBE \tag{2.8}$$

Diagnostikte kullanılan ışınların enerji seviyesinde RBE = 1 dir. Bu yüzden 1 rad = 1 REM olarak kabul edilir.

$$1 Sv = 100 rad = 100 rem$$
 (2.9)

Uluslararası Radyasyon Birimleri Komisyonu'nun önerdiği yeni birim Sievert (Sv)'dir. 1 Gy'lik X veya y ışınının oluşturduğu biyolojik etkiye eşdeğer etki meydana getiren radyasyon miktarıdır.

2.2. Radyasyon Doz Ölçüm Protokolleri

Radyoterapide ana hedef maksimum dozdaki radyasyonu tümöre büyük bir doğrulukla verebilmektir. Tedavinin başarısı ya da başarısızlığı tümöre verilen radyasyon dozuna bağlı olduğu için tümöre verilen dozun planlanan dozdan -%5 ile +%7'den fazla değişiklik göstermemesi gerekmektedir. Buda radyasyon dozimetresindeki bütün belirsizliklerin minimuma indirilmesini gerektirir.

Dozimetri protokolü, standart laboratuarda iyon odasının kalibrasyonu ile klinik demetin belirli koşullar altında sudaki soğrulan dozunu ilişkilendirmek için gerekli formalizm ve sabit değerleri sağlamaktadır. IAEA Raporlarında önerilen dozimetri protokolünün aşamaları aşağıdaki gibidir.

- Hava KERMA (Kütle başına serbest bırakılan kinetik enerji) tabanlı protokoller
- Sudaki soğrulan doz tabanlı protokoller

Hava KERMA tabanlı protokoller TRS-277;

Kalibrasyon katsayısı olarak standart laboratuarda referans iyon odası ile elde edilen N_K (okuma ya da yük başına hava KERMA) kullanırlar. Genellikle hava dolu iyon odaları kullanılmaktadır. Kalibrasyon iki adımda gerçekleştirilir. İlk olarak iyon odasının kavitesindeki soğrulan doz kalibrasyon faktörü N_{Dair} , kalibrasyon faktörü N_K 'dan hesaplanır. Daha sonra sudaki soğrulan doz, oda sinyali M_Q ve N_{Dair} kullanılarak hesaplanır. Hesaplanan N_{Dair} :

$$N_{D_{air} = N_K(1-g)k_{att}k_m k_{cel}}$$
(2.10)

İyon odası materyalinin hava eşdeğeri olmamasını dikkate alan faktör katt, fotonların iyon odası materyalinde meydana getirdiği saçılmayı ve zayıflamayı dikkate alan faktör km ve İyon odasının merkezi elektrodunun hava eşdeğeri olmamasını dikkate alan faktör k_{cel} 'dir.

Suda soğrulan doz tabanlı protokol TRS-398;

Sudaki soğrulan doz;

$$D_{W=M_{corr}N_{D_{air}}S_{w.air}P_{u}}$$
(2.11)

Etki parametreleri düzeltilmiş okuma değeri M_{corr} , havadaki ve sudaki durdurma güçlerinin oranı $S_{w,air}$ ve iyon odasının ortamda yarattığı pertürbasyon düzeltme faktörü P_u 'dur.

Fotonlar için soğrulan doz ölçümlerinde referans derinlik enerjiye bağlı olarak değişmektedir. 6 MV'ye kadar olan enerjiler için referans derinlik 5 cm, 6MV'den büyük enerjilerde ise referans derinlik 10 cm olarak alınır. Referans alan 10 x 10 cm²'dir.

Sıcaklık (T), Basınç (P), Nem düzeltmesi:

Eğer iyon odası kalibrasyonun yapıldığı hava koşulu (P, T, nem), referans koşullardan farklı koşullarda yapılmışsa ölçülen sinyalin doğru olması için aşağıdaki etki parametrelerinin düzeltilmesi gerekir.

Atmosferik koşullar iyon odasının sabit hacmindeki moleküllerin sayısını değiştirir. Basınç ve sıcaklığı düzeltmek için kullanılması gereken basınç sıcaklık düzeltme faktörü *ktp* aşağıda verilmiştir.

$$k_{tp} = \frac{(273.2+T)}{(273.2+T_0)} \frac{P_0}{P}$$
(2.12)

Pek çok standart laboratuarda kalibrasyon normal koşullar altında; $T_0=20$ °C sıcaklık $P_0=101,325$ kPa basınç ve nem %50 olarak tanımlanmaktadır. Nemin %20 ile %80 arasında olması durumunda düzeltme gerekmez. Kontrol edilmesi gereken diğer etkenler aşağıda verilmiştir.

Polarite etkisi:

Aynı ışınlama koşulları altında, polarize voltajın polaritesini tersine çevirirsek farklı bir okuma yaparız. Bu olaya polarite etkisi denir.

$$k_{pol} = \frac{|M_+| + |M_-|}{(2M)} \tag{2.13}$$

MV foton demetleri için bu faktör pek çok iyon odasında ihmal edilir ancak elektron demetlerinde özellikle düşük enerjilerde bu faktör önemlidir. Eğer herhangi bir odanın polaritesi %0,5'den (IAEA 2000) büyükse o oda kesin dozimetre ölçümleri için uygun değildir.

Yeniden birleşme (iyon rekombinasyon):

Radyasyonun meydana getirdiği bütün yükleri ölçmemiz imkânsızdır. Bunun sebeplerinden biri olan yük kayıpları, iyonların yeniden birleşmelerinden kaynaklanır (IAEA 1997, IAEA 2000).

Sürekli radyasyon üreten sistemler için (Kobalt 60)

$$k_{s} = \frac{\left(\frac{V_{1}}{V_{2}}\right)^{2} - 1}{\left(\frac{V_{1}}{V_{2}}\right)^{2} - \left(\frac{M_{1}}{M_{2}}\right)}$$
(2.14)

 M_1 : V_1 voltajında okuma değeri M_1 : V_2 voltajında okuma değeri V_1 ve V_2 : Uygulanan voltaj değerleri ($V_2 < V_1$) Pulse'lı radyasyon üreten sistemler için (Lineer hızlandırıcı)

$$k_{s} = a_{0} + a_{1} \left(\frac{M_{1}}{M_{2}}\right) + a_{2} \left(\frac{M_{1}}{M_{2}}\right)^{2}$$
(2.15)

Uygulanan (V_1/V_2) voltaj değerlerinde a_0 , a_1 ve a_2 sabitlerinin değerleri IAEA (2000)'de Tablo 4.VII ile verilmektedir.

2.3. Radyoterapi

2.3.1. Radyoterapi'nin tanımı ve tarihçesi

Wilhelm Conrad Roentgen'in 1895 yılında X-ışınlarını, Henri Becquerel'in radyoaktiviteyi ve Marie Sklodowska Curie'nin radyumu keşfetmesinden kısa bir süre sonra radyasyon kötü huylu (malign) ve iyi huylu (benign) tümörlerin tedavisinde kullanılmaya başlandı ve 1899 yılında ilk hastanın tedavi edildiği rapor edildi (Perez, 1998). Özellikle yüzeyel lezyonlarda hastalığın tekrar etmesi ve normal doku komplikasyonlarında artış gözlenmesi ile 1910 yılında hedef bölgeye radyum kaynağı gönderilerek tedavi imkanı sağlayan brakiterapi tekniği kullanılmaya başlandı. 1913 yılında maksimum enerjisi 140 kV, 1922 yılında maksimum enerjisi 200 kV olan X-ışınları tüplerinin üretilmesiyle daha derin yerleşimli tümörler tedavi edilmeye başlandı.

1940'lı yıllarda parçacık hızlandırıcı olan betatronun üretilmesiyle megavoltaj X-ışınları üretilmeye başlandı. 1951 yılında ilk defa Co-60 teleterapi cihazı ile bir hasta tedavi edildi. Radyoterapide en büyük etki 1960'larda geliştirilen ve günümüzde halen kullanılmakta olan lineer hızlandırıcılar ile olmuştur. 1970'li yılların sonlarında ortaya çıkan bilgisayarlı tomografi (BT) tekniği ile görüntü alma, tümörlü bölgenin ve tümörlü bölge komsuluğunda bulunan kritik organların doğru lokalize edilmesinde kolaylık sağlamıştır. Manyetik rezonans (MR) tekniği ile görüntü alınmaya başlanması özellikle merkezi sinir sistemi ve yumuşak dokuların tedavisinde avantaj sağlamıştır. Radyoterapide en önemli kural, tümöre maksimum dozu verirken çevresindeki riskli organların ve sağlıklı dokuların mümkün olan en az dozu almasını sağlamaktır. Bu amacın gerçekleştirilmesine yönelik olarak üç boyutlu konformal radyoterapi (3D CRT), YART, organ hareketlerini takip ederek yapılan görüntü takipli radyoterapi (Image gibi Guided Radiation Therapy, IGRT) ve tomoterapi gelismis teknikler uvgulanmaktadır (Perez vd 2008, Podgorsak 2006, Khan 2010).

2.3.2. İnternal tedavi cihazları

Radyoaktif kaynakların veya kaynak taşıyıcı aygıtların vücut yüzeyine, doku içine ve vücut boşluklarına yerleştirilmesiyle yapılan radyoterapi yöntemidir. Günümüzde çapı 1 mm'nin altına indirilmiş minik kaynaklar kullanan uzaktan yüklemeli (remoteafterloading) sistemler gelişmiştir. Gama ışınları veren kapalı kaynaklar ve beta parçacıkları kullanılır.

2.3.3. External tedavi cihazları

Radyoaktif kaynak ya da üretilen ışın kaynağı ile vücut arasında belli bir mesafe bırakılarak hedef hacme radyasyonun gönderilmesini amaçlayan radyoterapi tekniğidir. External tedavi cihazları, Co-60, lineer hızlandırıcı ve Cyber knife gibi cihazlardır.

2.3.3.1. Kobalt-60 (Co-60) Teleterapi Cihazları

İlk radyoaktif Cobalt (Co-60) kaynağı 1951 yılında Kanada'da teleterapi ünitesi olarak kullanılmaya başlamıştır. Işın kaynağı olarak Co-60 radyoizotopu kullanılır. Co-59 çekirdeğinin nötronla bombardıman edilmesi sonucu elde edilir. Co-60 kaynağından çıkan beta bozunumları ile birlikte ortaya çıkan gama ışınlarının enerjileri 1,17 MeV ve 1,33 MeV kadardır (ortalama enerji 1,25 MeV).

Şekil 2.5. 60-Co izotopunun bozunumu (Khan 2010)

Teleterapi cihazında kullanılan kaynağın aktivitesi, genel olarak 5,000 ile 15,000 (Curie) Ci arasında değişmekle birlikte 3,000 Ci'den daha düşük aktiviteye sahip olan kaynaklar yenileriyle değiştirilir. Bu ise 5 ile 7 yıl arası kullanımdan sonra kaynağın yenilenmesini gerektirir. Co–60 ünitelerinde foton demeti üretiminde yüksek aktiviteli kaynaklar kullanıldığından, doz şiddeti radyoaktif bozunum sebebiyle zamanla azalır. Aktivitedeki bu azalma yılda yaklaşık % 1'dir. Co–60 radyoaktif izotopu 5,27 yıl sonra yarılanır. Co-60 için dmax derinliği su ve yumuşak dokular için 0,5 cm'dir Bu nedenle Kobalt kaynağından çıkan gama ışınları cilt yüzeyinden 0,5 cm derinlikte maksimum değere ulaştığı için cilt korunma olayı (skin sparing effect) izlenmektedir. Co-60 tedavi cihazlarından elde edilen foton enerjisinin standart mesafe (100 cm) ve alanda (10x10 cm²) %DD'nin değeri 5 ve 10 cm doku derinlikleri için sırasıyla maksimum soğrulan dozun %80 ve %59'una ulaşmaktadır (Podgorsak 2006, Perez vd 2008).

Şekil2.6. 60-Cobalt tedavi cihazının bileşenleri

2.3.3.2. Lineer hızlandırıcılar

İlk medikal lineer hızlandırıcı 1952 yılında Londra'daki Hammersmith hastanesinde kurulmuştur. Medikal lineer hızlandırıcılar (linac) yüksek giricilik özelliğine sahip yüksek enerjili x-ışınlarının elde edilebilirliğinden dolayı günümüzde derin yerleşimli tümörlerin tedavisinde kullanılan sistemlerdir.

Lineer hızlandırıcı ile yüksek enerjili x-ışını elde edilebilir veya tedavi şekline bağlı olarak elektronlar direkt olarak tedavide kullanılabilir. Bir güç kaynağı modülatöre DC akım gönderir. Modilatörden gelen voltaj sinyalleri yüksek frekans kaynağı olarak 3000 MHz frekansta elektromanyetik dalga veren magnetron veya klaystron ve elektron tabancasına eş zamanlı olarak iletilir. Elektron tabancasında bir demet haline getirilen elektronlar 50 keV'luk enerji ile hızlandırıcı tüpün içine gönderilirler. Hızlandırıcı tüp içine gönderilen elektronlar mikrodalgaların elektromanyetik alanlarıyla etkileşirler ve böylece sinüzoidal dalga bileşim modelinden enerji kazanırlar. Hızlandırıcı tüpün sonunda elektronlar maksimum enerjilerini kazanmış olurlar. Bu elektronlar saptırıcı (bending) magnetler ile saptırılarak hedef üzerine veya doğrudan tüpün dışına gönderilirler (Madcalse 2002).

Şekil 2.7. Genel bir lineer hızlandırıcının elektron üreten elektron tabancası, dalga kılavuzu, demet saptırıcı ve kolimasyon sistemleriyle birlikte demet yolunun şematik gösterimi

Bir lineer hızlandırıcı elektron modunda kullanılırken, elektronlar genellikle lineer hızlandırıcı çıkışında bir saçıcı foile çarparlar. Elektron demetinin hastaya yönlendirilmesi için elektron aplikatörler kullanılır (Şekil 2.8 (b)).

Lineer hızlandırıcı x-ışını modunda çalıştırıldığında ise, elektron demeti bir hedefe çarptırılır. Bunun sonucunda bremsstrahlung x-ışınları ve karakteristik x-ışınları üretilir. Elektronların hedefe çarpmasından sonra oluşan x- ışınlarının yoğunluğunu homojen hale getirmek için düzleştirici filtre kullanılmaktadır. Bu filtre sıklıkla kurşundan yapılmaktadır. Fakat tungsten, çelik, alüminyum veya bunların kombinasyonlarından da yapılabilmektedir (Khan 1994).

Şekil 2.8. Lineer hızlandırıcı ışınlama kafasında (a) x-ışını, (b) elektron üretimi sırasında kullanılan bileşenler

Günümüzde foton modunda çalışan lineer hızlandırıcılar, standart lineer hızlandırıcı (Elekta, Siemens ve Varian), helikal lineer hızlandırıcı (Hi-Art Tomotherapy) ve robotik lineer hızlandırıcı (Cyber knife) olmak üzere üç farklı tipte bulunmaktadır. Helikal ve robotik lineer hızlandırıcılarda düzleştirici filtre bulunmazken (Flattening Filter Free-FFF), standart lineer hızlandırıcılarda çoğunlukla düzleştirici filtre (Flattening Filter-FF) bulunmaktadır ve birincil kolimatör ile izleyici iyon odası arasında yer almaktadır. FF'nin temel rolü, referans derinlikte foton demetinin doz dağılımını alanda düzleştirmektir (Sharma vd 2011).

Şekil 2.9. Lineer hızlandırıcıda foton demeti için (a) FFF'in doz dağılım profili üzerine etkisi (b) FF'in doz dağılım profili üzerine etkisinin şematik göstergesi

Lineer hızlandırıcılar tarafından üretilen Bremsstrahlung foton akısı direk-demet radyasyonu olarak tanımlanır. Direk- demet radyasyonu, primer kolimatör, düzleştirici filtre ve ikincil kolimatörden saçılan fotonlardan oluşur. 6 MV potansiyelle hızlandırılmış geniş demetlerde düzleştirici filtreden çıkan indirek radyasyon, demet veriminin (output) %8'ini oluşturur (Jaffray vd 1993, IPEM 2010).

Lineer hızlandırıcı cihazlarında demetin doz kalibrasyonunun yapılması gerekmektedir. Bu kalibrasyon işlemlerinde, referans koşullar altında 1 cGy doza karşılık gelen ışınlama süresi bir Monitör Unit (MU) olarak ifade edilir.

Genellikle hedefin dağıttığı bremsstrahlung foton akısı, FWHM (maksimum değerin yarısındaki genişlik) ile tanımlanır. Bu foton akısı, Gaussian dağılımı olarak bilinir. Bu dağılım, hedeften çıkan Bramsstrahlung ve saçılan elektronlar ile hedefe çarpan elektron pencil demetinin tamamını kapsaması sonucunda ortaya çıkar (Roger vd 1995, Sheikh-Bagheri ve Roger 2002b, IPEM 2010).

Lineer hızlandırıcılarda tedavide düzenli ya da düzensiz tedavi alanları oluşturmak için çok yapraklı kolimatör (ÇYK) sistemleri kullanılmaktadır. ÇYK'ler kurşun, serrobend ya da tungsten yapraklardan oluşan, birbirinden bağımsız ve otomatik hareket edebilen bilgisayar kontrollü çok yapraklı kolimatör sistemleridir. Tipik bir ÇYK yapısında 80-160 adet yaprak bulunmaktadır.

Şekil 2.10. Çok yapraklı kolimatör

ÇYK'lerin cihaz kafasındaki konumu cihazların tasarımına göre değişmektedir. Bazı üreticiler bir çift ikincil kolimatör çenesini çok yapraklı kolimatörler ile yer değiştirmekte bazıları ise çok yapraklı kolimatörleri üçüncül bir kolimatör yapısı gibi ikincil kolimatör çenesinin altına monte etmektedir.

Her bir yaprağın izomerkezdeki eni üreticiye göre değişmekte olup 2.75 - 10 mm arasındadır. ÇYK'lerin altında veya üstüde radyasyon sızıntısını önlemek için ek diyaframlar da kullanılmaktadır (Nilla vd 2005).

Şekil 2.11.Intrakraniel bir lezyonun tedavi alanını göstermektedir. (a) 3 mm genişliğindeki ÇYK (b) 5 mm genişliğindeki ÇYK (Monk 2003)

2.4. Lineer Hızlandırıcılarda Kalite Kontrol İşlemleri

Radyoterapi birimlerinde lineer hızlandırıcı cihazlarının kalite kontrol işlemleri büyük önem taşımaktadır. Gelişen teknolojiyle beraber lineer hızlandırıcılar için ek yeni kalite kontrol aşamaları da oluşturulmaktadır. Bir lineer hızlandırıcı cihazının kalite kontrol işlemleri üç başlıkta yapılması ön görülmektedir

- Geometrik ve mekaniksel kalite kontrol basamakları
 - Optik mesafe göstergesi
 - Işık- ışın alan uygunluğu
 - o Gantri ve kolimatör açısı göstergesi kontrolü
 - o Masa hareketlerinin kontrolü gibi parametrelerden oluşmaktadır.
- Elektriksel Kalite kontrol
 - Elektrikle çalışan hareketli sistemlerin emniyet kontrolleri
 - Ses ve görüntüleme sistemleri
 - Acil durum emniyet sistemleri ve anahtarları
- Dozimetrik kalite kontrol
 - o Enerji tayini ve demet kalitesi
 - Demet düzgünlüğü ve simetrisi
 - Doz verimi ve kalibrasyonu
 - Doz veriminin alan bağımlılığı
 - o Radyasyon doz veriminin kararlılığının kontrolü

2.5. Eksternal Radyoterapi Teknikleri

2.5.1. Konformal (Geleneksel) radyoterapi

Konformal radyoterapi, hastaya özgü 3 boyutlu görüntülemeyle tümör kontrolünü daha da arttıran ve risk altındaki yapıların korunmasını daha iyi bir şekilde sağlayan bir eksternal radyoterapi tekniğidir. Bu teknikle hastaya özgü 3 boyutlu görüntülemeye dayanarak sadece tümörü ışınlamak için özel olarak şekillendirilmiş homojen doz yoğunluğuna sahip tedavi alanlarından oluşan radyoterapi planları dizayn edilmekte ve hastaya uygulanmaktadır. Bu tedavi tekniği normal yapılardaki dozu azaltırken tümöre radikal dozun verilmesine imkân sağlayarak tedavinin yan etkilerini de azaltmaktadır (IAEA 2008).

Şekil 2.12. Prostat kanserinin radyasyon tedavisinde konformal planlama tekniğiyle 6 farklı açıda oluşturulan alanların (a) üç boyutlu ve (b) DRR görüntüleri (Michalski vd 1996).

Konformal radyoterapide her ne kadar normal dokuların dozunu azaltıp tümöre radikal dozlar vermeye imkan sağlasa da, tedavide kullanılan alan boyutları oldukça büyüktür. Bu nedenle konformal radyoterapi, yoğunluk ayarlı radyoterapi (YART) tekniğine yönelik bir adım olarak kabul edilmektedir.

2.5.2. Yoğunluk ayarlı radyoterapi (YART)

Konformal radyoterapi tekniğinde homojen doz yoğunluğuna sahip az sayıda alanların kullanılması birçok tümör yerleşiminde normal dokuların gereksiz yere doz almasına sebep olmaktadır (Nutting vd 2000). YART tekniğinde çok sayıda küçük ve asimetrik alt alanlar kullanılmaktadır. Kullanılan her bir alan, her yerinde aynı demet şiddetine sahip küçük alt alanlardan oluşur (Şekil 2.13). Bu alt alanlar, tedavi planlama sistemi (TPS) kullanılarak tasarlanır ve tedavi cihazının kolimatör tasarımında bulunan çok yapraklı kolimatörler (ÇYK) ile TPS'de şekillendirilir. Her bir alt alanın doz voğunluğu farklı olacak sekilde avarlanabilir ve sonucta farklı siddetlere sahip ısın demetleri oluşturulur. Böylece, bir ışın demetinden verilecek doz, küçük alanlar ve onların farklı yoğunluk oranlarıyla oluşturulur (Webb vd 2001). Her tedavi alanındaki ışın yoğunluğunun değiştirilmesi ilkesine dayanan YART tekniği, konvansiyonel ve 3 boyutlu konformal radyoterapi teknikleri ile karşılaştırıldığında hedef bölgede daha yüksek doz dağılımının yanı sıra normal ve riskli dokularda daha düşük doz sağlayabilmektedir (Verhey 1999, Verhey 2002). Lineer hızlandırıcının yapısına bağlı olarak YART tekniği, statik YART (step and shoot) veya dinamik YART olarak uygulanabilmektedir (Pelagade vd 2007, Acun vd 2011). Dinamik YART'ta, "Kayan Pencere" olarak adlandırılan dinamik ÇYK tekniğinde yoğunluk ayarı hareket eden yaprakların bireysel hız değişimleri ile gerçekleşir. Tedavi alanında ışınlama durmadan yapraklar hareket ederek segmentleri değiştirir ve farklı yoğunlukta doz dağılımı meydana gelir. Yapraklar ışınlama süresince farklı hızlarda ardışık olarak hareket ederler (Brady 2006). Statik YART tekniği ise ilk kez 1994'de Bortfeld ve arkadaşları tarafından öne sürülmüştür (Webb vd 2001, Acun vd 2011). Bu teknik "Dur ve ışınla" ("step-and-shoot") biçiminde geleneksel çok alanlı ışınlama tekniğinin basit bir uzantısıdır. Bu yaklasımda bir dizi düzensiz şekilli ve kısmen çakışan, yoğunluğu ayarlanmış alt alanlar üst üste getirilerek doz verilir. Doz tamamlanınca ışınlama durur ve ÇYK'ler bir sonraki YART alanı için pozisyonlanır. Bu işlem tedavi alanındaki bütün alanlar tamamlanıncaya kadar devam eder. (Brady vd 2006).

Şekil 2.13. Statik (Dur ve ışınla) tekniğinin şematik gösterimi

Sekil 2.14. Dinamik (Kayan pencere) tekniğinin sematik gösterimi

2.6. Küçük Alanlar ve Küçük Alanların YART tekniğindeki Yeri

Küçük alan için uluslararası bir tanım gelişmiştir (IPEM 2010). YART tekniğinde genellikle 3x3 cm² ve altı alanlar küçük alan kabul edilmektedir (Das vd 2008). Bu alanların alt sınırı 1x1 cm² ye kadar indirilmiştir. Kullanılan alanların kare eşdeğeri hesaplandığında 3x3 cm² den küçük olanlar küçük alan olarak adlandırılır (Niyomthai vd 2012).

Lineer hızlandırıcılardan megavoltaj foton demetlerinde küçük alan sayılacak koşullar şunlardır:

- a) Kolimatör açıklığı oldukça küçük olup foton kaynağının alanı ölçüm noktasındaki algılayıcı tarafından görülmediği durumda,
- b) Radyasyon alan boyutu, ikincil elektronların maksimum yanal erişim mesafesinden küçük olduğu durumda küçük alanlar oluşturulabilir.

İlk koşul lineer hızlandırıcının tedavi kafasının geometrisine bağlıyken (Chow vd 2005), ikinci koşul demetin enerjisi, ortamın yapısı ve fiziksel yoğunluğuna bağlı olarak gerekli olan yüklü parçacık (elektron) dengesinin bozulmasıyla ortaya çıkar (Dutreix vd 1965).

Bir radyasyon alanının küçük olarak sınıflandırması için soğurulan ortam, foton enerjisi ve alan boyutu ile dozun nasıl değiştiğini dikkate almak gerekir. Kolimatör açıklığı küçük olan demetlerde, demetin veriminde bir azalma gözlenir (Nizin ve Chang 1991, Nizin 1993, IPEM 2010).

YART'ta tedavi alanları çok sayıda küçük alt alanlar içerebilir. Bu alt alanlar bitişik ya da çakışık olabilir. Bu durumda sistematik ve dozimetrik hatalar ortaya çıkabilir ve tedavi dozunun uygulanmasında önemli hatalara neden olabilir.

Çok sayıda küçük alt alan içeren YART alanları çok daha büyük alanlara yayılabileceği için tedavi doğrulamasında ortalama değerlerden yararlanılabilir ve küçük alt alan problemleri görünmeyebilir (Sanchez-Doblado 2005b). Daha güvenli yaklaşım için YART planlarında küçük alt alanların kullanımı ve bu alanlara ait monitör unit büyüklükleri dozimetrik açıdan ayrı ayrı değerlendirilmelidir. Lineer hızlandırıcı cihazları için Monitör Unit (MU), 1cGy doza karşılık gelen ışınlama süresidir. YART tekniğinin statik yaklaşımında alt alanların doz yoğunluğu MU değerine göre dağılmaktadır. Alt alanların sayısı arttıkça alt alan başına düşen MU değeri azalacaktır.

Genelde ışınlamanın başlamasıyla hızlandırıcıda ayarlanmış olan MU hızına (doz hızı) erişim zamanında gecikme görülür. Çok sayıda düşük MU değerli alanların oluşturulması, uygulanan toplam MU ile planlanan toplam MU arasında farklılık yaratacaktır. Bu farklılığa cihazın doz hızı erişim performansının yanı sıra çok sayıda alt alanın kullanılması neden olmaktadır. Sonuç olarak, YART alanlarının çoğunun küçük MU'daki çok sayıda alt alanlardan oluştuğu düşünüldüğünde hızlandırıcının lineerite performansı ve alanların MU değerlerinin denetimi yapılmalıdır (Li vd 1995, Pelagade vd 2007, Sawchuk vd 2008, Acun vd 2011). Ayrıca küçük alanların kullanılması için TPS'nin giriş verileri dozimetrik ölçümler ile doğrulanmalıdır. Doğrulama yöntemleri küçük alanların karakteristiğinin incelenmesinden geçmektedir.

2.7. Radyoterapide Dozimetrik Tanımlar

2.7.1. Yüzde derin doz (PDD)

Hasta veya fantom içindeki merkezi eksen doz dağılımı genellikle maksimumu doz derinliğindeki doz değerine ($D_{max} = \%$ 100) normalize edilir. Bu dağılım %DD dağılımı olarak adlandırılır (British journal of Radiology 1996) ve Denklem (2.16)'deki şekilde ifade edilir.

$$\%DD(d, A, f, hv) = 100 \frac{D_Q}{D_P} = 100 \frac{D_Q}{\dot{D}_P}$$
(2.16)

Burada, D_Q ve D_Q , Şekil 2.15'deki gibi d derinliğinde Q noktasındaki doz ve doz oranı iken, D_P ve D_P ise d_{max} derinliğinde P noktasındaki doz ve doz oranıdır (Podgorsak 2006).

Şekil 2.15'de tanımlandığı gibi d herhangi bir derinlik iken d_{max} dozun maksimum olduğu derinliktir. % DD fantomdaki d derinliği, alan boyutu (A), SSD (f) ve foton enerjisi (hv) olmak üzere dört farklı parametreye bağlıdır (Podgorsak 2005).

Saçılma bileşeni, Q noktasındaki doza saçılan radyasyonun katkısını yansıtır. Şekil 2.16'da gösterildiği gibi, % DD eğrisi önce artar ve maksimum doz derinliğinden sonra düşüşe geçer. Maksimum doz derinliği ve yüzey dozu, enerjiye bağlıdır. Enerji ve maksimum doz derinliği artarken yüzey dozu azalır (Podgorsak 2006).

- d, f ve hv sabit iken, % DD; merkezi eksendeki noktalara saçılanları katkısını artması yüzünden, alan boyutu (A) büyümesi ile artar.
- *d*, *A* ve *hv* sabit iken, % DD; foton ışınının primer bileşeni olan ters kare faktöründeki z etkisinin azalışı sebebiyle, f değerinin büyümesiyle artar.
- d, A ve f dmax sabit iken, %DD, energi ile artar.

Şekil 2.15. % DD tanımı ve ölçüm düzeneği

Şekil 2.16'de görüldüğü gibi 5x5 ve 30x30 cm² alan boyutu ve çeşitli megavoltaj foton demetleri için %DD dağılımlarına bakıldığında ışın enerjisinin artışıyla "build-up" bölgesi genişliği artarken, yüzey dozu azalmaktadır.

Şekil 2.16. 6 ve 15 MV foton ışınları için, SSD=100 cm ve 5x5 - 30x30 cm² alan boyutunda sudaki %DD değerleri

Radyoterapi ışınları için %DD' lar genellikle kare alanlar için oluşturulur. Bununla beraber, radyoterapide kullanılan alanların büyük çoğunluğu dikdörtgen veya düzensiz alanlardır. Eşdeğer kare kavramı, dikdörtgen veya düzensiz alanların eşdeğer karesini tanımlamak için kullanılır (Podgorsak 2006).

2.7.2. Build up (doz oluşum) bölgesi

Yüzey ile maksimum doz noktası arasındaki doz bölgesi, doz oluşum bölgesi olarak adlandırılır. "Build-up" bölgesindeki doz, hasta içindeki foton etkileşmeleri (fotoelektrik olay, compton saçılması ve çift oluşum) ve bu etkileşmeler sonucu ortaya çıkan ikincil yüklerin maksimum doz noktasına kadar arttığı bölgedir.

2.7.3. Doz maksimum derinliği

Hasta yüzeyi altındaki maksimum doz derinliği, ışın enerjisi ve alan boyutuna bağlıdır. Asıl etki enerjidir. Alan boyutu etkisi çok az olduğundan ihmal edilebilir. Bazı enerjiler için 5x5 cm² alanda d_{Dmax} değerleri Çizelge 2.1'de mevcuttur (Podgorsak 2005).

Belli bir enerji için en büyük d_{Dmax} derinliği yaklaşık 5x5 cm² alan içindir. Daha büyük alanlarda, d_{Dmax} ; kolimatör saçılması ve düzleştirici filtre etkisinden dolayı düşer. 5x5 cm²'den daha küçük alanlar için, fantom saçılma etkisi yüzünden azalır (Johns ve Cunningham 1984).

Çizelge 2.1. Farklı foton enerjileri için 5x5 cm² alan boyutunda d_{Dmax} derinlikleri (Podgorsak 2006)

d _{Dmax}	Yüzeyel	Ortavoltaj	Co-60	4 MV	6 MV	10 MV	18 MV	25 MV
cm	0	0	0,5	1,0	1,5	2,5	3,5	5,0

Maksimum doz derinliği küçük alanlarda yüzeye yakınken alan boyutunun artmasıyla derinlere doğru gider. Belirli bir alan boyutundan sonra (büyük alanlarda) ise maksimum doz derinliği yüzeye yaklaşmaktadır. Fantomda oluşan saçılma nedeniyle maksimum doz derinliği 1x1 cm² ve 5x5 cm² aralığındaki alan boyutlarında artar. Büyük alanlarda elektron kontaminasyonunun katkısının az olması nedeniyle 5x5 cm² den büyük alan boyutları için maksimum doz derinliği azalır (Dyk 1999).

Şekil 2.17. Yüzde derin doz eğrisinden elde edilen verilerin şematik gösterimi

2.7.4. Yüzey dozu

Megavoltaj foton demetlerinde yüzey dozu genellikle maksimum doz noktasındakinden daha küçüktür. Megavoltaj foton demetlerinde yüzey dozu ışın enerjisine ve alan boyutuna bağlı olarak değişir (Podgorsak 2006). Foton enerjisi arttıkça yüzey dozu azalır. $10x10 \text{ cm}^2$ alan boyutunda 6 MV foton demeti için yüzey dozu %15 iken, 18 MV foton demeti için %10' dur. Belli bir enerjide yüzey dozu alan boyutuyla artış gösterir.

Maksimum doz ile düşük yüzey dozu karşılaştırılması cilt koruma etkisi olarak adlandırılır. Bu da derine yerleşmiş tümörler için orta voltaj ve düşük voltaj foton demetleri ile karşılaştırıldığında avantaj sağlar (Podgorsak 2006).

Yüzey dozu ince pencereli paralel-düzlem iyon odası ile ölçülür. Yüzey dozu aşağıdaki yerlerden gelen katkıları temsil eder:

- Kolimatör, düzleştirici filtre ve havadan saçılan fotonlar
- Hastadan geri saçılan fotonlar
- Hasta civarındaki koruma bloklarından ve havada foton etkileşmelerinden ortaya çıkan yüksek enerjili elektronlar

2.7.5. Işın alanı

Radyoterapide kullanılan ışın alanları, çeşitli şekillere sahiptir. Işın alanlarının şekillendirilmesinin amacı, var olan hedef hacme göre biçimlendirmektir. Genel olarak radyoterapide dört çeşit alan şekli kullanılır. Bunlar; kare, dikdörtgen, dairesel ve düzensiz alanlardır (Hendee vd 1996).

Kare ve dikdörtgen alanlar radyoterapi cihazlarında monteli olan kolimatörler ile sağlanır. Dairesel alanlar tedavi cihazına eklenen özel kolimatörler ile yapılırken düzensiz alanlar, koruma blokları veya çok yapraklı kolimatörler (ÇYK) ile düzenlenir.

İsteğe bağlı oluşturulan herhangi bir eşdeğer kare veya dairesel alan hesaplanabilir. Bu hesaplamalar radyasyon dozimetresinde önem taşır ve benzer ışın parametreleri ile karakterize edilebilir. İsteğe bağlı oluşturulan dikdörtgen alanların a ve b kenarları yaklaşık olarak eş kenarlı kare alana eşdeğer olabilir ve denklem (2.17)'deki gibi ifade edilir.

$$a_{e\varsigma} = \frac{2ab}{a+b} \tag{2.17}$$

Dairesel alan için ise $a_{eş}$ denklem (2.18)'deki gibi yaklaşık olarak $r_{eş}$ dairesel alan yarıçapına eşdeğerdir.

$$a_{\rm es}^{\ 2} = \Pi r_{\rm es}^{\ 2} \tag{2.18}$$

2.7.6. Doz verim (output) faktörü

Verilen bir SSD'de belirli foton enerjisi için, Şekil 2.19'da görülen P noktasındaki doz oranı (fantomdaki d_{Dmax} derinliğinde) alan boyutuna bağlıdır; alan boyutu arttıkça doz artar. Rölatif doz faktörü (RDF) (Khan tarafından toplam saçılma faktörü (S_{cp}) veya bazen cihaz verim faktörü olarak tanımlanır) bir fantomda A alan boyutu için P noktasındaki dozun D_p(d_{Dmax},*A*,*f*,*hv*), 10x10 cm² alan için P noktasındaki doza (D_p(d_{Dmax},10,*f*,*hv*)) oranıdır. RDF (A,hv)'nün ölçüm düzeneği Şekil 2.19 (a)'da D_p(d_{Dmax},*A*,*f*,*hv*) için 2.19.(b)'de ise D_p(d_{Dmax},10,*f*,*hv*) için gösterilmiştir (Podgorsak 2006).

$$RDF(Ah\upsilon) = S_{cp}(A,h\upsilon) = \left(\frac{D_P(d_{Dmax},A,h\upsilon)}{D_P(d_{Dmax},10,f,h\upsilon)}\right)$$
(2.19)

Şekil 2.19. RDF(A)'nın ölçüm düzeneği. Fantom d_{max} derinliğinde P noktasındaki doz, (a) A alan boyutunda ve (b) 10x10 cm² alan boyutunda

Şekillendirilmiş ve bloklandırılmış radyasyon alanlarının verim tanımında kolimatör açıklığı ve ortamın saçılma parametresinin birbirinden farklı hesaplanması gerekliliği üzerine S_c ve S_p kavramları verimin tanımı için ortaya çıkmıştır. Khan'a göre verim tanımı aşağıdaki gibi ifade edilmektedir.

$$S_{cp}(A,h\upsilon) = S_c(A,h\upsilon)S_p(A,h\upsilon)$$
(2.20)

RDF' nin iki bileşeni vardır; kolimatör ve fantom saçılması (Khan 2003).

Şekil 2.20 a) Sc ve b) Scp faktörlerinin ölçüm düzeneği

2.7.7. Kolimatör saçılma faktörü

Havada ışınlama, birincil ve saçılan olmak üzere iki bileşen içerir:

- Birincil bileşen, asıl bileşendir; kaynaktan direk gelen ve alan boyutuna bağlı olmayan bileşendir.
- Saçılan bileşen, net olarak belli olmayan, hava da herhangi bir noktada büyük oranda kolimatörden, ayrıca düzleştirici filtre ve havadan gelebilir. Bu bileşen alan boyutuna bağımlıdır. Alan boyutu arttıkça saçılma ihtimali artmaktadır (AAPM 2009).

Havada ışınlama, hava kerma (K_{hava})_{hava} ve doz (D), A alan boyutuna bağlıdır ve bunu kolimatör saçılma faktörü (S_c) parametresi temsil eder (veya Khan tarafından tanımlanan Sc (kolimatör saçılma faktörü)). Sc aşağıdaki gibi tanımlanır.

$$S_c(A,h\upsilon) = \frac{K_{hava}(A,h\upsilon)_{hava}}{K_{hava}(10,h\upsilon)_{hava}} = \frac{D(A,h\upsilon)}{D(10,h\upsilon)}$$
(2.21)

Sc'nin ölçüm düzeneği Şekil 2.20'de gösterilmiştir (Podgorsak 2006).

 S_c ölçümü genellikle verilen enerjide maksimum doz oluşum bölgesini sağlamak için yeterli genişlikteki "build-up" başlıklı iyon odası ile yapılır. Küçük alanlarda "build-up" başlığı tamamen alan içinde kalacak şekilde seçilen kaynak-detektör uzaklıklarında (SDD) ölçüm alınır. Bununla beraber bu veri ters kare kanunu kullanılarak nominal SSD'ye göre düzeltilebilir (Khan 2003).

Sc tedavi cihazının nominal SSD'si ve nominal alan boyutu olan $10x10 \text{ cm}^2$ alan boyutu için 1'e normalize edilir. $10x10 \text{ cm}^2$ 'den büyük alanlarda 1'den büyük bir değer

bulunurken daha küçük alanlarda bu değer 1'den küçüktür. Ölçüm genellikle uygun bir "build-up" başlık ile silindirik iyon odası kullanılarak yapılır (Podgorsak 2006).

2.7.8. Doku Fantom Oranı

Doku fantom oranı (TPR), rotasyon radyoterapisi için Johns tarafından bulunmuştur (Johns ve Cunningham 1984, Podgorsak 2006).

$$TPR\left(d, A_Q, h\upsilon\right) = \frac{D_Q}{D_{Q_{ref}}} = \frac{\dot{D}_Q}{\dot{D}_{Q_{ref}}}$$
(2.22)

Burada D_Q ve \dot{D}_Q doz ve doz oranı iken D_{Qref} ve \dot{D}_{Qref} seçilen d_{ref} derinliğindeki doz ve doz oranıdır. d_{ref} değeri genellikle, 5 veya 10 cm'dir. D_Q ve \dot{D}_{Qref} doz ölçüm düzeneği Şekil 2.21'de görülmektedir.

- TPR aynı üç parametreye bağlıdır (d, A_Q ve hv). Fakat SSD ve SAD'dan bağımsızdır.
- $0 \leq TPR \leq 1$
- A_Q ve *hv* sabit iken TPR, d artışıyla azalır.
- d ve hv sabit iken TPR, A_Q artışıyla artar.
- d ve A_Q sabit iken TPR, hv artışıyla artar.

2.7.9. TPR ve fotonun enerji tayini

Doku fantom oranı (TPR), radyasyon alanının merkezi ekseninde farklı derinlikler için sabit ölçüm noktasında alınan dozun, 5 cm veya 10 cm referans derinlikteki doza oranıdır. Bu işlem farklı alan boyutları için tekrarlanır ve böylece bir foton enerjisi için TPR tabloları elde edilir. TPR_{10}^{20} ise 10x10 cm² referans alan boyutu için 20 cm ve 10 cm derinliklerde ölçülen **D**₂₀ ve **D**₁₀ dozlarının oranıdır. Bu oran, foton demetinin kalitesinin bir göstergesi olarak tanımlanmıştır (Podgorsak 2006).

TRS-398 protokolünde enerji tayini için bu oranı kullanarak TPR aşağıdaki eşitlikten elde edilir.

$$TPR_{10}^{20} = 1.2661 \, D_{10}^{20} - 0.0595 \tag{2.23}$$

2.7.10. Merkezi eksenden uzaklık oranı (OAR) ve ışın profilleri

Şekil2.22. Merkezi eksenden uzaklık oranının şematik gösterimi

Alan merkezinin dışında olan herhangi bir noktanın dozu OAR ile hesaplanabilmektedir.

$$OAR = \frac{D_Q}{D_P} \tag{2.24}$$

Alan merkezinin yerleşimi her zaman ışının merkezi ekseninde konumlanmayabilir. Işının merkezi ekseninden uzakta yerleşen alanlar için merkezi eksenden uzaklık oranı olarak bir tanım kullanılmaktadır. Merkezi eksenden uzaklık oranı genellikle merkezi eksende aynı alan boyutu ve derinlikteki dozun, referans derinliğinde bir noktadaki doza oranıdır (Podgorsak 2006). Küçük alanların yerleşimine bağlı olarak dozun nasıl etkilendiği araştırılmalıdır.

Şekil 2.23. Asimetrik alanlarda yarıkesici alanın şematik gösterimi

Şekil 2.24. Merkezi eksende yerleşmiş örnek bir alanın (a) X2 düzlemi boyunca kayması (b) Y1 düzlemi boyunca kayması ve (c) Diagonal düzlem boyunca kaymanın şematik gösterimi

Şekil 2.25. 6 MV foton demeti için karşı çeneden 50 mm uzaklıktaki değere normalize edilen profiller

Şekil 2.25'de görülen profiller 100 mm derinlikte ölçülmüştür. Bu profiller arasındaki fark alan boyutlarıdır. Üç farklı geniş alan için elde edilen profillere bakıldığında asimetrik alanların merkezi eksenden uzaklaşmasıyla profillerinin değişimi görülmektedir. Asimetrik alanlardan profiller etkilendiği gibi merkezi eksen (CAX)'de doz verimide etkilenmektedir (IPEM 2010).

Geometrik alan boyutu (optik ışık alanı ile belirlenen) d_{Dmax} derinliğinden elde edilen ışın profilinde % 50'lik doz skalası aralığı olarak tanımlanır. Bu tanım FWHM (yarı maksimum genişliği) olarakta ifade edilebilir.

Simetrik alanlarda, alan merkezinde ve alanın kenarları merkezi eksene eşit uzaklıktadır. Asimetrik alanlarda ise, alan kenarları merkezi eksene eşit uzaklıkta

değildir. Ayrıca YART tekniğinde kullanılan ÇYK ile farklı şekillendirilmiş alanlar ve alt alanlar, asimetrik alan olarak ifade edilmekte ve bu alanlar merkezi eksenden uzakta da yer alabilmektedir. Bu nedenle merkezi eksenden uzaklık oranı önem kazanmaktadır.

Megavoltaj X ışını profilleri; merkezi, yarı gölge (penumbra) ve gölge (umbra) olmak üzere üç bölgeye ayrılır.

 Merkezi bölge; ışın merkezi ekseninden, geometrik alan kenarının 1 – 1,5 cm içerisinde var olan profilin merkez kısmını temsil eder. Megavoltaj enerjiler için merkezi bölge, kalın targete çarpan elektronların enerjisinden etkilenir. Buradaki etkinin asıl kaynağı, targetin atom numarası, düzleştirici filtrenin atom numarası ve geometrisidir.

Işın profilleri genellikle su fantomunda belli derinliklerde ölçülür. İki temel parametreye bağlıdır: ışın alanı düzgünlüğü (F) ve ışın alanı simetrisi (S).

2.7.10.1. Işın düzgünlüğü (F)

% 80'lik doz aralığı içinde görülen maksimum (D_{max}) ile minimum (D_{min}) doz noktaların da, denklem (2.24)'de verilen bağıntı ile tanımlanır (Podgorsak 2006).

Genellikle, tüm alanlarda 10 cm derinlikte, SSD; 100 cm'de su fantomu içinde alınan profil eğrisinden elde edilir. Limit değeri ise \pm %3'den küçük olması beklenir. Büyük alan boyutlarında (40x40 cm² gibi) bu değere varabilir (DYK 1999). Ayrıca küçük alanlarda ($\leq 3x3$ cm²) bu tanım için tarif edilen limit değeri konusunda protokollerde çalışmalar devam etmektedir.

$$F = 100 x \frac{D_{max} - D_{min}}{D_{max} + D_{min}}$$
(2.25)

2.7.10.2. Işın simetrisi (S)

Işın simetrisi referans derinlik (10 cm)'te tanımlanır. Işın merkezi ekseninden hem sağda hem solda aynı dozdaki merkezin dışındaki noktaların oranlarından bulunur. Ya da %50'lik doz seviyesindeki noktaların merkezi eksene uzaklıkları ile bulunabilir (Podgorsak 2005). Limit %3'tür.

$$S = 100 x \frac{A lan_{sol} - A lan_{sağ}}{A lan_{sol} + A lan_{sağ}}$$
(2.26)

2.7.10.3. Penumbra

Demet profilinin penumbra bölgesinde, hızlı doz değişimi görülür, %80 ila %20 aralığında referans derinlikte tanımlanır. Genellikle 6 mm civarında bir limit değerine sahiptir.

Penumbra bölgesi, kolimatörler ile tanımlanmış alan boyutuna, focal spot boyutuna (ayna boyutu) ve yanal elektronik dengesizliğe bağlıdır. Geometrik ışın kenarında var olan doz düşüşü, sigmoid şekillidir ve kolimatör çeneleri altındaki kuyruk bölgesinde genişler. Burada, kolimatör çenelerinin transmisyonu (transmisyon penumbra), kaynak boyutunun (geometrik penumbra) katkısı ve en önemlisi hastadan saçılan X-ışını (saçılmış penumbra) etkisi söz konusudur. Toplam penumbra, fiziksel penumbra olarak adlandırılır ve bu üç etkinin toplamı olarak yer alır. Fiziksel penumbra demet enerjisine, kaynak boyutuna, kaynak-cilt uzaklığı (SSD)'ye, kaynak-kolimatör uzaklığına ve fantom derinliğine bağlıdır (Şekil 2.27).

2.7.10.4. Alan dışı dozlar

Umbra (gölge) radyasyon alanı dışındaki bölge olarak adlandırılır. Bu bölgedeki doz genellikle azdır ve kolimatör zırhlaması içinden geçen radyasyondan kaynaklanır (Şekil 2.27).

Şekil 2.27. Işın profilinden elde edilebilecek olan parametrelerin gösterimi (Merkezi eksen, Alan genişliği, Düzgünlük, Penumbra ve alan dışı dozlar)

2.8. Küçük Foton Alanlarındaki Zorluklar

Kolimatör açıklığından çıkan demetin önünün kapanması durumunda parçacık dengesi kaybolur. Bu durumda, dedektör tarafından ölçülen sinyalde azalma meydana gelir. Bunun nedeni, dedektörün ortalama hacminin radyasyon alanına kıyasla daha büyük olmasıdır. Bu durumda küçük alan koşulları oluşur.

Küçük alan çalışmaları için geometrik ve dozimetrik giriş (input) verilerinin doğruluğu, demet modellerinin konfigürasyonu önemlidir. Çünkü tedavi planlama sistemleri (TPS) tarafından dozun doğru hesaplanması, demetin model konfigürasyonunda kullanılan ölçülmüş temel dataların kalitesine bağlıdır.

Küçük alan dozimetrisindeki ilk zorluk, alan boyutunun demet profillerinden tanımlanmasıdır. Kolimatör rotasyon eksenine en yakın çene alan boyutunu tanımlamada rolü vardır ve dozun miktarını etkiler. Küçük alanların merkezi ekseninde gözlenen verimdeki azalmadan ve kenar penumbralarının çakışmasıyla ortaya çıkan penumbra genişlemesinden dolayı FWHM (yarı maksimum tam genişliği- Full width at half maximum) kullanılması sıkıntılıdır (Das vd 2008b).

Şekil 2.28. Demet kaynağının kapanması

Küçük alanlarda bir diğer problem, alan boyutu ile kullanılacak foton enerjisinin ilişkisi ve alan boyutu ile elektronik denge bağımlılığıdır.

Radyoterapide kullanılan foton enerjileri için kompton saçılması en önemli etkileşmedir. Kompton saçılmasıyla serbest kalan elektronun yönelimi saçılma açısına ve gelen ışının enerjisine bağlıdır. Saçılan foton ile saçılan elektron arasındaki açılar dikkate alındığında, bir elektron 90° den büyük bir açıyla saçılamaz. Saçılan elektron, ileri ve yanal yönlerde ilerleyebilir (Cember vd 2009).

Kompton saçılmasında, enerjinin korunumu yasasına göre birincil elektron ve saçılan fotonun enerjileri toplamı gelen fotonun enerjisine eşit olmalıdır. $5x5 \text{ cm}^2$ ve daha büyük alanlar için birincil elektron ile saçılan foton enerjileri arasında bir denge

vardır. Fakat küçük alanlar için saçılan fotonun enerji spektrumunda ortalama enerji artarken birincil elektronların enerji spektrumunda ortalama enerji azalır, yani elektronların yanal yönde saçılması artar. Elektronların yanal yöndeki saçılmaları, yanal elektronik dengenin bozulmasına neden olur. Bragg-Gray kavite teorisine göre, dozun doğru ölçülebilmesi için ölçüm aracının kavitesine giren ve kavitesinden çıkan yüklü parçacıkların dengede olması gerekmektedir. Denge durumunda birincil elektronların ortamda oluşturduğu iyon çiftleri detektörlerde toplanır ve ortamdaki doz hesaplanır (Podgorsak 2005).

Birincil elektronların enerji spektrumunda ortalama enerjisinin azalması, ortalama durdurma gücü oranında azalmaya sebep olur. Bu durumda kavite teorisinin koşulları yerine getirilemez. Kavite teorisindeki tüm parametrelerin enerjiye bağlı olması nedeniyle, 10x10 cm² referans alan boyutu ile küçük alanlar kıyaslandığında durdurma gücünün değişmesinden dolayı doz belirsizleşir (Wu vd 1993, Das vd 2008).

Foton demetlerinde yanal yüklü parçacık dengesizliği, yüksek enerjilerde veya dar alanlarda yani ikincil elektronların maksimum menzilleriyle kıyaslandığında demet çapının küçük olduğu durumlarda ortaya çıkar. Elektronların erişim mesafesi, enerji ile artar. Demet çapıda demet enerjisi arttıkça artar. Yanal yüklü parçacık dengesizliği koşulunda merkezi eksende soğurulan dozun yanı sıra demet profilinin şekli etkilenir. Demet yarıçapı, maksimum doz derinliğine veya ikincil elektronların maksimum erişim mesafesine yakın olduğunda maksimum "build up" derinliğinde merkezi eksende yanal elektron dengesine (LEE) ulaşılması beklenir (Attix vd 1986, Wu vd 1993).

Şekil 2.30. Her enerji için alana bağlı yanal elektron dengesi (LEE)'nin oluşumu

Demet kalitesi (TPR 20,10) ve LEE'ne ulaşması istenilen minimum demet çapı arasındaki lineer ilişki, demet çapı ile değişen toplam KERMA'ya toplam dozun oranının değerlendirilmesiyle elde edilir (Li X.A vd 1995 ve Şekil 2.30).

$$r_{LEE}[g/cm^2] = 5,973 \ (TPR_{10}^{20}) - 2,688 \tag{2.27}$$

Li vd (1995) demet kalitesinin bir fonksiyonu olarak suda r_{LEE} için değerler hesaplamıştır. Burada yüksek atom numaralı maddeler ve 15 MV den büyük enerjiler için bu eşitliğin kullanılamadığını bulmuşlardır.

Dar kolime edilmiş alanlarda standart dozimetrik niceliklerin doğru ölçümü, alan boyutuna göre dedektör büyüklüğüne bağlıdır. Büyük dedektörler (silindirik iyon odası gibi) kavite teorisine bağlı olarak iyonizasyondan doza dönüştürmede ortamdaki partikül akısını pertürbe eder. Bilinen bir dedektör icin var olan uvgun pertürbasyon faktörünün kullanımı doğru değildir (Bouchard ve Seuntjens 2004, IPEM 2010). Dahası alan boyutu azalırken foton ve elektronların enerji spektrumu, azalan alan boyutu ile artan ortalama demet enerjisi ile değişir. Var olan dozimetri protokollerine bağlı referans doz ölçümlerinde bu etkiler vardır (Sanchez-Doblado 2003, Ding vd 2006, IPEM 2010). Dedektör boyutu alan boyutundan büyük olduğunda, dedektörün ortalama hacminde ölçülen doz veriminde bir düşüş olur. Bu durumda, demetin merkezi eksen kısmında gözlemlenen sinyalde de düşüş görülür (Bjärngard ve Petti 1988, IPEM 2010). Genel olarak kullanılan dedektör boyutu küçük alan dozimetrisi için önemlidir. Bu nedenle ölçümlerde kullanılan dedektör, düşük enerjili compton saçılmalarına iyi cevap verecek özellikte olmalıdır. Doz ölçümlerinde kullanılan dedektörün boyutu alan boyutundan büyük olursa, dedektör etkileşimler sonucu oluşan elektronları toplayamayacak yani hassas doz ölcümü vapılamavacaktır. Bu nedenle genis alanlar icin kullanılan dedektörlerin boyutu küçük alanlar için uygun değildir. Ayrıca küçük alanlar için pertürbasyon etkileri geniş alanlara göre dedektör boyutundan dolayı farklılaşmaya neden olur. Dedektörün hacim etkisinden dolayı küçük alan dozimetrisinde küçük hacimli dozimetreler tercih edilir (Martens vd 2000, Laub vd 2003, Crop vd 2009, IAEA 2010).

Şekil 2.31. Alan boyutuna göre dedektör seçimi

Foton ortama girdiğinde maksimum enerjisini verdiği derinlik ile yüzey arasındaki bölgeye doz oluşum bölgesi denir. Maksimum dozun ölçüldüğü derinlik d_{Dmax} olarak tanımlanır. Bu derinlik; fotonun oluşumu sırasında cihazın kafa kısmında oluşan saçılmış radyasyona, foton demetinin enerji dağılımına ve cihaz tasarımlarına göre farklılık göstermektedir (Dyk 1999). Her bir foton enerjisi için, maksimum doz derinliği küçük alanlarda yüzeye yakınken alan boyutunun artmasıyla derinlere doğru gider. Belirli bir alan boyutundan sonra (büyük alanlarda) ise maksimum doz derinliği yüzeye yaklaşır. Fantomda oluşan saçılma nedeniyle maksimum doz derinliği 1x1 cm² ve 5x5 cm² aralığındaki alan boyutlarında artar. Büyük alanlarda elektron kontaminasyonunun katkısının az olması nedeniyle 5x5 cm² den büyük alan boyutları için maksimum doz derinliği azalır (Sixel vd 1994).

Şekil 2.32. Her bir foton enerjisi için alana bağlı doz maksimum derinliğinin değişimi (Sixel vd 1994)

Küçük alan kullanımındaki bir diğer zorluk, demetlerin modellenmesinde ve TPS'de hasta dozunun hesaplanmasındadır. Büyük alanlar için optimize olan ve oluşturulan modelin küçük alanlar veya alt alanlar (segmentler) için kullanımı, hasta dozunun belirlenmesinde ciddi hatalara neden olabilir (Lydon vd 2005).

2.8.1. Küçük foton alanının karakteristiği

2.8.1.1. Küçük foton alanlarında ışın spektrumu

Dar alanlarda yüklü parçacık dengesi (CPE) sağlanamadığı için küçük alanların spektrum karakteristikleri geniş alanlardakinden farklıdır ve bu farklılık kolimasyon metoduna, demet enerjisine, merkezi eksene olan uzaklığına ve sudaki derinliğe bağlıdır.

Şekil 2.33. 6 MV foton demeti için suda 50 mm derinlikte saçılan ve ikincil elektron akısı

6 MV foton demeti için Şekil 2.33 (b)'de alan boyutu ile saçılan foton enerji akısındaki değişim görülmektedir. Aynı ışınlama geometrisinde, yalnızca birincil fotonlar tarafından üretilen ikincil elektronlar için akı spektrumu, alan boyutuna

bağlıdır. Alan boyutu, elektronların erişim mesafesinden (6 MV için 15 mm)'inden daha büyük olduğunda, bu akı spektrumu alan boyutundan bağımsızdır (Şekil 2.33 (c)). Ancak toplam elektron akı spektrumu, saçılan fotonların etkileşleri sonucu ortaya çıkan elektronlardan dolayı alan boyutu ile değişir (Şekil 2.33 (e)).

YART gibi küçük alanların kullanıldığı tedaviler, 6 MV foton demetinde gerçekleşmektedir. Bu enerjide lineer hızlandırıcının kafasından çıkan foton akısı kolimasyon metodu ile değişir ve ölçüm noktasındaki toplam elektron akısı alan boyutu ve sudaki derinlikle değişir (Bkz. Şekil 2.33) (Yin vd 2004, Eklund ve Ahnesjö 2008b). Kavite teorilerine göre dozu belirlemek için hesaplanan sınırlı kütle çarpışma durdurma gücü oranlarının etkilerine ihtiyaç vardır (Wu vd 1993, IPEM 2010).

2.8.1.2. Profiller

Küçük alanların kullanımındaki problemlerin bazıları demet profillerine bakıldığında açıkça görülebilir. Şekil 2.34'de küçük alanlar için bazı profiller verilmektedir. Bu profiller yanal boyutu 10 mm olan bir dedektörün 40 mm x 40 mm kolimatör açıklığı için kolimatör rotasyon ekseni etrafında doz profili neredeyse uniformdur fakat bu alandan daha küçük alanlar için profiller uniform değildir. Dedektöre göre 30 mm x 30 mm için bu düzensizliğin büyüklüğü küçüktür. Fakat kolimatör açıklığı azaldıkça bu düzensizlik artar.

Şekil 2.34. 6 MV için suda 100 mm derinlikte foton diode ile ölçülen profiller

2.8.1.3. Işın verimi

Kolimatör açıklığı küçüldükçe, kaynağın kapanmasından ve yanal elektron dengenin bozulmasından dolayı ışın verimi etkilenir. Merkezi eksende alan boyutu küçüldükçe, doz verimi düşmektedir.

2.8.1.4. Penumbra genişliği

Bir profilde penumbra genişliği izodoz eğrisinde %80 ve %20 arasında kalan mesafedir. Küçük alanlarda kolimatör açıklığı küçüldükçe, verimde düşüş görülür, ayrıca penumbra darlaşır. Şekil 2.35'de görüldüğü gibi profil kenarları kıvrılma noktalarında üst üste gelir. Bu durum, merkezi eksende penumbraya yakın kısımları etkiler ve penumbranın yüksek doz bölgelerinin şeklinde bir değişmeye neden olur. Eğer merkezi eksen üzerinde profil yüzde yüze normalize edilirse dar penumbralar ortaya çıkar (IPEM 2010).

Şekil 2.35. Fotondiode ile ölçülen simetrik alan profilleri

2.9. Doz Ölçüm Araçları: Dozimetreler

2.9.1. İyon odaları ve elektrometre

İyon odaları, radyoterapide radyasyon dozunu belirlemede kullanılmaktadır. İyon odaları genellikle referans koşullar altında kalibrasyon ölçümleri için kullanılmaktadır. İhtiyaca göre çeşitli şekil ve boyutlarda üretilmektedir. Standart bir iyon odası Şekil 2.36'de gösterilmiştir.

X-ışınları D diyaframından geçerek iyon odasının içerisindeki gaz atomları ile etkileşir ve iyonizasyona sebep olur bunun sonucunda da enerjisini kaybeder.

İyonizasyon sonucu oluşan serbest elektronlar ve pozitif iyonlar, tekrar birleşme eğilimine sahiptir. Ancak, elektrotlar arasına uygulanan elektrik alanın etkisi ile (+) ve (-) iyon çiftleri anot ve katoda ulaşarak bir iyonizasyon akımı meydana getirmektedir. Bu odada oluşan iyonizasyon yükünün saptanması ışınlamanın doğru bir ölçümü olurken, iyon akımının ölçülmesi ise ışınlama oranını vermektedir. Gelen fotonun ortaya çıkardığı elektronun menzili toplayıcı hacim ve plakalar arası mesafeden küçük olmalıdır. Buna ek olarak elektron dengesinin sağlanabilmesi için birim zamandaki foton akısı sabit kalmalıdır. Ayrıca x-ışınlarının girdiği D diyaframı ile toplayıcı hacim arasındaki mesafe o bölgede üretilen elektronların toplayıcı hacim içerisinde üretilen elektronlara karışmaması için elektronun menzilinden büyük olmalıdır.

İyon odasının duvar materyalinin atom numarası, mümkün olduğu kadar havaya yakın olmalıdır. Genelde duvar materyali karbon içeren plastikten (polystren Z=5,7) yapılır. Duvarın iç kısımları ise iyonların toplanması için gerekli iletkenliği sağlamak için grafit ile kaplanır. İyon odalarında iki elektrot arasına bir destek yalıtkanın konulması gerekir. Genelde iyon akımları son derece küçük değerdedir (10⁻¹²A ya da daha az). Bu yalıtkanlardan olabilecek kaçak akım miktarının son derece küçük olması gerekir. Birçok tasarımda bu akımı azaltacak koruyucu halkalar (guard ring) kullanılır. Bu halkaların bir diğer işlevi paralel plakalı sistemlerde plakaların şekillerini korumak için gerekli desteği sağlamaktır. İyon odalarının tasarımında oda duvarının yapısı ve kalınlığı seçilerek enerjiden bağımsız olmalıdır. Bu nedenle duvar kalınlığı en az foton tarafından salınacak en yüksek enerjili elektronun menzili kadar olmalıdır (Khan 2010).

Elektrometre temel olarak yük ölçen cihazdır. Basit olarak, radyasyonun algılanabildiği alana yerleştirilen iyon odası bir kablo vasıtasıyla elektrometreye bağlanır ve ışınlama boyunca iyon odasının algıladığı yük miktarını ölçer. (Khan 2003).

Şekil 2.37. Iba marka dose-1 elektrometre ve iyon odası

2.9.2. Termolüminesans dozimetri (TLD)

Termolüminesans olayı:

Kristal yapıda, elektronların bağlı durumda olduğu valans bandı ve serbestçe hareket edebildikleri iletkenlik bandı bulunur. Valans bandında atomda bağlı bulunan elektronlar X–ışınları ile uyarıldıkları zaman iletkenlik bandına hareket eder. Burada elektronlar serbestçe dolaşabilir ancak iki band arasına geçemezler. Kristalin az miktarda içerdiği yabancı atomlar iki band arasında ara enerji düzeyleri oluşturur. Ara enerji düzeylerinde bulunan tuzaklara uyarılan elektronlar yakalanabilir. Kristal X-ışınını soğurduğu zaman şekildeki A yolunu izleyerek iletkenlik bandına geçer. Bu elektron valans bandına geri dönerken B yolunda gösterildiği şekilde iki band arasındaki enerji farkına eşit enerjide fluoresans yayılım yapar (Şekil 2.38) (Johns vd 1983).

İyonlaştırıcı radyasyona maruz kalan kristaldeki elektronlar enerjiyi soğurarak üst enerji seviyesine çıkarken ara enerji düzeylerinde tuzaklara yakalanır. Kristal ısıtılınca bu elektronlar tuzak seviyesiyle taban seviyesi arasındaki enerji farkına eşit foton yayınlayarak taban enerji seviyesine döner. Isıtma sonucu foton yayınlanan olaya "Termolüminesans", bu olaydan yararlanarak oluşturulan dozimetri sistemine "Termolüminesans Dozimetri" denir. Yayılan foton miktarı Termolüminesans dozimetre (TLD) tarafından soğurulan enerji miktarı ile doğru orantılıdır.

Şekil 2.38. Fosforesans ve lüminesans maddelerde uyarılma enerji seviyeleri

Termolüminesans dozimetre (TLD) okuma sistemi:

Şekil 2.39'de bir TLD okuyucu sistem şeması verilmiştir. İyonize edici radyasyon ile ışınlanan kristal, TLD okuyucuda ısıtılarak yaydığı fotonlar fotoçoğaltıcı tüp (PMT: Photomultiplier tube) ile okunur (McKinlay 1981).

Şekil 2.39. TLD okuyucu sistem şeması

TLD okuyucu sistemde okunan değerler akım veya foton sayısı cinsinden olabilir. Bu sistemler aynı zamanda foton şiddetini sıcaklık değişimine bağlı olarak grafiğe aktarılabilir. Bu şekilde elde edilen eğriye "parlayış eğrisi (glow curve)" denir (Şekil 2.40) (Horowitz 2007). Bu eğrinin şeklini etkileyen en önemli faktörler kristalin türü, şekli, büyüklüğü, ısıtma hızı, radyasyon tipi, kristalin fırınlanması, okuma cihazının tipidir. Kristalin yaydığı ışık şiddeti, kristalin ışınlandığı radyasyon şiddetine, cinsine ve ışınlama zamanına bağlıdır.

Şekil 2.40. TLD-100 kristalinin 90Sr/90Y kaynakla ışınlanması sonucu elde edilen parlayış eğrisi (Glow curve)

TLD farklı alanlarda radyasyon ölçümü aracı olarak kullanılır. Örneğin radyasyonun teşhis ve tedavi sırasında hastanın aldığı dozun güvenli doz limitlerini aşıp aşmadığını belirlemek veya doz dağılımlarını doğrulamak amacıyla kullanılır. TL dozimetreler toz, çubuk, kübik veya disk şeklinde olup gerçekleştirilecek uygulamaya göre dozimetre seçilir.

Kalsiyum fluorid (CaF₂), lityum fluorid (LiF) ve alüminyum oksit (Al₂O₃) TLD olarak kullanılan kristallerden bazılarıdır. Bu kristallerin her birinin kendine özgü parlayış eğrileri vardır. Parlayış eğrilerinin altında kalan toplam alan kristalin ısıtıldığında yaydığı toplam ışık miktarıyla buda kristalin soğurduğu radyasyon dozuyla orantılıdır. Bazı TL kristal türleri ve özellikleri Çizelge 2.2'de verilmiştir (McKinlay 1981).

Soğurulan birim radyasyon başına fosfor tarafından bırakılan ışık miktarına Termolüminesans duyarlılık denir. Duyarlılığın faydalı en düşük limiti yalnızca fosfora bağlıdır. İdeal TL kristalinin doz cevap eğrisinin doğrusal olması bu kristalin kalibrasyonu ve kullanımını basitleştirmek için idealdir.

Fosfor	LiF	Li ₂ B ₄ O ₇ :Mn	CaF ₂ :Mn	CaF ₂ :Nat	CaSO ₄ :Mn	
Yoğunluk (g/cc)	2,64	2,3	3,18	3,18	2,61	
Etkin atom no	8,2	7,4	16,3	16,3	15,3	
Spektrum emisyon tepe	400	600	500	380	500	
değeri	400	000	500	500		
TL parlayış eğrisinin sıcaklığı °C	190-210	200-220	260	200-275	110	
Doz aralığı	$5 \times 10^{-5} - 10^{3}$	$10^{-4} - 10^{4}$	$10^{-5} - 2x10^{3}$	$10^{-5} - 10^2$	$10^{-7} - 10^2$	

Çizelge 2.2. TL kristal türleri ve özellikleri

LiF'ü radyasyon dozimetrisi olarak kullanılmasının başlıca nedenlerinden biri, onun iyi bir enerji cevabına sahip olmasıdır. Şekil 2.41'de 100 mR'de ışılanan LiF (TLD-100) enerjiye bağlı lineer bir davranış göstermekle birlikte, düşük enerjilerde hassaslıkla dikkati çekecek bir artış vardır. Bu artış 25 keV etkin enerjiye sahip fotonlar için fotoelektrik tesir kesiti, havadan daha büyüktür. Buda enerjinin bu bölgede daha çok soğurulmasına neden olur. Düşük enerjilerde hassaslıktaki artışın nedeni budur.

Şekil 2.41. LiF ve CaF₂: Mn kristalleri için enerji duyarlılığı

Radyasyon dozu ölçümünde kullanılan dozimetrelerin duyarlılıklarının radyasyon enerjisinden bağımsız olması istenir. LiF'in radyasyon dozimetresi olarak kullanılmasının başlıca nedenlerinden biri, onun iyi bir enerji yanıtına sahip olmasıdır.

Bir kristal düşük sıcaklık pikine sahipse bu pik oda sıcaklığında kararsızdır. Düşük sıcaklık pikleri kendiliğinden veya ısıtılarak yok edilirse kalan diğer pikler oldukça iyi bir kararlılık gösterir. Dozimetri için kullanılan termolüminesans kristallerin kararlı olmaları istenir. Düşük seviyelerdeki fotonların etkisinden kurtulmak amacıyla okuma öncesi ısıtma yapılır.

TLD malzemesinin tıpta teşhis ve tedavi sırasında doz ölçümlerinde kullanılabilir olmasının en önemli sebebi doku-eşdeğeri olmasıdır. Etkin atom numarası dokuya yakın olması nedeniyle en sık kullanılan Lityum Fluorid (LiF) TLD, X-ışını ve gama ışını enerji aralığında soğurduğu radyasyon miktarı doku ile orantılıdır.

TLD kristallerin tekrar kullanılabilir olması en büyük avantajıdır. Bir TLD kristalini tekrar kullanabilmek için kristale belirli zaman ve sıcaklıkta fırınlama işlemi uygulanır.

2.9.3. Fantomlar

Canlıların vücudunun %80'i sudan oluştuğu için elektron ve foton gibi demetlerin doz ölçümlerinde standart madde olarak su kullanılmaktadır. Ancak dozimetrik ölçümler genellikle polisitren, Lucite (PMMA: Poly-methyl methacrylate), su eşdeğeri plastik A-150 vb. gibi kütle yoğunluğu, gram başına elektron sayısı ve etkin atom numarası parametreleri yönünden suya benzeyen, katı su fantomu olarak adlandırılan, plaka şeklindeki malzemeler ile gerçekleştirilmektedir. Etkin atom numarası Z_{eff} karışımın atomik bileşiminin yanı sıra radyasyon demetinin türü ve niteliğine de bağlıdır. Doku eşdeğeri bir maddeden yapılmış olup, insan vücudu veya bir organın radyasyon soğurma ve yansıtma karakteristiklerini tayin etmek üzere farklı fantomlar kullanılırlar. (Podgorsak 2005, Beyzadeoğlu vd 2008).

Şekil 2.42. Katı su fantomu

3. MATERYAL VE METOT

3.1. Materyal

3.1.1. Elekta marka Synergy Platform lineer hızlandırıcı

Bu çalışmada Elekta marka Synergy Platform model lineer hızlandırıcı cihazı kullanılmıştır.

Cihaz 6 MV ve 18 MV değerinde iki foton; 6, 8, 10, 12, 15, 18 MeV değerinde beş farklı elektron enerjili olup 40 çift çok yapraklı kolimatör (ÇYK) sistemine sahiptir. ÇYK sistemi sayesinde koruma bloklarına ihtiyaç duyulmadan tümör şekline uygun geometrik alanlar oluşturulabilmektedir. Kaynaktan yüzeye 100cm mesafede açılabilen alan boyutları en az 1x1 cm², en çok 40x40 cm² dir. İzomerkezde yaprakların izdüşümüne bakıldığında bir yaprağın genişliği 1 cm'dir. Cihaz kafası içinde yer alan yaprak kolimatörlerin kalınlığı 75 mm, ÇYK'ler arasındaki sızıntıyı azaltma görevi gören X çenesinin (destekleyici çene) kalınlığı 30 mm olup crossline düzleminde alan oluşmaktadır. Y kolimatörlerinin kalınlığı ise 78 mm olup inline düzleminde alan oluşturur.

Şekil 3.1. Lineer hızlandırıcıda oluşturulan alan ve ilgili eksen tanımları

Yaprakların merkezi eksenden karşı tarafa geçme mesafesi 12,5 cm'dir. Yaprakların hareketi, her bir yaprağa ait birbirinden bağımsız motorlar tarafından yapılır. Bu cihaz hem konformal radyoterapi hem de yoğunluk ayarlı radyoterapi (YART) tekniği için donanımlıdır.

Şekil3.2. Bir lineer hızlandırıcının koordinat sisteminin tanımı görülmektedir. (inline, crossline ve derinlik)

Şekil 3.3. Elekta marka platform lineer hızlandırıcı cihazı

3.1.2. RADOS 2000RT sistemi ve LiF-100

Dozimetri için kullanılan TL dozimetreler 4,5 mm çapında, 0,9 mm kalınlığında, \pm %3 sınırlar içinde hassaslığa sahip disk şeklinde Lityum flüorür (LiF: Mg,Ti) termolüminesans fosforlardır (MTS-N Poland) (<u>www.tld.com.pl/tld/mts.html</u>).

LiF-100 TLD kristallerini grup şeklinde ışınlamak veya saklamak için özel olarak tasarlanan ışınlama tepsisi kullanılır (Şekil 3.4a). Işınlanan TLD kristallerinin tüm yerleştirme işlemlerinde vakumlu cımbız kullanılır (Şekil 3.4b).

TLD'lerin ışıma verilerini elde etmek için RADOS RE-2000RT (RadRro Int. GmbH Germany) otomatik okuyucu sistemi kullanıldı. Sistem bir defada 20 kaset içinde 80 adet TLD nin okumasını yapabilir (Şekil 3.4c). Okuyucu sistem TLD ısıtmasını Nitrojen gazı ile yapar.

Şekil 3.4. A:TLD firin tepsisi, TLD ve kaset B:TLD'lerin metal tepsiye yerleştirilmesi C:RADOS 2000 TLD okuyucu D:PTW-TLDO Termolüminesans dozimetre firini

TLD okuyucu, 5 bar N_2 akışı ile (1300-1700 sensör değeri) 300 ⁰C ye kadar ısıtılarak pre heat 2sn ile post heat 2 sn olacak şekilde 15 saniye süreyle sayım değerlerini alır.

RADOS 2000RT TLD okuma cihazı bilgisayar üzerine yüklü RADOS TLD Server yazılımı ile birlikte çalışmaktadır. Cihazdan elde edilen veriler foton sayımı olarak kayıt edilir. Okuma sırasında izlenen parlayış eğrileri sistemde kayıt edilir.

TLD için özel olarak üretilmiş, programlanabilir mikroişlemci ile kontrol edilen iki farklı ısıtma programına sahip PTW marka, TLDO model (PTW Freiburg GmbH) fırın kullanılmıştır (Şekil 3.4d). 1. programda ışınlama öncesi kullanılan 400 °C ye kadar ısıtma ve soğutma aşamaları, 2. programda ışınlama sonrasında TLDler okuyucu tarafından okunmadan önce 100 °C ye kadar ön ısıtma aşamaları mevcuttur (Şekil 3.4).

Sıcaklık kontrollü sıcak hava akımı üreten programlanmış bir ısıtma elemanı içeren fırında dâhili fan sayesinde sıcak havanın eşit dağılması sağlanır. TL malzeme fırına paslanmaz çelik tepsiler ile konulur (Şekil 3.4a) (ww.ptw.de/tldo_anneling_oven.html).

3.1.3. CC04 iyon odası

Kompakt iyonizasyon odaları, tüm soğurulan doz ölçümleri için kullanılabilir. Küçük alanlar ve yüksek doz ölçümlerinde kullanılır. Yüksek tek biçimli uzaysal rözülasyona sahiptir. Şekil 3.5'te yer alan Scanditronix Wellhofer marka CC04 model silindirik iyon odasının, boşluk hacmi 0,04 cm³, boşluk uzunluğu 3,6 mm, boşluk yarıçapı 2 mm duvar materyali Shonka (C-552), duvar kalınlığı 0,088 g/cm³ merkezi elektrot materyali C-552 dir. Polarizasyon voltajı ±300 V"dur. Hassas enerji aralığı 100 kV-50 MV arasındadır (iba Dosimetry CC04, user's guide).

Şekil 3.5. Scanditronix- wellhofer marka CC04 kompakt iyon odası

Havada yapılacak ölçümlerde CC04 iyon odası "build up" başlık ile kullanılır. Bu başlık her enerjiye göre belirli kalınlıklarda dizayn edilir. CC04 iyon odasının başlığı 8,62 g/cm³ yoğunluğunda pirinç alaşımından yapılmıştır ve bakır, nikel, çinko, kurşun, kalay, manganez ve demir gibi metalleri içermektedir. Dedektörün çevresini saran bu başlığın dış çapı 13,6 mm ve duvar kalınlığı 4,4 mm'dir.

Şekil 3.6. CC04 iyon odasının "build-up" başlığı

3.1.4. İba marka Dose-1 Elektrometre

Elektrometrede ölçüm değerleri, doz, doz hızı, ortalama doz hızı, yük, akım ve MU (monitör unit) başına doz cinsinden okunabilmektedir. Sayısal ölçüm değerleri ekranda tablo ya da grafik olarak da görüntülenebilmektedir.

Şekil 3.7. İba marka dose-1 elektrometre

3.1.5. İba marka Blue Fantom

Su fantomu, ışına ait derin doz, profil, doz verimi gibi dozimetrik ölçümlerin yapılmasını sağlayan ve buradan elde edilen verilerin analizini yapan bilgisayar kontrollü sistemdir. Su fantomunun fiziksel hacmi 67,5 x 64,5 x 56 cm³ ebatlarında olup, mekanik limitleri x=48cm, y=48 cm, z=41 cm'dir. Duvar kalınlığı ise 1,5 cm'dir. Yazılım (software) olarak OmniPro Accept 7 program versiyonu kullanılmıştır. Su fantomunda alınacak ölçümler için alan ve referans detektörlerine ihtiyaç duyulmaktadır. Bu detektörler iyon odası veya diyot tipi olabilir. Referans ve alan dedektörleri elektrometreye bağlı olarak kullanılır. Bütün su fantomu kontrolleri bu elektrometreye bağlı olan bilgisayardaki yazılım ile sağlanır.

3.1.6. RW-3 Su eşdeğeri katı fantom

"RW–3" katı su fantomu, yüksek enerjili radyasyon tedavisi dozimetrisinde kullanılan, beyaz Polistiren'den yapılmış, %2 TiO içeren, fiziksel yoğunluğu 1,045 g/cm³, elektron yoğunluğu 3,43x10²³ e/cm³ (su: 3,343x10²³ e/cm³) olan bir fantom materyalidir. Co-60'dan 20 MV foton ile 4 MeV'den 25 MeV elektron ışın enerjisi aralığında ölçüm yapılacak şekilde tasarlanmıştır. Boyutları 40 cm x 40 cm'dir ve 1, 2, 5 ve 10 mm kalınlıklarındaki levhalardan ibarettir. Tüm iyon odalarının içine yerleştirilebileceği delikli plakalar bulunmaktadır.

Şekil 3.9. RW-3 su eşdeğeri katı fantom

3.2. Metot

Çalışmaya başlamadan önce, lineer hızlandırıcı cihazının geometrik ve mekanik testleri yapıldı. Foton demetinin enerji tayini (D_{20}/D_{10}) , demet düzgünlüğü ve simetrisi kontrol edildi. Kalibrasyon koşulunda doz verimini kontrol etmek (1 cGy = 1 MU) amacıyla 6 MV foton demetinde referans alanın (SSD=100 cm'de 10x10 cm²) d_{Dmax} derinliğindeki radyasyon dozu ölçüldü. 100 MU için 100 cGy olarak alındı. Daha sonra tez kapsamında küçük alanların karakteristiklerini belirlemeye yönelik işlemler yapıldı.

3.2.1. Rölatif doz ölçümleri: merkezi ve merkez dışı eksenler

Elekta marka Synergy Platform model lineer hızlandırıcı cihazında Iba marka "Blue fantom-2" için gerekli olan sistem düzeneği kuruldu. Bu sistemde dozimetrik işlemleri yürütmek ve verilerin analizini yapabilmek için "OmniPro Accept 7" programı bulunan bilgisayara gerekli bağlantılar yapıldı. Alan iyon odası ve referans iyon odası olarak CC04 iyon odaları kullanıldı. Bu iyon odaları gerekli kablo ile fantomun elektrometresine bağlandı. Ayrıca su fantomu üzerinde bulunan kumanda sitemi ile alan iyon odasının konumu belirlendi. Böylece ölçümler için gerekli olan geometrik ve dozimetrik altyapı sağlanmış oldu.

3.2.1.1. Yüzde derin doz ve enerji tayini

Foton demetinin enerji tayini için su fantomunda SSD=100 cm ve $10x10 \text{ cm}^2$ için merkezi eksen boyunca yüzde derin doz alındı. Elde edilen yüzde derin doz verilerinden D₂₀ ve D₁₀ değerleri elde edildi ve D₂₀/D₁₀ oranı bulundu.

Merkezi eksende yüzde derin doz: Çalışmada küçük alanların karakteristiğini incelemek amacıyla alan ve referans konumlarında CC04 iyon odaları kullanıldı ve su fantomunda 6 MV foton demeti için merkezi eksen boyunca kare alanlar (10x10, 6x6, 5x5, 4x4, 3x3, 2x2 ve 1x1 cm²)'ın rölatif doz (%DD) verileri elde edildi.

- Maksimum doz derinliği (cm)
- 10 cm derinlikteki doz (%)
- 20 cm derinlikteki doz (%) değerleri su fantomundan alınan %DD grafik verilerinden elde edildi. Alan boyutuna bağlı olarak enerjinin değişimi değerlendirildi.

Merkezi eksen dışında yüzde derin doz: Şekil 2.24'de gösterildiği gibi X2, Y1 ve Diagonal düzlemlerde yapılması planlanan kaydırma işlemleri için Çizelge 3.1'de " $\sqrt{}$ " işareti ile tanımlanmış olan kaydırma miktarlarında yüzde derin doz verileri elde edildi.

Ayrıca tabloda yer alan " $\sqrt{}$ " yüzde derin doz için, S_c, verim ölçümleri için, ve "T" TLD'lerin 6 mm derinlikteki ölçümleri için, "R" TLD'lerin 16 mm derinlikteki ölçümleri için simgeleştirilmiştir.

Alan	(a)	X2 Düzleminde Kayma Miktarları (cm)							
(cm^2)	0	2	4	6	8	10	12	14	
10x10	√, T, R	√, T		√, T, R			√, R		
6x6	√, T, R	√, T		√, T, R		\checkmark	√, R	-	
5x5	√, T, R	-	-	-	-	-	-	-	
4x4	√, T, R	√, T		√, T, R		\checkmark	√, R	-	
3x3	√, T, R	-	-	-	-	-	-	-	
2x2	√, T, R	√, T	-	√, T, R	-	√, R	√, R	-	
1x1	√, T, R	-,T	-	-, T, R	-	-,T, R	-, R	-	
Alan	(b)	Y1 Düzleminde Kayma Miktarları (cm)							
(cm^2)	0	2	4	6	8	10	12	14	
10x10	√, T, R			√, T, R			- ,T, R	-	
6x6	√, T, R		-	√, T, R	-	√, R	√, T, R	-	
5x5	√, T, R	-	-	-	-	-	-	-	
4x4	√, T, R		-	√, T, R	-		√, T, R	-	
3x3	√, T, R	-	-		-	-	-	-	
2x2	√, T, R		-	√, T, R	-	√, R	√, T, R	-	
1x1	√, T, R	-	-	-	-	-	-	-	
Alan	(c)	Diagonal Kayma Miktarları (cm)							
(cm^2)	0	2	4	6	8	10	12	14	
10x10	√, T, R		-	√, T, R	-		√, T, R	-	
6x6	√, T, R		-	√, T, R	-		√, T, R	-	
5x5	√, T, R	-	-	-	-	-	-	-	
4x4	√, T, R	\checkmark	-	√, T, R	-	\checkmark		-	
3x3	√, T, R	-	-	-	-	-	-	-	
2x2	√. T. R	-	-	-	-	-	-	-	

Çizelge 3.1. (a) Farklı alan boyutları için X2 düzleminde kayma miktarlarında yapılacak ölçümlerin tablosu (b) Y1 düzleminde kayma miktarlarında (c) Diagonal düzlemde kayma miktarlarında yapılacak ölçümlerin tablosu

3.2.1.2. Demet Profilleri

1x1

 \sqrt{T} , R

Merkezi eksende demet profilleri: Alan ve referans konumlarında CC04 iyon odaları kullanıldı ve su fantomunda 6 MV foton demeti için SSD= 100 cm'de her bir kare alanlar (10x10, 6x6, 5x5, 4x4, 3x3, 2x2 ve 1x1 cm²)'ın su fantomu koordinat sistemine göre X (inline-GunTarget(GT)) ve Y (crossline-AB) eksenleri boyunca farklı derinliklerde (d_{Dmax} , 10 cm ve 20 cm) demet profilleri alındı.

Her bir kare alana ait olan d_{Dmax} (10 cm² alan için 1,6 cm), 10 cm ve 20 cm derinliklerde alınan profillerden,

• Alan genişliği; d_{Dmax} derinliğinden elde edilen demet profilinde % 50'lik doz aralığından,

- Demetin düzgünlüğü; 10 cm (referans) derinlikte % 80'lik doz aralığı içinde görülen maksimum (D_{max}) ile minimum (D_{min}) doz noktalarından,
- Demetin simetrisi; 10 cm (referans) derinlikte %50'lik doz seviyesindeki noktaların merkezi eksene uzaklıklarından,
- Penumbra parametresi; 10 cm (referans) derinlikte %80 ila %20 aralığından, su fantomunun yazılımı aracılığıyla bulundu. Ayrıca d_{Dmax} derinliğinde penumbra verileri elde edildi.

Merkezi eksen dışında demet profilleri: Çizelge 3.1'de " $\sqrt{}$ " işareti ile tanımlanmış olan alanlar ve kaydırmalar için d_{Dmax}, 10 cm ve 20 cm derinliklerde crossline ve inline demet profilleri elde edildi.

- D_{10} ve D_{20} değerleri her alan kayması için bulunup D_{20}/D_{10} oranı hesaplandı ve merkezi eksene göre yüzde farklar kıyaslandı.
- Düzgünlük ve simetri parametreleri incelendi.
- Referans (10 cm) derinlikte kaydırmaları yapılan alanlar için elde edilen demet profillerinden sağ ve sol penumbra değerlerine bakıldı.

3.2.1.3. Sc (Kolimatör saçılma faktörü) ölçümleri

Lineer hızlandırıcıda 6 MV foton demet enerjisine uygun "build-up" başlığı takılan CC04 iyon odası ile alanların S_c ölçümleri için Şekil 3.11'deki düzenek kuruldu. Merkezi eksende ve merkezi eksen dışındaki ölçümlerde geometrik kaymalara ait yer değiştirme hatasını an aza indirmek için bilgisayar destekli su fantomu düzeneği kullanıldı ve bu düzenekteki iyon odası tutucusuna demet eksenine paralel olarak CC04 iyon odası tutturuldu. Hava ölçümleri olduğu için su fantomu boş olarak kullanıldı. Bu alanların merkezi eksendeki S_c ölçümleri için kaynak ile "build-up" başlığı arasındaki mesafesi (SSD), 100 cm olarak ayarlandı. CC04 iyon odası, su fantomu elektrometresi yerine Dose-1 elektrometreye bağlandı ve elektrometreye ortamın basınç ve sıcaklık değerleri girildi.

Merkezi eksende S_c ölçümleri: Merkezi eksende 1x1, 2x2, 3x3, 4x4, 5x5, 6x6, $10x10 \text{ cm}^2$ alanlar için lineer hızlandırıcı cihazından 100 MU verilerek ölçümler gerçekleştirildi ve elektrometreden M_u olarak okuma değerleri alındı.

Merkezi eksen dışında S_c ölçümleri: Merkezi eksen dışında yani X2, Y1 ve Diagonal düzlemlerde Çizelge 3.1'de " $\sqrt{}$ " işareti ile belirlenen koşullar için lineer hızlandırıcı cihazından 100 MU verilerek ölçümler gerçekleştirildi ve elektrometreden M_u olarak okuma değerleri alındı.

Şekil 3.10. Havada Sc ölçüm düzeneği

3.2.2. Mutlak (Absolute) doz ölçümleri: merkezi ve merkez dışı eksenler

Çalışmada 6 MV foton demet enerjisinin kullanıldığı lineer hızlandırıcı cihazından 100 MU verilerek Çizelge 3.1'de belirtilen alanların katı su fantomunda mutlak doz ölçümleri yapılması planlandı.

3.2.2.1. İyon odası ile verim ölçümü

Merkezi eksende verim ölçümü: Lineer hızlandırıcıda CC04 iyon odası ile 1x1, 2x2, 3x3, 4x4, 5x5, 6x6, 10x10 cm² alanların verim (output) ölçümleri için katı fantomlar üzerine iyon odasına ait olan adapter plaka yerleştirilerek Şekil 3.12'deki düzenek kuruldu. CC04 iyon odasının Dose-1 elektrometreyle bağlantısı yapıldı. Bu alanların verim ölçümleri d_{Dmax} (1,6 cm) derinliğinde yapıldı. Ortamın basınç ve sıcaklık düzeltmesi için her ölçüm sırasında ortamın basınç ve sıcaklık değerleri elektrometreye girildi.

Merkezi eksende lineer hızlandırıcı cihazından 100 MU verilerek elektrometreden M_u (mGy) olarak okuma değerleri alındı. Rölatif olarak alınan bu değerleri mutlak doza çevirmek için TRS-398 protokolünün önerileri kullanıldı. CC04 iyon odasının kalibrasyon faktörünü elde etmek için çapraz kalibrasyon işlemi FC65-P iyon odası ile yapıldı. Bu işlem için 10x10 cm² alan ve 10 cm derinlikte FC65-P ve CC04 iyon odalarıyla ölçümler alındı ve CC04 için N_{D,W} kalibrasyon faktörü aşağıdaki denklem ile hesaplandı. Bu faktörler yardımıyla çalışmada ele alınan alanların M_u değerleri, mutlak dozlara çevrildi.

$$\left(N_{D,W}\right)_{CC04} = \frac{\left(M_{u} \cdot N_{D,W} \cdot k_Q\right)_{FC65-P}}{\left(M_{u} \cdot k_Q\right)_{CC04}}$$
(2.28)

Şekil 3.11. Verim ölçüm düzeneği

Merkezi eksen dışında verim ölçümü: Merkezi eksen dışında yani X2, Y1 ve diagonal düzlemlerde Çizelge 3.1'de " $\sqrt{}$ " işareti ile belirlenen koşullar için lineer hızlandırıcı cihazından 100 MU verilerek ölçümler gerçekleştirildi ve elektrometreden M_u (mGy) olarak okuma değerleri alındı. Değerler, bulunan N_{D,W} kalibrasyon faktörü ile doza çevrildi.

3.2.2.2. Termolüminesans dozimetre (TLD) ile verim ölçümü ve yüzey dozu

TLD kalibrasyonu ve gruplanması işlemleri aşağıdaki gibi yapıldı. Aynı üretimden olan 100 adet TLD kristali kullanılmıştır. Bunların sıcaklık ve radyasyon açısından aynı geçmişe sahip olmalarına dikkat edildi. Tepsi üzerindeki kodlu yuvalara TLD'ler yerleştirildi ve her TLD'nin adlandırılması yapıldı. Adlandırılan TLD'ler kodları bulunan kasetlere 4'lu gruplar halinde yerleştirilip, kaydedildi. Böylece okuma sırasında her bir TLD'nin hangi kaset ve hangi yerleşimde olduğu tüm çalışma boyunca sabit tutuldu. TLD'lerin radyasyon doz ölçümlerinden önce fırınlanarak tamamen boşalması sağlandı. Böylece sıfırlama işlemi gerçekleştirilmiş oldu. TLD kristallerinin temel sayım değerleri (radyasyon verilmeden) için TLD'ler TLD okuyucusunda sayım alarak okutuldu ve sistemin yönlendirdiği programa göre dört grup biçiminde ortalamaları alındı. Bu işlem 4 kez tekrarlandı. Zemin seviyesi "background count" olarak bu ortalama değerler sisteme veri girişi sırasında "zero cnt" yerine yazıldı. Programda zemin seviyesi değeri tüm 4'lü gruplar için ayrı ayrı düzenlenen 1, 2, 3 ve 4 yerleşimine göre TL okuma değerinden eksiltilerek sayım sonucu elde edildi.

Çalışmada kullanılması planlanan TLD'lerin gruplama işlemleri lineer hızlandırıcı cihazının 6 MV foton demetinde gerçekleştirildi. TLD'ler ışınlanmadan önce 400 °C de sekiz saat fırınlandı. TLD'ler ışınlama tepsisinde su eşdeğeri katı fantomda 5 cm derinliğine konuldu. Işınlama alanı 20x20 cm² ve kaynak yüzey mesafesi (SSD) 100 cm olacak şekilde ayarlandı (Şekil 3.12). Bu koşulda TLD'ler 100 MU ışınlanarak 92 cGy doz alması sağlandı. Okuma öncesi ısıtma işlemleri (100 °C de bir saat) fırın kullanarak yapıldı. RADOS 2000 TLD cihazında okuma yapılarak sayım değerleri alınıp kaydedildi. Deneylerde kullanılan TLD çiftlerin TLD grubun ortalamasından ±%3 standart sapmaları olanlar yeniden gruplandı. Kalibrasyon işlemleri için ayrılmış olan TLD'ler 100 cGy doz ile 10x10 cm² alan, 1,6 cm derinlikte ve lineer hızlandırıcının 6 MV foton enerjisinde ışınlandı. Çalışmada kullanılacak TLD çiftleri, ortalama değerleri ±%2 içerisinde olacak şekilde gruplandı.

Merkezi eksende verim ölçümü ve yüzey dozu: TLD'ler su eşdeğeri katı fantoma yerleştirilecek şekilde bir plaka oluşturuldu. TLD'ler 0,6 cm ve 1,6 cm derinliklere gelecek şekilde düzenekler kuruldu. TLD'lerin ışınlama düzeneği için kaynak yüzey mesafesi (SSD) 100 cm olarak ayarlandı (Şekil 3.13).

Şekil 3.12. Çalışmada kullanılması planlanan TLD'lerin gruplama işlemleri için lineer hızlandırıcı cihazında 6 MV foton enerjisindeki ışınlanma düzeneği

Şekil 3.13. TLD ışınlama düzeneği

Merkezi eksen dışında verim ölçümü ve yüzey dozu: Merkezi eksen dışında yani X2, Y1 ve Diagonal düzlemlerde Çizelge 3.1'de "T" ve "R" işareti ile belirlenen koşullar için sırasıyla 6 mm ve 16 mm (d_{Dmax}) derinliklerinde lineer hızlandırıcı cihazından 100 MU verilerek ölçümler gerçekleştirildi. Okuma öncesi ısıtma işlemleri (100 ⁰C de bir saat) fırın kullanarak yapıldı. RADOS 2000 TLD cihazında okuma yapılarak sayım değerleri alınıp kaydedildi.

4. BULGULAR

4.1. Rölatif Doz Ölçümleri: Merkezi ve Merkez Dışı Eksenler

4.1.1. Yüzde derin doz ve enerji tayini

Foton demetinin enerji tayini için su fantomunda SSD=100 cm'de $10x10 \text{ cm}^2$ alanda merkezi eksen boyunca elde edilen yüzde derin doz verilerinden $D_{20} = \%40$ ve $D_{10} = \%68$ olarak elde edildi ve D_{20}/D_{10} oranı ise 0,588 olarak bulundu. TRS-398 protokolünün önerisi üzerine denklem (2.22)'den TPR değeri 0.685 olarak hesaplandı. 0,685 değeri 6 MV foton enerjisine denk sayılmaktadır (BJR 1996).

Şekil 4.1. Su fantomundan elde edilen SSD=100 cm ve 10x10 cm² alan için %DD grafiği

Merkezi eksende yüzde derin doz: Çalışmada küçük alanların karakteristiğini incelemede alan ve referans konumlarında CC04 iyon odaları kullanıldı ve su fantomunda 6 MV foton demeti için merkezi eksen boyunca kare alanlar (10x10, 6x6, 5x5, 4x4, 3x3, 2x2 ve 1x1 cm²)'ın rölatif doz (%DD) verileri elde edildi. Alan boyutuna bağlı olarak maksimum doz derinliği, D_{10} , D_{20} ve D_{20}/D_{10} değerleri incelendi.

Çizelge 4.1. Farklı alan boyutları için merkezi eksen yüzde derin doz eğrilerinden elde edilen d_{Dmax} , D_{10} , D_{20} ve D_{20}/D_{10} oranının değerleri

Alan (cm ²)	d _{Dmax} (mm)	D_{10} (%)	D_{20} (%)	D_{20}/D_{10}
10x10	16,9	68,0	40,0	0,588
6x6	18,9	65,8	37,1	0,564
5x5	17,1	64,7	36,2	0,560
4x4	16,8	63,6	35,4	0,557
3x3	15	62,3	34,2	0,549
2x2	16.9	60,7	33,2	0,547
1x1	16,8	60,4	33,6	0,556

Tüm alanlar için merkezi eksen yüzde derin doz eğrileri Ek-1'de verilmektedir.

Merkezi eksen dışında yüzde derin doz: Şekil 2.24'de gösterildiği gibi X2, Y1 ve Diagonal düzlemlerde kaydırma işlemleri tüm alanlar için planlandı. Çizelge 3.1'de " $\sqrt{}$ " işareti ile tanımlanmış olan kaydırma miktarlarında yüzde derin doz verileri elde edildi. Şekil 4.2'de 10x10 cm² alan için X2 düzlemindeki kaydırmalardan elde edilen yüzde derin doz eğrileri örnek olarak verilmektedir.

Şekil 4.2. 10x10 cm² alan için X2 düzlemindeki kaydırmalardan elde edilen yüzde derin doz eğrilerini göstermektedir.

Çalışmaya alınmış alanların %DD'larından d_{Dmax} , D_{10} , D_{20} ve D_{20}/D_{10} verileri her bir kaydırma için merkezi eksene göre kıyaslandı. Her bir düzlemdeki kaymalar için bu işlemler yapıldı. Ortalama, standart sapma (SD), maksimum ve minimum arasındaki farklar hesaplandı.

 $10x10 \text{ cm}^2$ alanın X2, Y1 ve Diagonal düzlemlerdeki kaymalar için Çizelge 4.2'de sırasıyla (a), (b) ve (c)'de verilmektedir.

(a)	1	10x10 cm ² alan X2 kayması (cm)					
X2 kayması (cm)	d _{Dmax} (mm)	D ₁₀ (%)	Fark %	D ₂₀ (%)	Fark %	D_{20}/D_{10}	Fark %
0	16,9	68,0	0,0	40,0	0,0	0,588	0,0
2	17,2	67,6	0,6	39,5	1,3	0,584	0,7
4	16,8	67,0	1,5	39,1	2,3	0,584	0,8
6	16,9	66,6	2,1	38,7	3,3	0,581	1,2
8	16,9	66,1	2,8	38,0	5,0	0,575	2,3
10	14,9	66,1	2,8	37,7	5,8	0,570	3,0
12	14,9	65,6	3,5	37,5	6,3	0,572	2,8
14	14,9	65,7	3,4	37,0	7,5	0,563	4,3
Ortalama	16,18	66,6		38,4		0,576	
SD	1,06	0,009		0,011		0,011	
Fark (max-min)	2,3	0,02		0,03		0,03	

Çizelge 4.2. (a) $10x10 \text{ cm}^2$	alanın X2 düzlemindeki kaymaları, (b) Y1 düzlemindeki
kaymaları ve	(c) Diagonal düzlemindeki kaymaları için elde edilen veriler

(b)	10x10 cm ² alan Y1 kayması (cm)						
Y1 kayması (cm)	d _{Dmax} (mm)	D ₁₀ (%)	Fark %	D ₂₀ (%)	Fark %	D_{20}/D_{10}	Fark %
0	16,9	68,0	0,0	40,0	0,0	0,588	0,0
2	16,9	67,8	0,3	40,0	0,0	0,590	0,3
6	16,9	67,6	0,6	39,4	1,5	0,583	0,9
10	16,9	66,7	1,9	38,6	3,5	0,579	1,6
Ortalama	16,9	67,5		39,5		0,585	
SD	0,00	0,006		0,007		0,005	
Fark (max-min)	-	0,013		0,014		0,010	

Çizelge 4.2'nin devamı: (b) Y1 düzlemindeki kaymaları ve (c) Diagonal düzlemindeki kaymaları için elde edilen veriler

(c)		10x10 cm ²	alan Dia	igonal ka	yması (cm)	
Diagonal Kayması	d _{Dmax}	D ₁₀	Fark	D ₂₀	Fark	D_{aa}/D_{aa}	Fark
(cm)	(mm)	(%)	%	(%)	%	D_{20}/D_{10}	%
0	16,9	68,0	0,0	40,0	0,0	0,588	0,0
2	14,9	67,8	0,3	39,9	0,2	0,588	0,0
6	14,9	67,1	1,3	38,8	3,0	0,578	1,7
10	16,9	66,0	2,9	37,8	5,5	0,573	2,6
12	14,9	65,6	3,5	37,2	7,0	0,567	3,6
Ortalama	15,70	66,9		38,7		0,580	
SD	1,10	0,011		0,012		0,010	
Fark (max-min)	2	0,02		0,03		0,02	

2x2 cm² alanın X2 ve Y1 düzlemlerindeki kaymalar için Çizelge 4.3'de sırasıyla (a) ve (b)'de verilmektedir.

Çizelge 4.3. 2x2 cm² alanın (a) X2 düzlemindeki kaymalar için elde edilen veriler

(a)	2x2 cm ² alan X2 kayması (cm)						
X2 kayması (cm)	d _{Dmax} (mm)	D ₁₀ (%)	Fark %	D ₂₀ (%)	Fark %	D_{20}/D_{10}	Fark %
0	16,9	60,7	0,0	33,2	0,0	0,547	0,0
2	16,9	61,4	1,2	33,3	0,3	0,542	0,8
6	16,9	60,0	1,2	23,1	30,4	0,385	29,6
10	16,9	49,9	17,8	03,5	89,5	0,070	87,2
12	14,9	36,3	40,2	02,0	94,0	0,055	89,9
Ortalama	16,50	53,7		19,0		0,322	
SD	0,89	0,108		0,154		0,243	
Fark (max-min)	2	0,24		0,31		0,49	

(b)	2x2 cm ² alan Y1 kayması (cm)						
Y1 kayması (cm)	d _{Dmax} (mm)	D ₁₀ (%)	Fark %	D ₂₀ (%)	Fark %	D_{20}/D_{10}	Fark %
0	16,9	60,7	0,0	33,2	0,0	0,547	0,0
2	16,9	62,8	3,5	36,0	8,4	0,573	4,8
6	16,9	60,3	0,7	27,7	16,6	0,459	16,0
10	16,8	53,8	11,4	17,8	46,4	0,331	39,5
12	16,9	46,4	23,6	18,6	44,0	0,401	26,7
Ortalama	16,88	56,8		26,7		0,462	
SD	0,04	0,067		0,083		0,101	
Fark (max-min)	0,1	0,14		0,15		0,22	

Çizelge 4.3'ün devamı: 2x2 cm² alanın (b) Y1 düzlemindeki kaymaları için elde edilen veriler

Diğer alanlar için elde edilen veriler Ek-3'de verilmektedir.

4.1.2. Demet Profilleri

Merkezi eksende demet profilleri: Alan ve referans konumlarında CC04 iyon odaları kullanıldı. 6 MV foton demeti için SSD= 100 cm'de su fantomu koordinat sistemine göre X (inline-GunTarget(GT)) ve Y (crossline-AB) eksenleri boyunca her bir kare alan (10x10, 6x6, 5x5, 4x4, 3x3, 2x2 ve 1x1 cm²)'ın farklı derinliklerde (d_{Dmax} , 10 cm ve 20 cm) demet profilleri alındı.

Her bir kare alana ait olan d_{Dmax} (10 cm² alan için 1,6 cm), 10 cm ve 20 cm derinliklerde alınan profillerden,

- Alan genişliği; d_{Dmax} derinliğinden elde edilen demet profilinde % 50'lik doz aralığından,
- Demetin düzgünlüğü; 10 cm (referans) derinlikte % 80'lik doz aralığı içinde görülen maksimum (D_{max}) ile minimum (D_{min}) doz noktalarından,
- Demetin simetrisi; 10 cm (referans) derinlikte %50'lik doz seviyesindeki noktaların merkezi eksene uzaklıklarından,
- Penumbra parametresi; 10 cm (referans) derinlikte %80 ila %20 aralığından, su fantomunun yazılımı aracılığıyla bulundu. Ayrıca d_{Dmax} derinliğinde penumbra verileri elde edildi.

(a)			Crossline		
le	Alan (cm ²)	Alan genişliği (mm)	Demet Düzgünlüğü (%)	Demet Simetrisi (%)	Penumbra Sağ-Sol (mm)
țin (10x10	100,2	1,8	0,8	6,1 - 5,5
nliğ	6x6	59,5	3,0	0,6	5,5-5,6
leri	5x5	50,2	4,6	0,5	5,7 - 5,7
ax C	4x4	39,7	6,2	0,5	5,7-5,6
dDm	3x3	29,7	10	0,4	5,4 - 5,4
•	2x2	19,7	15,2	0,2	5,2-5,1
	1x1	10,6	21,2	0,5	4,6-4,3
(b)		Crossline		
	Alan (cm ²)	Alan genişliği (mm)	Demet Düzgünlüğü (%)	Demet Simetrisi (%)	Penumbra Sağ-Sol (mm)
ikte	10x10	108,8	3,0	0,7	8,1-7,5
lui	6x6	64,5	4,2	0,6	7,0-6,8
deı	5x5	54,6	5,4	0,5	6,9 - 6,3
cm	4x4	43,5	7,2	0,4	6,8-6,6
10	3x3	32,8	10,4	0,4	6,1 – 6,3
	2x2	21,7	15	0,5	5,8-5,8
	1x1	10,8	21,1	0,1	5,0 - 4,9
(c))		Crossline		
	Alan (cm ²)	Alan genişliği (mm)	Demet Düzgünlüğü (%)	Demet Simetrisi (%)	Penumbra Sağ-Sol (mm)
ikte	10x10	119,1	4,1	0,8	10,8 - 10,4
rinl	6x6	70,7	4,4	0,5	8,7 - 8,2
de	5x5	59,8	5,3	0,5	7,9-7,6
cm	4x4	47,7	7	0,4	7,8-7,1
20	3x3	35,9	10	0,3	5,2-5,4
	2x2	23,8	15,3	0,3	4,9 - 4,9
	1x1	11,9	21,2	0,1	4, 4 - 4, 4

Çizelge 4.4. Crossline profilinin (a) d_{Dmax} derinliğindeki, (b) 10 cm derinliğindeki ve (c) 20 cm derinliğindeki verileri

(a)			Inline		
de	Alan (cm ²)	Alan genişliği (mm)	Demet Düzgünlüğü (%)	Demet Simetrisi (%)	Penumbra Sağ-Sol (mm)
ğin	10x10	102,1	1,0	0,1	4,6 - 4,4
inli	6x6	61	1,3	0,1	4,3 - 4,4
der	5x5	50,7	2,2	0	4,5 - 4,0
nax (4x4	40,4	3,8	0	4,4 - 4,1
dDn	3x3	30,2	6,5	0	4,3 - 4,0
	2x2	19,9	10,2	0,1	3,8-3,8
	1x1	9,9	20,2	0,3	3,7-3,7
(b)	1		Inline		
	Alan (cm ²)	Alan genişliği (mm)	Demet Düzgünlüğü (%)	Demet Simetrisi (%)	Penumbra Sağ-Sol (mm)
lkte	10x10	110,6	1,7	0,1	5,8-6,3
ilni	6x6	66,2	2,4	0	5,3-5,4
der	5x5	55	3,2	0,1	5,1-5,0
cm	4x4	44	4,2	0,1	4,9 - 4,9
10	3x3	32,4	6,6	0,1	4,6-4,9
	2x2	21,5	11,5	0,1	4,6-4,6
	1x1	11,4	18.5	0.1	4,1-4,0
			_ ~ , .	.,-	
(c)			Inline		
0	Alan (cm ²)	Alan genişliği (mm)	Demet Düzgünlüğü (%)	Demet Simetrisi (%)	Penumbra Sağ-Sol (mm)
ikto	10x10	120,8	3,0	0,1	8,4-8,6
rinl	6x6	72,4	3,2	0	6,4-6,0
deı	5x5	60,3	3,4	0	6,0-5,7
cm	4x4	48	4,6	0	5,5 - 5,5
20	3x3	35,5	7,0	0,1	6,9-6,8

Çizelge 4.5. Inline profilinin (a) d_{Dmax} derinliğindeki, (b) 10 cm derinliğindeki ve (c) 20 cm derinliğindeki verileri

11,0

19,2

2x2

1x1

23,7

12,5

6,6-6,5

5,5-5,5

0,2

0,1

Merkezi eksen dışında demet profilleri: Çizelge 3.1'de " $\sqrt{}$ " işareti ile tanımlanmış olan alanlar ve kaydırmalar için d_{Dmax}, 10 cm ve 20 cm derinliklerinde crossline ve inline demet profilleri alındı ve D₁₀ ve D₂₀ değerleri her alan kayması için profillerden elde edilip merkezi eksene göre yüzde farkları hesaplandı. D₂₀/D₁₀ oranı hesaplandı ve merkezi eksene göre yüzde farkları kıyaslandı. Alanların X2 düzleminde her kayma işleminde alınan inline ve crossline profillerinden incelenen ilgili veriler benzerlik göstermektedir. Y1 düzleminde kaydırılmış olup çalışmaya alınan alanların crossline profillerinden D₁₀ ve D₂₀ verileri elde edilip D₂₀/D₁₀ oranı hesaplandı. Bu verilerin merkezi eksen verileriyle kıyaslanarak yüzde farklar bulundu. Diagonal yönde kaydırılmış olup çalışmaya alınan alanlar içinde aynı şekilde veri analizleri yapıldı. Örnek olarak, 10x10 cm² alanın X2, Y1 ve Diagonal düzlemlerindeki kaymaları için elde edilen crossline profillerinden bulunan veriler Çizelge 4.6'da sırasıyla (a), (b) ve (c)'de verilmektedir.

Çizelge 4.6. 10x10 cm² alanın crossline profilinin (a) X2 kayma miktarlarında, b) Y1 kayma miktarlarında ve (c) Diagonal kayma miktarlarında elde edilen veriler

(a)	10x10 cm ² alan X2 kayması (cm) – Crossline Profili						
X2 kayması (cm)	$d_{Dmax}(\%)$	D ₁₀ (%)	Fark %	D ₂₀ (%)	Fark %	D_{20}/D_{10}	Fark %
0	100	68,0	0,0	40,0	0,0	0,588	0,0
2	100	67,6	0,6	40,0	0,0	0,592	0,6
4	100	68,4	0,6	39,5	1,4	0,586	2,0
6	100	68,6	0,9	40,2	0,6	0,560	0,3
8	100	68,5	0,7	39,3	1,8	0,583	2,6
10	100	67,3	1,0	39,0	2,5	0,579	1,5
12	100	66,6	2,0	37,3	6,8	0,569	4,9
14	100	53,7	21,0	30,6	23,6	0,569	3,3
(b)		10x10 cm ²	alan Y1 ka	ıyması (cn	n) – Cross	line Profili	i
Y1 kayması (cn	n) D_{max} (%)	D_{10} (%)) Fark %	D ₂₀ (%)	Fark %	D_{20}/D_{10}	Fark %
0	100	68,0	0,0	40,0	0,0	0,588	0,0
2	100	67,6	0,6	40,1	0,2	0,593	0,8
6	100	67,7	0,5	39,7	0,7	0,587	0,2
10	100	66,7	1,9	38,6	3,5	0,579	1,6
(c)	10x	10 cm^2 ala	n Diagonal	kayması ((cm) - Cro	ossline Pro	fili
Diagonal Kayması (cm)	D_{max} (%)) D_{10} (%)) Fark %	D ₂₀ (%)	Fark %	D_{20}/D_{10}	Fark %
0	100	68,0	0,0	40,0	0,0	0,588	0,0
2	100	67,8	0,3	39,9	0,2	0,589	0,2
6	100	66,7	2,0	38,9	2,9	0,583	0,9
10	100	65,9	3,2	37,9	5,1	0,576	2,1
		,					

2x2 cm² alanın verileri Çizelge 4.7'de sırasıyla (a) ve (b)'de verilmektedir.

(a)	2x2 cm ² alan X2 kayması (cm) – Crossline Profili						
X2 kayması (cm)	$D_{max}(\%)$	D ₁₀ (%)	Fark %	D ₂₀ (%)	Fark %	D_{20}/D_{10}	Fark %
0	100	60,7	0,0	33,2	0,0	0,547	0,0
2	100	61,2	0,8	33,3	0,3	0,544	0,5
6	100	60,5	0,3	33,0	0,6	0,545	0,3
10	100	59,7	1,7	31,9	3,9	0,535	2,2
12	100	60,0	1,2	32,0	3,8	0,533	2,6
(b)	2	$2x2 \text{ cm}^2$ ala	ın Y1 kay	ması (cm)	– Crossli	ine Profili	
Y1 kayması (cm)	$D_{max}(\%)$	D ₁₀ (%)	Fark %	$D_{20}(\%)$	Fark %	D_{20}/D_{10}	Fark %
0	100	60,7	0,0	33,2	0,0	0,552	0,0
2	100	60,3	0,7	32,8	1,2	0,544	0,5
6	100	59,9	1,3	27,7	16,6	0,462	15,5
10	100	52,4	13,7	17,1	48,5	0,327	40,3
12	100	45,6	24,9	18,5	44,3	0,405	25,9

Çizelge 4.7. 2x2 cm² alanın crossline profilinin (a) X2 kayma miktarlarında ve (b) Y1 kayma miktarlarında elde edilen veriler

Diğer alanlar için crossline profillerinden elde edilen D_{10} ve D_{20} verileriyle ilgili değerler Ek-3'de verilmektedir.

Referans (10 cm) derinlikte kaydırmaları yapılan alanlar için elde edilen demet profillerinden düzgünlük ve simetri verileri hemen hemen merkezi eksen verilerine yakın bulundu. Sağ ve sol penumbra değerleri ise Çizelge 4.8'de $10x10 \text{ cm}^2$ alanın sağ ve sol penumbra değerleri düzlemler için sırasıyla (a), (b) ve (c)'de verilmektedir.

Çizelge 4.8. 10x10 cm² alanın 10 cm derinlikte crossline ve inline profillerinden (a) X2 kayma miktarlarında elde edilen sağ ve sol penumbra değerleri

(a)	Alan $10x10 \text{ cm}^2$	Crossline	Inline
	X2 Kayması (cm)	Sağ-Sol Penumbra (mm)	Sağ-Sol Penumbra (mm)
te	0	8,1-7,5	5,8-6,3
lik	2	7,6-7,5	6,0-5,7
erir	4	7,9 - 7,6	6,0-6,3
р r	6	8,0-7,5	6,0-6,2
cn	8	8,0-7,6	6,2-6,0
10	10	8,1-7,6	5,8-6,2
	12	8,2-7,7	6,0-6,0
	14	8,3-7,8	5,8 - 5,6

(b)	Alan $10x10 \text{ cm}^2$	Crossline	Inline
likte	Y1 Kayması (cm)	Sağ-Sol Penumbra (mm)	Sağ-Sol Penumbra (mm)
rinl	0	8,1 – 7,5	5,8-6,3
ı de	2	8,2 - 7,6	5,9 - 6,3
) cm	6	8,3 - 7,4	5,8 - ?
10	10	8,4 - 7,6	6,2 - ?

Çizelge 4.8.'in devamı: (b) Y1 ve (c) Diagonal kayma miktarlarında

(c)	Alan $10x10 \text{ cm}^2$	Crossline	Inline
	Diagonal Kayması	Sağ-Sol Penumbra	Sağ-Sol Penumbra
ikte	(cm)	(mm)	(mm)
cinl	0	8,1-7,5	5,8-6,3
deı	2	8,8 - 8,6	6,7 - 16,6
cm	6	8,2 - 7,6	6,3 - 12,3
10	10	8,7 -8,1	6,7 - 16,1
	12	8,8 - 8,6	6,7 - 16,6

2x2 cm² alanın penumbra değerleri Çizelge 4.9'da sırasıyla (a) ve (b)'de verilmektedir.

Çizelge 4.9. 2x2 cm² alanın 10 cm derinlikte crossline ve inline profillerinden (a) X2 kayma miktarlarında elde edilen sağ ve sol penumbra değerleri

(a)	Alan 2x2 cm ²	Crossline	Inline
kte	X2 Kayması (cm)	Sağ-Sol Penumbra (mm)	Sağ-Sol Penumbra (mm)
ilni [.]	0	5,8 - 5,8	4,6 - 4,6
der	2	6,1 - 5,5	4,6 - 4,5
m	6	6,2 - 5,4	4,4 - 4,5
0 c	10	5,6 - 4,6	4,5 - 4,7
1	12	5,2 - 4,1	4,8 - 5,0

(b)	Alan $2x2 \text{ cm}^2$	Crossline	Inline
tte	Y1 Kayması (cm)	Sağ-Sol Penumbra	Sağ-Sol Penumbra
lik		(mm)	(mm)
ii	0	5,8 - 5,8	4,6 - 4,6
den	2	5,8 - 5,5	4,2 - ?
n	6	6,2 - 5,4	4,4 - ?
0 C	10	7,4 - 5,7	4,1 - ?
ī	12	10,1 - 6,2	3,9 - ?

Diğer alanlar için elde edilen veriler Ek-5'de verilmektedir.

4.1.3. S_c (Kolimatör saçılma faktörü) ölçümleri

Merkezi eksende S_c **ölçümleri:** Lineer hızlandırıcının 6 MV foton demetinde 10x10, 6x6, 5x5, 4x4, 3x3, 2x2 ve 1x1 cm² alan için CC04 iyon odası ve Dose-1 elektrometre ile yapılan hava ölçümlerine ait M_u değerleri Çizelge 4.10'da verilmiştir. Bu ölçümlerde basınç değeri 1011-1014 mbar ve sıcaklık değeri 27-29 °C arasında olup ölçümler sırasında elektrometreye girildi.

Merkezi eksen dışında S_c ölçümleri: Çizelge 3.1'de " $\sqrt{}$ " işareti ile tanımlanmış olan alanlar ve X2, Y1 ve Diagonal düzlemlerdeki kaydırmalar için elde edilen S_c ölçümlerinin M_u değerleri Çizelge 4.10'da verilmiştir.

Çizelge 4.10. Farklı alanlar için (a) X2 kayma miktarlarında, (b) Y1 kayma miktarlarında ve (c) Diagonal kayma miktarlarında elde edilen M_u değerleri

(a)	Ortalama Mu değerleri (Gy)							
Alan (am^2)	Morkoz		X2 kayması (cm)					
Alali (CIII)	WIEIKEZ	2	4	6	8	10	12	14
10x10	1,016	1,015	1,027	1,034	1,036	1,049	1,050	1,055
6x6	0,993	0,995	1,004	1,006	1,014	1,030	1,032	1,035
5x5	0,983	-	-	-	-	-	-	-
4x4	0,978	0,982	0,991	0,994	1,002	1,016	1,021	1,026
3x3	0,967	-	-	-	-	-	-	-
2x2	0,961	0,957	0,974	0,972	0,982	0,998	0,999	-
1x1	0,889	0,859	0,865	0,874	0,872	0,869	0,827	-
(b)			Ortala	ma Mu de	eğerleri (Gy)		
Alan (am^2)	Morkoz	_	Y1 ka	yması (cr	n)			
Alan (Chi)	WIEIKEZ	2	4	6	8	10	12	14
10x10	1,016	1,026	1,047	1,041	1,055	1,068	1,068	1,070
6x6	0,993	1,007	1,027	1,028	1,037	1,050	1,052	1,054
5x5	0,983	-	-	-	-	-	-	-
4x4	0,978	0,991	1,006	1,012	1,025	1,039	1,041	1,047
3x3	0,967	-	-	-	-	-	-	-
$2x^2$	0 961	0.971	0,988	0,993	1,006	1,018	1,021	1,027
	0,701		/					
1x1	0,889	-	_	-	-	-	-	-

(c)	Ortalama Mu değerleri (Gy)							
Alon (cm^2)	Morkoz		Diagonal kayması (cm)					
Alali (Clil)	WEIKEZ	2	4	6	8	10	12	14
10x10	1,016	1,027	-	1,049	-	1,064	1,065	-
6x6	0,993	1,01	-	1,033	-	1,052	1,055	-
5x5	0,983	-	-	-	-	-	-	-
4x4	0,978	0,996	-	1,018	-	1,037	1,047	-
3x3	0,967	-	-	-	-	-	-	-
2x2	0,961	-	-	-	-	-	-	-
1x1	0,889	-	-	-	-	-	-	-

Merkezi eksende her alan için elde edilen M_u okumaları, 10x10 cm² alanın M_u okumasına normalize edildi ve S_c değerleri bulundu (Çizelge 4.11).

Alan (cm ²)	Ortalama M _u (Gy)	S _c
10x10	1,016	1,000
6x6	0,993	0,977
5x5	0,983	0,968
4x4	0,978	0,963
3x3	0,967	0,952
2x2	0,961	0,946
1x1	0,889	0,875

Çizelge 4.11. Farklı alanların 6 MV foton demet enerjisi için M_u ve S_c değerleri

4.2. Mutlak (Absolute) Doz Ölçümleri: Merkezi ve Merkez Dışı Eksenler

4.2.1. İyon odası ile verim ölçümü

Merkezi eksende verim ölçümü: Merkezi eksende Çizelge 3.1'de " $\sqrt{}$ " işareti ile belirlenen koşullar için 6 MV foton demet enerjisinin kullanıldığı lineer hızlandırıcı cihazında 100 MU verilerek ölçümler gerçekleştirildi ve M_u (mGy) değerleri faktörler yardımıyla mutlak doza çevrildi (Çizelge 4.12).

CC04 iyon odasının $N_{D,W}$ kalibrasyon faktörünü çapraz kalibrasyon yöntemiyle hesaplamak için FC65-P iyon odasının M_u (673,8 mGy), $N_{D,W}$ (1,005 mGy/mGy), k_Q (0,992), CC04 iyon odasının M_u (661,2 mGy) ve k_Q (0,994) değerleri kullanıldı.

$$(1,022)_{CC04} = \frac{(673,8x1,005x0,992)_{FC65-P}}{(661,2x0,994)_{CC04}}$$
(2.29)

Merkezi Eksen Dışında Verim Ölçümü: Merkezi eksen dışındaki yani X2, Y1 ve Diagonal düzlemlerde Çizelge 3.1'de " $\sqrt{}$ " işareti ile belirlenen koşullar için 100 MU verilerek ölçümler gerçekleştirildi ve M_u (mGy) değerleri daha önce hesaplanan faktörler yardımıyla mutlak doza çevrildi. Bu X2, Y1 ve Diagonal düzlemdeki kaymalar için elde edilen mutlak doz değerleri Çizelge 4.12'de sırasıyla (a), (b) ve (c)'de verilmektedir.

Çizelge 4.12. Farklı alanların (a) X2 kayma miktarlarında, (b) Y1 kayma miktarlarında ve (c) Diagonal kayma miktarlarında elde edilen M_u ve doz değerleri

(a)		X2 kayması (cm)						
Alan (cm ²)	Merkez	2	4	6	8	10	12	14
			Ortalama	M _u okum	a değerle	ri (mGy)		
10.10	996,2	1000,6	1010,5	1015,0	1028,0	1047,0	1055,5	1058,0
10x10			Mutl	ak Doz D	eğerleri (o	cGy)		
	101,8	102,3	103,3	103,7	105,1	107,0	107,9	108,1
((Ortalama	M _u okum	a değerle	ri (mGy)		
0X0	959,3	961,2	972,6	981,4	993,2	1010,0	1017,0	1025,0

-			Mutla	k Doz E) Değerleri (cGv)		
	98,0	98.2	99.4	100.3	101.5	103.2	103,9	104,8
	,	,	Ortalama	M _u okur	na değerle	ri (mGy)	,	,
5x5 -	944,2							
JAJ			Mutla	ık Doz E	Değerleri (cGy)		
	96,5							
			Ortalama	M _u okur	na değerle	ri (mGy)		1001
4x4 -	933,9	934,8	946,7	<u>953,6</u>	965,9	983,6	995,6	1001
	05 /	05 5	Mutla	IK DOZ L	Degerleri (2Gy)	101.0	102.2
	93,4	93,3	90,8 Ortalama	$\frac{97,3}{M}$	90,7 na değerle	$\frac{100,3}{\text{tri}(mGy)}$	101,8	102,5
	911 7		Ortalalla	Ivi _u OKui	na uegente	II (IIIOy)		
3x3 -	<i>)</i> 11,7		Mutla	k Doz E	Değerleri (cGv)		
	93,2							
			Ortalama	M _u okur	na değerle	ri (mGy)		
$2x^2$ -	852,2	853,5	864,1	866,3	876,4	888,0	902,3	
			Mutla	ık Doz E	Değerleri (cGy)		
	87,1	87,2	88,3	88,5	89,6	90,8	92,2	
	410.0	410 5	Ortalama	M _u okur	na değerle	rı (mGy)	206.2	
1x1 -	413,3	418,5	398,5	$\frac{415,1}{1-D-1}$	405,7	<u>368,2</u>	396,3	
	12.2	12 0		1000000000000000000000000000000000000	Jegerieri (27 6	40.5	
	42,2	42,8	40,7	42,4	41,3	37,0	40,3	
(b)				Y1 kavı	ması (cm)			
(b) Alan (cm ²)	Merkez	2	4	Y1 kayı 6	ması (cm) 8	10	12	14
(b) Alan (cm ²)	Merkez	2	4 Ortalama	Y1 kayı 6 M _u okuı	ması (cm) 8 ma değerle	10 eri (mGy)	12	14
$\frac{\mathbf{(b)}}{\mathbf{Alan} (\mathbf{cm}^2)}$	Merkez 996,2	2	4 Ortalama 1022,0	Y1 kayı 6 M _u okuı 1024,0	ması (cm) 8 ma değerle 1047,0	10 eri (mGy) 1061,0	12 1066,0	14 1078,0
(b) Alan (cm ²) 10x10	Merkez 996,2	2	4 Ortalama 1022,0 Mutla	Y1 kayı 6 M _u okuı 1024,0 ak Doz I	ması (cm) 8 ma değerle 1047,0 Değerleri (10 eri (mGy) 1061,0 cGy)	12 1066,0	14 1078,0
(b) Alan (cm ²) 10x10	Merkez 996,2 101,8	2 1009,0 103,1	4 Ortalama 1022,0 Mutla 104,4	Y1 kayı 6 M _u okur 1024,0 ak Doz I 104,7	ması (cm) 8 ma değerle 1047,0 Değerleri (107,0	10 eri (mGy) 1061,0 cGy) 108,4	12 1066,0 108,9	14 1078,0 110,2
(b) Alan (cm ²) 10x10	Merkez 996,2 101,8	2 1009,0 103,1	4 Ortalama 1022,0 Mutla 104,4 Ortalama	Y1 kayı 6 M _u okur 1024,0 ak Doz I 104,7 M _u okur	ması (cm) 8 ma değerle 1047,0 Değerleri (107,0 ma değerle	10 eri (mGy) 1061,0 cGy) 108,4 eri (mGy)	12 1066,0 108,9	14 1078,0 110,2
(b) Alan (cm ²) 10x10 6x6	Merkez 996,2 101,8 959,3	2 1009,0 103,1 972,5	4 Ortalama 1022,0 Mutla 104,4 Ortalama 983,3	Y1 kayı 6 M _u okur 1024,0 ak Doz I 104,7 M _u okur 994,9	ması (cm) 8 ma değerle 1047,0 Değerleri (107,0 ma değerle 1011,0	10 eri (mGy) 1061,0 cGy) 108,4 eri (mGy) 1027,0	12 1066,0 108,9 1032,0	14 1078,0 110,2 1044,0
(b) Alan (cm ²) 10x10 6x6	Merkez 996,2 101,8 959,3	2 1009,0 103,1 972,5	4 Ortalama 1022,0 Mutla 104,4 Ortalama 983,3 Mutla 100,5	Y1 kayı 6 M _u okun 1024,0 ak Doz I 104,7 M _u okun 994,9 ak Doz I 101,7	ması (cm) 8 ma değerle 1047,0 Değerleri (107,0 ma değerle 1011,0 Değerleri (103,3	10 eri (mGy) 1061,0 cGy) 108,4 eri (mGy) 1027,0 cGy) 105.0	12 1066,0 108,9 1032,0	14 1078,0 110,2 1044,0
(b) Alan (cm ²) 10x10 6x6	Merkez 996,2 101,8 959,3 98,0	2 1009,0 103,1 972,5 99,4	4 Ortalama 1022,0 Mutla 104,4 Ortalama 983,3 Mutla 100,5 Ortalama	Y1 kayı 6 M _u okur 1024,0 ak Doz I 104,7 M _u okur 994,9 ak Doz I 101,7 M okur	ması (cm) 8 ma değerler 1047,0 Değerleri (107,0 ma değerler 1011,0 Değerleri (103,3 ma değerle	10 eri (mGy) 1061,0 cGy) 108,4 eri (mGy) 1027,0 cGy) 105,0 eri (mGy)	12 1066,0 108,9 1032,0 105,5	14 1078,0 110,2 1044,0 106,7
(b) Alan (cm ²) 10x10 6x6	Merkez 996,2 101,8 959,3 98,0 944,2	2 1009,0 103,1 972,5 99,4	4 Ortalama 1022,0 Mutla 104,4 Ortalama 983,3 Mutla 100,5 Ortalama	Y1 kayı 6 M _u okur 1024,0 ak Doz I 104,7 M _u okur 994,9 ak Doz I 101,7 M _u okur	8 ma değerle 1047,0 Değerleri (107,0 ma değerle 1011,0 Değerleri (103,3 ma değerle	10 eri (mGy) 1061,0 cGy) 108,4 eri (mGy) 1027,0 cGy) 105,0 eri (mGy)	12 1066,0 108,9 1032,0 105,5	14 1078,0 110,2 1044,0 106,7
(b) Alan (cm ²) 10x10 6x6 5x5	Merkez 996,2 101,8 959,3 98,0 944,2	2 1009,0 103,1 972,5 99,4	4 Ortalama 1022,0 Mutla 104,4 Ortalama 983,3 Mutla 100,5 Ortalama	Y1 kayı 6 M _u okun 1024,0 ak Doz I 104,7 M _u okun 994,9 ak Doz I 101,7 M _u okun	ması (cm) 8 ma değerler 1047,0 Değerleri (107,0 ma değerler 1011,0 Değerleri (103,3 ma değerler Değerleri (10 eri (mGy) 1061,0 cGy) 108,4 eri (mGy) 1027,0 cGy) 105,0 eri (mGy) cGy)	12 1066,0 108,9 1032,0 105,5	14 1078,0 110,2 1044,0 106,7
(b) Alan (cm ²) $10x10$ $6x6$ $5x5$	Merkez 996,2 101,8 959,3 98,0 944,2 96,5	2 1009,0 103,1 972,5 99,4	4 Ortalama 1022,0 Mutla 104,4 Ortalama 983,3 Mutla 100,5 Ortalama	Y1 kayı 6 M _u okur 1024,0 ak Doz I 104,7 M _u okur 994,9 ak Doz I 101,7 M _u okur ak Doz I	ması (cm) 8 ma değerle 1047,0 Değerleri (107,0 ma değerle 1011,0 Değerleri (103,3 ma değerle	10 eri (mGy) 1061,0 cGy) 108,4 eri (mGy) 1027,0 cGy) 105,0 eri (mGy) cGy)	12 1066,0 108,9 1032,0 105,5	14 1078,0 110,2 1044,0 106,7
(b) Alan (cm ²) 10x10 6x6 5x5	Merkez 996,2 101,8 959,3 98,0 944,2 96,5	2 1009,0 103,1 972,5 99,4	4 Ortalama 1022,0 Mutla 104,4 Ortalama 983,3 Mutla 100,5 Ortalama Ortalama	Y1 kayı 6 M _u okun 1024,0 ak Doz I 104,7 M _u okun 994,9 ak Doz I 101,7 M _u okun ak Doz I M _u okun	ması (cm) 8 ma değerle 1047,0 Değerleri (107,0 ma değerle 1011,0 Değerleri (103,3 ma değerle Değerleri (ma değerle	10 eri (mGy) 1061,0 cGy) 108,4 eri (mGy) 1027,0 cGy) 105,0 eri (mGy) cGy) eri (mGy)	12 1066,0 108,9 1032,0 105,5	14 1078,0 110,2 1044,0 106,7
(b) Alan (cm ²) $10x10$ $6x6$ $5x5$ $4x4$	Merkez 996,2 101,8 959,3 98,0 944,2 96,5 933,9	2 1009,0 103,1 972,5 99,4 947,8	4 Ortalama 1022,0 Mutla 104,4 Ortalama 983,3 Mutla 100,5 Ortalama 960,6	Y1 kayı 6 M _u okur 1024,0 ak Doz I 104,7 M _u okur 994,9 ak Doz I 101,7 M _u okur ak Doz I M _u okur 971,9	ması (cm) 8 ma değerle 1047,0 Değerleri (107,0 ma değerle 1011,0 Değerleri (103,3 ma değerle Değerleri (ma değerle 989	10 eri (mGy) 1061,0 cGy) 108,4 eri (mGy) 1027,0 cGy) 105,0 eri (mGy) cGy) eri (mGy) 1003	12 1066,0 108,9 1032,0 105,5	14 1078,0 110,2 1044,0 106,7 1019
(b) Alan (cm ²) 10x10 6x6 5x5 4x4	Merkez 996,2 101,8 959,3 98,0 944,2 96,5 933,9	2 1009,0 103,1 972,5 99,4 947,8	4 Ortalama 1022,0 Mutla 104,4 Ortalama 983,3 Mutla 100,5 Ortalama 900,6 Mutla	Y1 kayı 6 M _u okur 1024,0 ak Doz I 104,7 M _u okur 994,9 ak Doz I 101,7 M _u okur ak Doz I M _u okur 971,9	ması (cm) 8 ma değerle 1047,0 Değerleri (107,0 ma değerle 1011,0 Değerleri (103,3 ma değerle Değerleri (989 Değerleri (10 eri (mGy) 1061,0 cGy) 108,4 eri (mGy) 1027,0 cGy) 105,0 eri (mGy) cGy) eri (mGy) 1003 cGy)	12 1066,0 108,9 1032,0 105,5 1011	14 1078,0 110,2 1044,0 106,7 1019
(b) Alan (cm ²) 10x10 6x6 5x5 4x4	Merkez 996,2 101,8 959,3 98,0 944,2 96,5 933,9 95,4	2 1009,0 103,1 972,5 99,4 947,8 96,9	4 Ortalama 1022,0 Mutla 104,4 Ortalama 983,3 Mutla 100,5 Ortalama 960,6 Mutla 98,2	Y1 kayı 6 M _u okuı 1024,0 ak Doz I 104,7 M _u okuı 994,9 ak Doz I 101,7 M _u okuı ak Doz I 971,9 ak Doz I 99,3	ması (cm) 8 ma değerle 1047,0 Değerleri (107,0 ma değerle 1011,0 Değerleri (103,3 ma değerle Değerleri (989 Değerleri (101,1	10 eri (mGy) 1061,0 cGy) 108,4 eri (mGy) 1027,0 cGy) 105,0 eri (mGy) cGy) eri (mGy) 1003 cGy) 102,5	12 1066,0 108,9 1032,0 105,5 105,5 1011 1011	14 1078,0 110,2 1044,0 106,7 1019 1019
(b) Alan (cm ²) 10x10 6x6 5x5 4x4	Merkez 996,2 101,8 959,3 98,0 944,2 96,5 933,9 95,4	2 1009,0 103,1 972,5 99,4 947,8 96,9	4 Ortalama 1022,0 Mutla 104,4 Ortalama 983,3 Mutla 100,5 Ortalama 960,6 Mutla 98,2 Ortalama	Y1 kayı 6 M _u okun 1024,0 ak Doz I 104,7 M _u okun 994,9 ak Doz I 101,7 M _u okun 971,9 ak Doz I 99,3 M _u okun	ması (cm) 8 ma değerle 1047,0 Değerleri (107,0 ma değerle 1011,0 Değerleri (103,3 ma değerle Değerleri (989 Değerleri (101,1 ma değerle	10 eri (mGy) 1061,0 cGy) 108,4 eri (mGy) 1027,0 cGy) 105,0 eri (mGy) cGy) eri (mGy) 1003 cGy) 1003 cGy) 102,5 eri (mGy)	12 1066,0 108,9 1032,0 105,5 1011 1011 103,3	14 1078,0 1110,2 1044,0 106,7 1019 1019
(b) Alan (cm ²) 10x10 6x6 5x5 4x4 3x3	Merkez 996,2 101,8 959,3 98,0 944,2 96,5 933,9 95,4 911,7	2 1009,0 103,1 972,5 99,4 947,8 96,9	4 Ortalama 1022,0 Mutla 104,4 Ortalama 983,3 Mutla 100,5 Ortalama 960,6 Mutla 98,2 Ortalama	Y1 kayı 6 M _u okuı 1024,0 ak Doz I 104,7 M _u okuı 994,9 ak Doz I 101,7 M _u okuı 971,9 ak Doz I 99,3 M _u okuı	ması (cm) 8 ma değerler 1047,0 Değerleri (107,0 ma değerler 1011,0 Değerleri (103,3 ma değerler Değerleri (989 Değerleri (101,1 ma değerler 0 0 0 0 0 0 0 0 0 0 0 0 0	10 eri (mGy) 1061,0 cGy) 108,4 eri (mGy) 1027,0 cGy) 105,0 eri (mGy) cGy) eri (mGy) 1003 cGy) 102,5 eri (mGy)	12 1066,0 108,9 1032,0 105,5 105,5 1011 1011	14 1078,0 110,2 1044,0 106,7 1019 1019 104,1
(b) Alan (cm ²) 10x10 6x6 5x5 4x4 3x3	Merkez 996,2 101,8 959,3 98,0 944,2 96,5 933,9 95,4 911,7 93 2	2 1009,0 103,1 972,5 99,4 947,8 96,9	4 Ortalama 1022,0 Mutla 104,4 Ortalama 983,3 Mutla 100,5 Ortalama 960,6 Mutla 98,2 Ortalama	Y1 kayı 6 M _u okur 1024,0 ak Doz I 104,7 M _u okur 994,9 ak Doz I 101,7 M _u okur 971,9 ak Doz I 99,3 M _u okur 971,9 ak Doz I	ması (cm) 8 ma değerle 1047,0 Değerleri (107,0 ma değerle 1011,0 Değerleri (103,3 ma değerle Değerleri (989 Değerleri (101,1 ma değerle 989 Değerleri (101,1 ma değerle	10 eri (mGy) 1061,0 cGy) 108,4 eri (mGy) 1027,0 cGy) 105,0 eri (mGy) cGy) eri (mGy) 1003 cGy) 102,5 eri (mGy) 102,5 eri (mGy)	12 1066,0 108,9 1032,0 105,5 1011 1011 103,3	14 1078,0 1110,2 1044,0 106,7 1019 1019 104,1
(b) Alan (cm ²) 10x10 6x6 5x5 4x4 3x3	Merkez 996,2 101,8 959,3 98,0 944,2 96,5 933,9 95,4 911,7 93,2	2 1009,0 103,1 972,5 99,4 947,8 96,9	4 Ortalama 1022,0 Mutla 104,4 Ortalama 983,3 Mutla 100,5 Ortalama 960,6 Mutla 98,2 Ortalama 98,2 Ortalama	Y1 kayı 6 M _u okuı 1024,0 ak Doz I 104,7 M _u okuı 994,9 ak Doz I 101,7 M _u okuı 971,9 ak Doz I 99,3 M _u okuı 99,3 M _u okuı 90,3	ması (cm) 8 ma değerle 1047,0 Değerleri (107,0 ma değerle 1011,0 Değerleri (103,3 ma değerle Değerleri (989 Değerleri (101,1 ma değerle Değerleri (101,1 ma değerle Değerleri (101,1	10 eri (mGy) 1061,0 cGy) 108,4 eri (mGy) 1027,0 cGy) 105,0 eri (mGy) cGy) 1003 cGy) 102,5 eri (mGy) 102,5 eri (mGy) cGy) eri (mGy)	12 1066,0 108,9 1032,0 105,5 105,5 1011 1011	14 1078,0 110,2 1044,0 106,7 1019 1019 104,1

-	Mutlak Doz Değerleri (cGy)							
	87,1	88,2	92,4	91,5	93,2	96,8	97,5	97,2
1 v 1	413,3		Ortalama	M _u okum	a değerle	eri (mGy)		
171			Mutl	ak Doz D	eğerleri ((cGy)		
	42,2							
(c)			Dia	agonal ka	yması (c	m)		
Alan (cm ²)	Merkez	2	4	6	8	10	12	14
			Ortalama	M _u okum	a değerle	eri (mGy)		
10x10	996,2	1020,0		1049,0		1078,0	1084,0	
	101.9	104.2	Mutl	ak Doz De	eğerleri (cGy)	110.9	
	101,8	104,2	Ortalama	$\frac{107,2}{M}$	a deŭerle	$\frac{110,2}{\operatorname{eri}(\mathrm{mGv})}$	110,8	
	959.3	981.3	Ontaranna	1016.0	auegen	1043.0	1047.0	
6x6		,01,0	Mutl	ak Doz De	eğerleri (cGy)		
	98,0	100,3		103,8	e (106,6	107,0	
			Ortalama	M _u okum	a değerle	eri (mGy)		
5x5	944,2		1	1.0.0	<u> </u>			
	96.5		Mutl	ak Doz De	eğerleri (cGy)		
	70,5		Ortalama	M _n okum	a değerle	eri (mGv)		
4 4	933,9	958,9	0100000	990,7		1017	1034	
4X4			Mutl	ak Doz De	eğerleri (cGy)		
	95,4	98,0		101,2		103,9	105,7	
3×3	911,7		Ortalama	M _u okum	a değerle	eri (mGy)		
383			Mutl	ak Doz De	eğerleri (cGy)		
	93,2		0.1	N 1	1 ~ 1	· (C)		
2.2	852,2		Ortalama	м _и окит	a degerie	eri (mGy)		
2x2	87,1		Mutl	ak Doz De	eğerleri (cGy)		
1	413.3		Ortalama	M _u okum	a değerle	eri (mGy)		
1x1	. ,-		Mutl	ak Doz De	eğerleri (cGy)		
	42,2							

4.2.2. Termolüminesans Dozimetre (TLD) ile Verim Ölçümü ve Yüzey Dozu

Merkezi eksende verim ölçümü ve yüzey dozu: Merkezi eksende Çizelge 3.1'de "T" ve "R" işareti ile belirlenen koşullar için 6 MV foton demeti kullanıldı ve sırasıyla 6 ve 16 mm (d_{Dmax}) derinliklerde lineer hızlandırıcı cihazından 100 MU verilerek ölçümler gerçekleştirildi. Okuma öncesi ısıtma işlemleri (100 ⁰C de bir saat) fırın kullanarak yapıldı. RADOS 2000 TLD cihazında okuma yapılarak sayım değerleri alınıp kaydedildi. Her TLD ölçümünde kullanılan TLD çiftlerinin sayım ortalamaları

hesaplandı. Kalibrasyon işlemlerinde $10x10 \text{ cm}^2$ alanın d_{Dmax} derinliğindeki 101,8 cGy mutlak doz değeri, TLD'lerin sayım verisi için doz sayım faktörü (kalibrasyon faktörü) olarak kabul edilip bu değer 1,29x10⁻⁶ cGy/sayım olarak bulundu ve diğer TLD sayım ölçümlerinde doz dönüşüm faktörü olarak kullanıldı. TLD öçümleri için önceden tanımlanmış olan alanlar için merkezi eksen doz verileri cGy olarak 16 mm ve 6 mm derinliklerde sırasıyla Çizelge 4.13 ve Çizelge 4.14'de verilmiştir.

Merkezi eksen dışında verim ölçümü ve yüzey dozu: Merkezi eksen dışındaki yani X2, Y1 ve Diagonal düzlemlerde Çizelge 3.1'de "T" ve "R" işareti ile belirlenen koşullar için 6 MV foton demeti kullanıldı ve sırasıyla 6 mm ve 16 mm (d_{Dmax}) derinliklerde lineer hızlandırıcı cihazından 100 MU verilerek ölçümler gerçekleştirildi. Okuma öncesi ısıtma ve okuma işlemleri daha önce belirtildiği gibi yapıldı. TLD'lerin sayım verisi için doz sayım faktörü (kalibrasyon faktörü) 1,29x10⁻⁶ cGy/sayım ile doza dönüştürüldü. Bu değerler cGy olarak 16 mm ve 6 mm derinliklerde sırasıyla Çizelge 4.13 ve Çizelge 4.14'de verilmiştir.

Çizelge 4.13.	16 mm derinlikte alanların (a) X2 kaymasının, (b) Y1 kaymasının ve (c)
	Diagonal kaymasının TLD mutlak doz değerleri

(a)	X2 kayması (cm)					
16 mm	Merkez	6	10	12		
Alan (cm ²)	TLD Mu	tlak Doz	Değerle	ri (cGy)		
10x10	101,8	103,6	-	108,3		
6x6	99,2	102,0	-	102,8		
5x5	98,1	-	-	-		
4x4	97,1	100,4	-	108,0		
3x3	92,3	-	-	-		
2x2	90,6	93,1	95,4	98,5		
1x1	73,5	70,9	72,7	56,1		

(b)	Y1 kayması (cm)			
16 mm	Merkez	6	10	12
Alan (cm ²)	TLD Mu	ıtlak Doz	z Değerlei	ri (cGy)
10x10	101,8	104,4	-	109,8
6x6	99,2	103,7	105,8	107,5
5x5	98,1	-	-	-
4x4	97,1	102,8	-	107,6
3x3	92,3	-	-	-
2x2	90,6	97,4	99,2	103,0
1x1	73,5	-	-	-

(c)	Diagonal kayması (cm)				
16 mm	Merkez	6	10	12	
Alan (cm ²)	TLD M	lutlak Doz	Değerleri	(cGy)	
10x10	101,8	105,9	-	112,5	
6x6	99,2	101,2	-	101,8	
5x5	98,1	-	-	-	
4x4	97,1	99,2	-	-	
3x3	92,3	-	-	-	
2x2	90,6	-	-	-	
1x1	73,5	-	-	-	

Çizelge 4.14. 6 mm derinlikte alanların (a) X2 kaymasının, (b) Y1 kaymasının ve (c) Diagonal kaymasının TLD mutlak doz değerleri

(a)	X2 kayması (cm)				
6 mm	Merkez	2	6	10	
Alan (cm ²)	TLD M	utlak Doz	Değerleri	(cGy)	
10x10	93,2	95,4	109,7	-	
6x6	90,7	91,0	93,7	-	
5x5	88,7	-	-	-	
4x4	86,2	87,2	90,9	-	
3x3	82,6	-	-	-	
2x2	81,8	81,4	86,0	-	
1x1	71,0	68,0	75,8	78,8	

(b)	Y1 kayması (cm)				
6 mm	Merkez	6	12		
Alan (cm ²)	TLD Mut	lak Doz Değ	erleri (cGy)		
10x10	93,2	97,3	101,7		
6x6	90,7	94,6	98,6		
5x5	88,7	-	-		
4x4	86,2	92,4	96,3		
3x3	82,6	-	-		
2x2	81,8	82,5	90,5		
1x1	71.0	-	_		

(c)	Diagonal kayması (cm)						
6 mm	Merkez	6	12				
Alan (cm ²)	TLD Mutla	TLD Mutlak Doz Değerleri (cGy)					
10x10	93,2	101,8	106,5				
6x6	90,7	93,8	104,2				
5x5	88,7	-	-				
4x4	86,2	93,6	-				
3x3	82,6	-	-				
2x2	81,8	-	-				
1x1	71,0	-	-				

5. TARTIŞMA

Bu çalışma Elekta marka lineer hızlandırıcı (6 MV) cihazında yapılmıştır. ÇYK ile oluşturulan $1x1 \text{ cm}^2$ ve $10x10 \text{ cm}^2$ arasındaki kare alanların belirli derinliklerde ve merkezi eksenden uzaklaşmasıyla elde edilen demet profilleri, yüzde derin dozlarındaki değişimler ve soğurulan doz değişimleri, öncelikle her bir ölçüm sistemi için verilecek ve sonraki aşamada ise birbirleriyle olan karşılaştırmaları ile verilecektir.

5.1. Rölatif Doz Ölçümleri: Merkezi ve Merkez Dışı Eksenler

5.1.1. Yüzde derin doz ve enerji tayini

Protokollerde foton demetinin enerji tayini için TPR kullanımı tavsiye edilmekte ve D_{20}/D_{10} oranı ile hesaplanabilmektedir (IAEA 2000). 6 MV foton demet enerjisi için $10x10 \text{ cm}^2$ alanın D_{20}/D_{10} oranı (0,588)'ndan TPR hesaplandı ve 0,685 olarak bulundu. Ayrıca 6 MV foton demeti için BJR Supplement 25'te önerilen verilerden yararlanarak D_{20}/D_{10} oranı hesaplandı ve farklar D_{20}/D_{10} için %0,6, TPR için %0,7 olarak bulundu.

Merkezi eksen yüzde derin doz: Çalışmada küçük alanların karakteristiğini incelemek için alan ve referans konumlarında CC04 iyon odaları kullanıldı. Su fantomunda 6 MV foton demeti için merkezi eksen boyunca kare alanlar (10x10, 6x6, 5x5, 4x4, 3x3, 2x2 ve 1x1 cm²)'ın rölatif doz (%DD) verileri elde edildi.

Maksimum doz derinliği referans alana göre yüzeye yaklaşmaktadır. D₁₀, D₂₀ ve D₂₀/D₁₀ için referans alana (10x10 cm²) göre alan boyutuna bağlı % farkları bulunmuştur. Bu % farklar sırasıyla 3,2 ile 11,2, 7,25 ile 17 ve 4,1 ile 7 arasında değişmektedir.

Çizelge 5.1.	Farklı	alan	boyutları	için	merkezi	eksen	yüzde	derin	doz	eğrilerinde	e elde
	edilen	d _{Dmax}	$_{\rm x},{\rm D}_{10},{\rm D}_2$	o ve I	D_{20}/D_{10} o	ranının	ı değerl	leri			

Alan (cm ²)	d _{Dmax} (mm)	D ₁₀ (%)	Fark %	D ₂₀ (%)	Fark %	D_{20}/D_{10}	Fark %
10x10	16,9	68,0	0	40,0	0	0,588	0
6x6	18,9	65,8	3,2	37,1	7,25	0,564	4,1
5x5	17,1	64,7	4,9	36,2	9,5	0,560	4,9
4x4	16,8	63,6	6,5	35,4	11,5	0,557	5,4
3x3	15	62,3	8,4	34,2	14,5	0,549	6,7
2x2	16.9	60,7	10,7	33,2	17	0,547	7
1x1	16,8	60,4	11,2	33,6	16	0,556	5,4

Şekil 5.1. Her bir kare alan için elde edilen maksimum doz derinlik değerleri 10 cm²'ye normalize edilmiştir. Beklenen maksimum doz derinlik değerlerinin eğrisini içermektedir.

Şekil 5.2. Her bir kare alan için D_{20}/D_{10} oranının değişimini gösteren grafik

Kare alan kenarı(A)'na bağlı 2. Derece polinom denklemi ile enerji tayini aşağıdaki denklem ile ifade edilebilir.

$$D_{20}/D_{10} = 0,0002(A)^2 + 0,003(A) + 0,5398$$
(2.30)

Bu denklem 1 cm^2 ile 10 cm^2 alan için geçerlidir.

Küçük alanların karakteristikleriyle ilgili özellikle 4 cm²'nin altındaki alanlar için Richmond vd (2014)'nın da söylediği gibi literatürlerde kaynak verilerine rastlamak zordur. Sixel vd (1994)'nin yaptıkları çalışmada maksimum doz derinliğinin değişimini incelemişlerdir ve 5x5 cm²'den küçük alanlarda daha hızlı bir azalım ve 5x5 cm²'den büyük alanlarda ise daha yavaş bir azalım olduğunu görmüşlerdir. Bu çalışmada ise 6x6 cm²'den küçük ve büyük alanlar için maksimum doz derinliğinde aynı şekilde bir davranış izlenmiştir. Şekil 5.1'de 2.derece polinom denklemiyle bu davranış biçimi ifade edildi. Genel anlamda d_{Dmax} 'ın sabit bir derinlikte olduğu kabul edilmektedir. Ancak alan boyutuna bağlı d_{Dmax} derinliğinin yüzeye yaklaşımındaki değişim, 6x6 cm²'den büyük alanlarda fantom içerisindeki elektron saçılmalardan dolayı daha yavaşken, 6x6 cm²'den küçük alanlarda ise cihazın kafa yapısından özellikle düzleştirici filtrenin kısmi kapanmasından dolayı daha hızlıdır. Yani her iki durumda da d_{Dmax} derinliğinin azalması söz konusudur.

IAEA (2000) protokolünde foton demetinin enerji tayini için D_{20}/D_{10} oranı içeren bir denklem ile TPR'nin hesaplanması tavsiye edilmektedir. Ancak IPEM (2010)'de küçük alanlar için bu denklemin kullanımı önerilmemektedir. Bu çalışmada küçük alanlar için elde edilen D_{20}/D_{10} oranları direk olarak küçük alan karakteristikleri incelemek için kullanılmıştır. 10x10 cm² alan için D_{20}/D_{10} oranı (0,588)'ndan TPR hesaplanmış ve demetin enerjisi 0,685 olarak bulunmuştur. Fakat alanın küçülmesiyle D_{20}/D_{10} oranı azalmıştır. BJR Supplement 25'in verilerinden yararlanarak D_{20}/D_{10} oranları hesaplandı. 4x4 cm² ile 10x10 cm² arasında çalışmaya alınanlarla karşılaştırıldığında farklar D_{20}/D_{10} için sırasıyla % 0,8, % 0,5, % 0,3 ve % 0,6 iken TPR için % 1, % 0,7, % 0,4 ve % 0,7'idi. TRS-398'in önerdiği denklemin 4x4 cm²'den büyük alanlarda geçerli olduğu izlendi.

Merkezi eksen dışında yüzde derin doz: Alan kaydırma çalışması kapsamında yer alan alanların X2, Y1 ve Diagonal düzlemlerde elde edilen %DD'larından d_{Dmax} , D_{10} , D_{20} ve D_{20}/D_{10} verileri bulundu ve her bir kaydırma için merkezi eksene göre kıyaslaması yapıldı.

X2 düzlemindeki kaymada tüm alanlar için d_{Dmax} derinliğinin 2 mm yer değişimiyle yüzeye yaklaştığı gözlendi. Ortalama d_{Dmax} değeri 16,0 ila 16,5 mm arasında değişim gösterdi. Aynı inceleme Y1 düzlemi için yapıldığında d_{Dmax} yer değişiminin X2'ye benzer olduğunu ancak ortalama d_{Dmax} değerinde 16,9 ila 17,7 mm arasında değişim olduğu izlendi. Diagonal düzlemde ise, d_{Dmax} yer değişimi maksimum 4 mm'ye vardığı görüldü. Ortalama d_{Dmax} değeri 15,7 ile 16,1 mm arasında bulundu. Bu verilerin kabul limitleri (≤ 2 mm) içinde olduğu saptandı.

Yüzde derin doz eğrisinin lineer kısmı incelendi ve alanların merkezi demet ekseninden uzaklaşmasıyla (kayma miktarı büyüyünce) D_{10} ve D_{20} verilerinde genel olarak azalma görüldü. Örneğin, bu azalmanın yüzde farkı 10x10 cm² alan için sırasıyla X2 düzleminde % 3,5 ve % 7,5 olarak Çizelge 4.2'de verildi. Ancak ilgili derinliklerde 4x4 cm² ve daha küçük alanların demet diverjans geometrisi nedeniyle tarama ekseni alan kenarına yaklaşmaktadır. Buda, D_{10} ve D_{20} için azalmanın yüzde farkının kabul edilemeyecek büyüklükte olmasına neden olmaktadır. Böylece alan kaydırmalarında kaydırmanın miktarı ile alan boyutu arasında önemli bir bağlantı olduğu görülmüştür. Bu yüzden D_{10} ve D_{20} parametrelerini elde etmek için ilgili derinliklerde doz profillerinden faydalanmak gerekir.

Şekil 5.3. Geometrik alan ile radyasyon alanı arasındaki merkez kaymasının şematik gösterimi

5.1.2. Demet profilleri

Merkezi eksende demet profilleri: Alan ve referans konumlarında CC04 iyon odaları kullanıldı. 6 MV foton demeti için SSD= 100 cm'de her bir kare alan (10x10, 6x6, 5x5, 4x4, 3x3, 2x2 ve 1x1 cm²)'ın su fantomu koordinat sistemine göre X (inline-GunTarget(GT)) ve Y (crossline-AB) eksenleri boyunca farklı derinliklerde (d_{Dmax} , 10 cm ve 20 cm) demet profilleri alındı.

Her bir kare alana ait olan d_{Dmax} (10 cm² alan için 1,6 cm), 10 cm ve 20 cm derinliklerde alınan profillerden,

• Alan genişliği d_{Dmax} derinliğinde elde edilen demet profilinin % 50'lik doz aralığından hesaplandı. Crossline ve inline düzlemlerinde geometrik alan genişliği ile karşılaştırıldığında farklarının ± 2 mm içinde olduğu görüldü.

(a)		Crossline		
	Alan genişliği (mm) SSD=100 cm'de	Geometrik Alan genişliği (mm) SSD=101,6 cm'de	Dozimetrik Alan genişliği (mm)	Fark (mm)
inde	100	101,6	100,2	1,4
nliği	60	61,0	59,5	1,5
leriı	50	50,8	50,2	0,6
_{nax} d	40	40,6	39,7	0,9
\mathbf{d}_{Dr}	30	30,5	29,7	0,8
	20	20,3	19,7	0,6
	10	10,2	10,6	0,4

Çizelge 5.2. Alan boyutunun uygunluğu (a) crossline düzlemlerinde

Çizelge 5.2.'nin devamı arkada

(b)		Inline		
le	Alan genişliği (mm) SSD=100 cm'de	Geometrik Alan genişliği (mm) SSD=101,6 cm'de	Dozimetrik Alan genişliği (mm)	Fark (mm)
jind	100	101,6	102,1	0,5
illiğ	60	61,0	61	0,0
leri	50	50,8	50,7	0,1
nax (40	40,6	40,4	0,2
dDn	30	30,5	30,2	0,3
	20	20,3	19,9	0,4
	10	10,2	9,9	0,3

Çizelge 5.2.'nin devamı: Alan boyutunun uygunluğu (b) inline düzlemlerinde

Demet profilinin % 50'lik doz aralığından elde edilen dozimetrik alan genişliği ile geometrik alan genişliği kıyaslandığında tüm alanlar için fark ± 2 mm olup alan tanımı uygun bulunmuştur.

Alan boyutu, demet profillerinden yarı maksimum genişliği (FWHM) tanımı kullanılarak bulunur. Çoğunlukla küçük alanlarda da alan tanımı için kullanılmaktadır. Chen vd (2007)'nın yaptığı çalışmada da FWHM ve alan boyutu arasındaki fark % 2'nin içinde bulunmuştur.

• Demetin düzgünlüğü; 10 cm derinlikte alınan demet profilinin % 80'lik doz aralığı içinde görülen maksimum (D_{max}) ile minimum (D_{min}) doz değerleri ile su fantomu yazılımı kullanılarak elde edilmiştir. Çizelge 4.4 (a) ve Çizelge 4.4 (b)'de tüm alanların demet düzgünlüğü değerleri yer almaktadır ve ± % 3 limitinin dışında kalan alanlar için ilgili bölme gri tonda gösterilmiştir.

Şekil 5.4. Küçük alanlarda demet düzgünlüğünün şematik gösterimi

Düzleştirici filtre bulunmayan lineer hızlandırıcı cihazlarında demet düzgünlüğü

verileri, önerilen denklem (2.25) ile hesaplanamamaktadır (Şekil 5.4). Ancak, Şekil 5.5'deki profillerde de görüldüğü gibi demet düzgünlük değeri %3'ün üzerinde olmasına rağmen kabul görülmektedir.

Şekil 5.5. 6 MV foton demetinin farklı alan boyutları için düzleştirici filtre bulunmayan cihazdan elde edilen demet profilleri

Şekil 5.6'da küçük alanlarda düzleştirici filtre olduğu ve olmadığı durumlarda elde edilen profillerin benzer olması demet düzgünlüğü değerinin %3'ün üzerinde kabul görmesi mümkündür. Stathakis vd (2009)'nın çalışmasında görüldüğü gibi $\leq 5 \text{ cm}^2$ 'den küçük alanlarda profillerin birbirine benzer bulunmuştur.

Şekil 5.6. 2x2, 5x5, 10x10, 20x20 ve 30x30 alanlar için düzleştirici filtre olan ve olmayan profillerin karşılaştırılması

Crossline düzleminde 6x6 ila $1x1 \text{ cm}^2$ alanlar için elde edilen demet düzgünlüğü % 4,2 ila % 21,1 aralığındadır. Ayrıca inline düzleminde 5x5 ile $1x1 \text{ cm}^2$ alanlar için % 3,2 ile % 18,5 arasında değişmektedir.

• Demetin simetrisi;

10 cm (referans) derinlikte % 50'lik doz seviyesindeki noktaların merkezi eksene uzaklıklarından elde edilmiştir. Bu değerler Çizelge 4.4 (a) ve Çizelge 4.4 (b)'de yer almaktadır. Crossline ve inline düzlemlerinde bakıldığında tüm alanlar için \pm % 3 limit değeri içinde olduğu görülmüştür. Uluslar arası ve ulusal protokollere uygun bulunmuştur.

• Penumbra parametresi;

10 cm (referans) derinlikte tüm alanlar için elde edilen demet profilinde % 80 ila %20 aralığından, su fantomunun yazılımı aracılığıyla bulundu. Çizelge 4.4 (a)'da görüldüğü gibi alan boyutunun küçülmesiyle sağ ve sol penumbra genişliği azalmıştır. Bu azalma hem crossline hem de inline profil taramalarında görülmüştür. Crossline taramasında 10x10 ila 1x1 cm² alan boyutları için sağ penumbra 8,1 ila 5,0 mm ve sol penumbra 7,5 ile 4,9 mm arasında azaldığı görülmektedir. Inline taramasında ise 10x10 ila 1x1 cm² alan boyutları için sağ penumbra 6,3 ile 4,0 mm arasında azaldığı görülmektedir.

Inline ve crossline profillerinden elde edilen Penumbra değerleri arasındaki 1 ila 2 mm fark, kolimatör yapısından kaynaklanmaktadır.

(a)		Crossline	Inline
	Alan genişliği (mm) SSD=100 cm'de	Penumbra Sağ-Sol (mm)	Penumbra Sağ-Sol (mm)
ikte	100	8,1-7,5	5,8-6,3
llui	60	7,0-6,8	5,3 – 5,4
deı	50	6,9 - 6,3	5,1-5,0
cm	40	6,8 - 6,6	4,9 - 4,9
10	30	6,1 – 6,3	4,6-4,9
	20	5,8-5,8	4,6-4,6
	10	5,0-4,9	4,1-4,0

Çizelge 5.3. Alan boyutuna göre (a) 10 cm derinlikte ve (b) d _{Dmax} derinliğinde crossline
ve inline yönündeki penumbra değerleri

Ayrıca d_{Dmax} derinliğinde penumbra verileri incelendi. 10 cm derinlik için elde edilen verilerde görüldüğü gibi sağ ve sol penumbralar alan boyutunun küçülmesiyle azaldığı görülmektedir. Beklendiği üzere d_{Dmax} derinliğinde penumbra genişliği 10 cm derinliktekinden daha azdır. Genel olarak tüm alan boyutları için geçerli olan derinlik arttıkça penumbra genişler kavramıyla uyumludur.

(b)		Crossline	Inline
e	Alan genişliği (mm) SSD=100 cm'de	Penumbra Sağ-Sol (mm)	Penumbra Sağ-Sol (mm)
jind	100	6,1 – 5,5	4,6 - 4,4
nliğ	60	5,5 - 5,6	4,3 - 4,4
leri	50	5,7 - 5,7	4,5 - 4,0
lax d	40	5,7-5,6	4,4 - 4,1
dDm	30	5,4-5,4	4,3 - 4,0
-	20	5,2-5,1	3,8 - 3,8
	10	4,6-4,3	3,7 - 3,7

Çizelge 5.3'ün devamı: (b) d_{Dmax} derinliğinde

Lee vd (2004)'nın çalışmasında 10x10 cm² alanın d_{Dmax} ve 10 cm derinlikteki sağ ve sol penumbraları sırasıyla 5,1-7,8 mm ve 7,8 – 9,6 mm olarak bulmuşlardır. Chen vd (2007)'nın farklı dedektörler kullanarak yaptıkları çalışmada d_{Dmax} derinliğinde 5x5, 3x3 ve 1x1 cm² alanların penumbra genişliklerine baktıklarında alanın küçülmesiyle penumbranın daraldığını bulmuşlardır. Penumbranın alanın küçülmesine bağlı daralması bu çalışmalarla uyumluluk göstermektedir.

Merkezi eksen dışında demet profilleri: Alan kaydırma çalışması kapsamında yer alan alanların X2, Y1 ve Diagonal düzlemlerde alınan demet profillerinden D_{10} , D_{20} ve D_{20}/D_{10} verileri her bir kaydırma için merkezi eksen verilerine göre kıyaslandı. Yüzde farklar bulundu (Çizelge 4.6 ve Ek-4).

X2, Y1 ve Diagonal düzlemindeki kaymada tüm alanlar için genel olarak D_{20}/D_{10} oranının merkezi eksene göre yüzde farkları incelendi ve alanların merkezi demet ekseninden uzaklaşmasıyla (kayma miktarı büyüyünce) bu oranda azalma saptandı. Buna örnek olarak crossline profillerinden elde edilen D_{20}/D_{10} verisinin değişimindeki yüzde fark, 10x10 cm² alan için X2 düzleminde alanın 14 cm kaymasında %3,3, Y1 ve diagonal düzlemlerde 10 cm kaymasında % 1,6 ve % 2,1 olarak bulundu (Çizelge 4.6).

Küçük alanlarda, Şekil 5.7'de görüldüğü gibi alanın kaydırma miktarının büyümesiyle D_{20}/D_{10} oranı genellikle azalmaktadır. Her bir alan için D_{20}/D_{10} oranının merkezi eksene olan uzaklığına göre davranışının ifadesi ikinci derece polinom denklemi şeklinde bulundu ve Şekil 5.7'de verildi.

Şekil 5.7. Çalışmaya alınan alanlar için D₂₀/D₁₀ oranının değişimini gösteren grafik (a) X2 düzlemindeki kaymasına göre, (b) Y1 düzlemindeki kaymasına göre

Merkezi eksenden kayma miktarına bağlı olarak D_{20}/D_{10} oranını veren denklem ile 4x4 cm² alanın 14 cm maksimum kayma miktarı için D_{20}/D_{10} hesaplandığında yüzde farklar X2, Y1 ve Diagonal düzlemler için sırasıyla %3,9, %27 ve %17,8 olarak bulundu. Aynı hesaplamalar 2x2 cm² alan için tekrarlandığında ise bu yüzde farkların X2 ve Y1 düzlemleri için sırasıyla %3,3 ve %49 olduğu görüldü.

Tüm bu veriler göz önünde bulundurulduğunda merkezi eksenden kaymanın her bir düzlemde 10 cm'den büyük olması durumunda D_{20}/D_{10} oranı üzerindeki etkisinin % 3'den büyük olduğu görüldü. D_{20}/D_{10} oranı foton demetlerinde enerji tayininde kullanılan bir tanımdır. Bu tanım su ortamında fotonun girginliğinin tanımı olup ortamda oluşan elektron enerji spektrumuyla ilişkilidir. Bu nedenle D_{20}/D_{10} orandaki düşüş direk olarak elektron enerji spektrumunda ve indirek olarak foton demetinin enerjisinde farklılığa sebep olduğunun göstergesidir.

Referans (10 cm) derinlikte kayması yapılan alanlar için elde edilen demet profillerinden sağ ve sol penumbra değerleri su fantomunun yazılımı aracılığıyla bulundu. Çizelge 4.8'de görüldüğü gibi 10 cm derinlikte 10x10 cm² alan için crossline ve inline taraması incelendiğinde X2 kaymasında kayma miktarı 0 ila 14 cm arasında artarken sağ ve sol penumbra değerleri 2 mm içinde değişmektedir.

Y1 kaymasının crossline taramasında sağ ve sol penumbra değerleri 2 mm içinde değişmektedir. Ancak inline'da sağ penumbra 2 mm içerisinde değişim gösterirken, sol penumbranın verileri kabul edilemeyecek büyüklükte bulunmuştur. Şekil 5.8'de gösterildiği gibi ÇYK'lerin birbirine değmemesi için yaratılan boşlukta algılayıcı tarafından doz algılanması penumbranın % 20'lik dozunun değerlendirmesinde hataya neden oldu. Bu nedenle sistem tarafından hesaplanan penumbra değeri değerlendirilmedi.

Şekil 5.8. Inline profillerin elde edilmesinde tarama ekseni ile ÇYK'ler arasındaki boşluğun ilişkisi

Şekil 5.9. Y1 düzleminde 10 cm kayma için 10 cm derinlikteki profillerde sol penumbra hesaplanmasındaki sorunun gösterimi

Diagonal düzlemin crossline taramasında, sağ ve sol penumbra 2 mm içerisinde değişmektedir. Inline taramasında ise, sağ penumbra 2 mm içinde değişim gösterirken, yukarda bahsedilen ÇYK sorunundan dolayı sol penumbra değerlendirilmedi.

Demet profillerinde görülen bu dalgalanma çok yapraklı kolimatörlerin yapısı, yapraklar arasındaki çarpışmayı engelleyecek emniyet mesafesi (5 mm) ve yapraklar arasındaki radyasyon sızıntısından kaynaklanmaktadır.

5.1.3. S_c (Kolimatör saçılma faktörü) ölçümleri

Merkezi eksende S_c ölçümleri: Merkezi eksende her alan için elde edilen M_u okumaları 10x10 cm² alanın M_u okumasına normalize edildi ve S_c değerleri bulundu (Bkz. Çizelge 4.11). Alan boyutu küçüldükçe S_c değerlerinin de beklendiği gibi azaldığı görüldü (Khan 2010).

Lineer hızlandırıcılarda elektronların hedef ile etkileşiminden sonra çıkan fotonlar Gaussian dağılım biçiminde yayılır. Düzleştirici filtreden sonra büyük alanları şekillendirmeye yarayan birincil kolimatörler, bu dağılımın yanal uzantılarının bir kısmını kapatır. İkincil kolimatörlerde alan şekillendirmesinde kullanılır. Cihazın kafa kısmında bulunan birincil kolimatör ve özellikle düzleştirici filtredeki saçılmalardan dolayı bu dağılımda beklenen verim % 12'ye kadar artar (Zhu vd 2004). Zhu vd (1995), hava ortamındaki kolimatör saçılma faktörünü incelemişler ve alan boyutunun küçülmesiyle S_c faktörünün azaldığını bulmuşlardır. 2x2 cm² gibi küçük alanlarda radyasyon kaynağının kapanma etkisi verimin azalmasında etkin bir rol oynar. İkincil kolimatörlerin 2x2 cm² gibi alanları oluşturmasıyla Gaussian dağılımının büyük bir kısmı kapanır. Böylece kaynakta kısmen kapanmış olur ve verimin düşmesi izlenir. Ayrıca alan şekillendirme (ikincil kolimatör, ÇYK veya blok) araçlarının farklılıkları ve cihazın kafasındaki konumları verim üzerine etkisi olduğu bilinmektedir (Zhu vd 1994, 1995). Küçük alanlarda kolimatörlerden geri saçılmış olan foton ve elektronların cihazın kafasındaki doz izleyici iyon odasına gelmesiyle daha fazla akım algılar. Böylece verim (MU başına gelen foton akısı) kolimatörün açıklığının artmasına bağlı olarak artar (Liu vd 2000).

Merkezi eksende $10x10 \text{ cm}^2$ ila $2x2 \text{ cm}^2$ alanlar kıyaslandığında S_c değerlerinin alanın küçülmesine (1x1 cm² alan hariç) bağlı olarak %5,4 oranında düştüğü görülürken 1x1 cm² alan dahil edildiğinde verimin %12,5 azaldığı bulundu. Literatür verilerine uygun olarak bu verilerin azaldığı görüldü.

Merkezi eksen dışında S_c ölçümleri: Merkezi eksenden kayma miktarına göre elde edilen M_u değerlerini S_c'nin tanımına göre 10x10 cm² alana normalize ederek kayma ve alan bağımlılığı değişimi izlendi.

X2, Y1 ve Diagonal düzlemlerde alanın demet merkez ekseninden uzaklaştıkça bu oranın büyüdüğü görüldü (Şekil 5.10).

Şekil 5.10. Her bir alanın kaymasından elde edilen normalize değerler (a) X2 düzleminde, (b) Y1 düzleminde

Şekil 5.10'nun devamı: (c) Diagonal düzlemde

Merkezi eksen dışındaki her kayma miktarı kendi içinde değerlendirildiğinde, S_c değerleri merkezi eksenden uzaklaştıkça arttığı görüldü. X2 düzleminde maksimum değişim %5,9, Y1 düzleminde %5,6 ve Diagonal düzlemde %3'dür.

ÇYK'ler ile şekillendirilmiş kare alanların merkezi eksendeki S_c verileri ile merkezi eksen dışında yerleşmiş olan alanların S_c'leri arasında %2 farklılık göstermesinin yanı sıra eşdeğer kare alanlar için bu fark %5'e varmaktadır (Palta vd 1996). Shih vd (1999)'nın yaptığı çalışmada kare eşdeğer alanların merkezden kaymasındaki verimin \pm %1 içinde farklılık gösterdiğini bulmuşlardır. asimetrik alanların r cm kadar kaymalarını incelediklerinde verimdeki en fazla farkın %4'e kadar arttığını hesaplamışlardır.

5.2. Mutlak (Absolute) doz ölçümleri: Merkezi ve Merkez Dışı Eksenler

Çalışmada 6 MV foton demet enerjisinin kullanıldığı lineer hızlandırıcı cihazında Çizelge 3.1'de belirtilen alanlarda 100 MU verilerek katı su fantomunda yapılan ölçümler irdelendi.

5.2.1. İyon odası ile verim ölçümü

Merkezi eksende verim ölçümü: Merkezi eksen düzleminde alan boyutları küçüldüğünde mutlak doz değerlerinde beklendiği gibi azalma görüldü. Bu azalma oranı (1x1 cm² alan hariç) %14,5'e kadar indi.

Merkezi Eksen Dışında Verim Ölçümü: Merkezi eksen dışında yani X2, Y1 ve Diagonal düzlemlerde her kayma miktarı için ölçümler değerlendirildiğinde ise merkezi eksenden uzaklaştıkça doz değerlerinde artış görüldü. Çalışmaya dahil edilen alanlarda doz artışındaki maksimum değişimi X2 düzleminde %7,2, Y1 düzleminde %11,6 ve Diagonal düzlemde %10,7'e sırasıyla 4x4, 2x2 ve 4x4 cm² alanlarda görüldü (Şekil 5.11).

Şekil 5.11. Her bir alanın kaymasından elde edilen mutlak doz değerleri (a) X2 düzleminde, (b) Y1 düzleminde ve (c) Diagonal düzlemde

Doz veriminin ölçülmesinde alan boyutu önemlidir. Küçük alanlarda yanal elektronik dengenin olmaması fantom saçılma faktörü üzerindeki etkisi büyük olduğundan doz verimde büyük değişikliklere neden olmaktadır (Charles vd 2014).

Sargison vd (2011)'nın farklı dedektörlerle yaptıkları verim ölçümü çalışmasında alan boyutunun küçülmesiyle belirsizliğin arttığını ve verimin azaldığını bulmuşlardır. Martens vd (2000)'nın çalışmasında ise aynı şekilde alanın eninin küçülmesiyle doz veriminde hızlı bir düşüş görmüşlerdir. 10 cm x1 cm alanın enindeki 1 mm daralma ile verimde % 4,2 düşüş izlerken, 1 mm genişleme ile %2,8 artış bulmuşlardır. Elekta marka lineer hızlandırıcılarda ÇYK'ler kaynağa yakın olduğu için alanın enindeki milimetrik bir değişimin verimde etkin bir farklılığa sebep olduğunu belirtmişlerdir.

Martens vd (2000), 6 MV foton demet enerjisi için 5x5 cm² alanın merkezi eksenden 5 ve 10 cm uzaklıklarda yerleşmesiyle 5, 10, 20 ve 30 cm derinliklerdeki merkeze göre doz değişiminin % 0,1'den % 0,4'e kadar olduğunu izlemiştir. Ancak Klein vd (2010)'nın çalışmasında aynı enerji için 5x5 cm² alanın merkezi eksenden 4 cm uzakta yerleşmesi durumunda doz veriminde (d_{Dmax} derinliğinde) merkez yerleşimine göre % 20'e kadar artış gözlenmiştir.

Haryanto vd (2002)'nın çalışmasında verim ölçümlerinde dedektöre bağlı doz algılamadaki farklılıklar özellikle küçük alanlarda izlenebileceğini ve bu farklılıkların 1x1 cm² alanlarda %35 e kadar varlığı beyan edilmiştir. 2x2 cm² alan boyutunda ise bu farklılık %3 civarındadır.

5.2.2. Termolüminesans dozimetre (TLD) ile verim ölçümü ve yüzey dozu

Merkezi eksende verim ölçümü ve yüzey dozu: Merkezi eksen TLD ölçümlerinden elde edilen doz sonuçları 16 mm (d_{Dmax}) derinliklerde Çizelge 4.13'de görüldüğü gibi alanın küçülmesiyle azalmaktadır.

Alan boyutuna bağlı olarak doz veriminin elde edilmesinde, dedektör hacminin etkin olduğu birçok çalışmada görülmektedir. Stasi vd (2004)'nın çalışmasında, farklı alanlardaki (1x1-20x20 cm²) verim ölçümlerini farklı hacimli dedektörlerle yapmışlardır. Bu ölçümlerde 2x2 cm² ve daha büyük alanlarda 1 ila 130 mm³'lük dedektörlerden elde edilen verimlerin birbirleriyle uyum içinde olduklarını ancak 1x1 cm² alan için Extradin A16 Micropoint (7 mm³) dedektör ile diamond (1-6 mm³) dedektör karşılaştırıldığında verim farkının % 0,6 olduğunu bulmuşlardır.

TLD sonuçları CC04 iyon odasının ölçümleriyle uyumlu olup azalım oranı (1x1 cm² alan hariç) %11 civarında bulundu. 1x1 cm² alan için TLD'lerden elde edilen doz değerlerindeki düşüşün CC04 iyon odasının algıladığı kadar düşük olmadığı görüldü. Bu değerler CC04 iyon odası ile 42,2 cGy ve TLD ile 73,5 cGy bulunup 10x10 cm² alanın doz değerine göre düşüş oranları sırasıyla % 58,5 ve % 27,8'dir. CC04 (40 mm³) iyon odası hacmiyle TLD (14 mm³) hacminin kıyaslaması yapıldığında, TLD'nin doz algılamasında daha hassas olması beklenir.

Çalışmaya dahil edilen alanlar için 6 mm derinlikteki dozlar, yüzey dozunu temsil edebilmektedir (Bkz. Çizelge 4.14). Bu derinlikteki dozlar alan boyutunun küçülmesiyle

düşmektedir. 10x10-2x2 cm² alanlar arasındaki dozun düşme oranı %12,3 iken, 1x1 cm² alanın dozu da bu karşılaştırmaya dahil edildiğinde bu oran %23,8'e varmaktadır.

10x10-2x2 cm² alanlar arasında karşılaştırma yapıldığında, 16 mm (d_{Dmax}) derinliğinde alan boyutunun küçülmesiyle dozdaki düşme oranı %11 iken, 6 mm derinlikte %12,3 olarak bulundu.

Merkezi Eksen Dışında Verim Ölçümü ve Yüzey Dozu: Merkezi eksen dışındaki yani X2, Y1 ve Diagonal düzlemlerde 16 mm ve 6 mm derinlikler için TLD'den elde edilen doz değerlerine bakıldığında merkezi eksenden uzaklaştıkça artış eğilimi gözlendi. Bu artış eğilimi 16 mm derinlikte CC04 iyon odası ile yapılan ölçümlere benzerlik göstermektedir (Şekil 5.12). Doz artışındaki maksimum değişimi X2 düzleminde %11,2, Y1 düzleminde %13,7 ve Diagonal düzlemde %10,8'e sırasıyla 4x4, 2x2 ve 4x4 cm² alanlarda görüldü. TLD ile küçük alanlarda merkezi eksen dışındaki ölçümlerde özellikle 2x2 cm² ve 1x1 cm² alanlarda daha başarılı olduğu X2 düzlemindeki kayma verilerinden anlaşılır.

Şekil 5.12'nin devamı: (c) Diagonal düzlemde

Klein vd (2010) 6 MV foton demeti ile su ortamında yaptıkları çalışmada farklı alanın merkezi eksen ile merkezi eksen dışındaki konumlanması (4 cm) arasında doz verimlerinin değişimini CC01 iyon odası ve plastik sintilatör dedektörlerle incelemişler ve 4 cm merkezi eksen kayması ile doz veriminde artış görmüşlerdir. Bu artış miktarı, CC01 iyon odası kullanıldığında 1x1 cm² alan için %3,6'e kadar arttığı göstermişlerdir. Dozdaki artışın nedenini ÇYK'lerden veya fantomdan, ÇYK'ler arasındaki sızıntıdan ve kaynak ile alan arasında konumlanan lineer hızlandırıcının kafasındaki mekanizmanın alan tanımlamadaki farklılıklarından dolayı oluşan aşırı miktardaki saçılmaya bağlı olduğunu söylemişlerdir.

Bu tez çalışmasında CC04 iyon odası ve katı su fantomu ortamında tüm düzlemlerde incelenen alanların doz veriminde kayma miktarının artışıyla artış izlendi. 1x1 cm² alan haricinde diğer alanlar için doz verimindeki artış, X2 düzleminde kayma miktarının ~ 0,5 katıyla lineer olarak arttığı ifade edilebilinir (Şekil 5.12 (a)). Şekil 5.12 (b) ve (c)'de de görüldüğü gibi her bir alan için kayma miktarının artışı verimin artışıyla lineer bir ilişki gösterir. TLD çalışmasında ise Şekil 5.12'de noktalarla gösterilen veriler bu bulguları desteklemektedir. Klein vd (2010)'ın alan kaymasına ilişkin verim artışı için sundukları parametrelere ek olarak, lineer hızlandırıcının kafasında bulunan düzleştirici filtrenin etkisi de bu kaydırmalarda dikkate alınmalıdır. Foton kaynağı düzleştirici filtreden geçtikten sonra her bir kaydırma ile birlikte radyasyon alanı filtrenin daha ince kısmından gelen fotonları içerir. Bu fotonlar daha düşük enerjilere sahip olabilirler. Buna bağlı olarak ortamda saçılma miktarında artış gözlenir. Alanın kayma miktarının büyümesiyle saçılma oranının artması beklenir. Sonuç alarak, doz veriminin artışı kaymaya bağlı bir faktörle ifade edilebilir.

Merkezi eksen dışındaki yani X2, Y1 ve Diagonal düzlemlerde 6 mm derinlik için TLD'den elde edilen doz değerlerine bakıldığında merkezi eksenden uzaklaştıkça artış eğilimi gözlendi.

6. SONUÇ

Bu çalışma, Elekta marka Synergy lineer hızlandırıcı cihazında üretilen fotonların 6 MV demet enerjisinde yapıldı. Çalışmada yoğunluk ayarlı radyoterapi tekniğinde kullanılan küçük alanların karakteristiklerini incelemek için rölatif ve mutlak doz ölçümleri alındı ve birbirleriyle karşılaştırıldı.

Çalışma kapsamındaki alanlar (1x1 cm²-10x10 cm²), cihazın merkezi ekseninde ve merkezi eksenin dışında üç farklı kolimatör ekseni üzerinde kaydırılarak yerleştirildi. Bu alanların yüzde derin dozunu (dozun derinliğe bağlı yüzde değişimi) ve profillerini belirlemek için, CC04 iyon odası ile Iba marka Blue su fantomu kullanıldı. Derin doz ve profillerden enerji tayini, d_{Dmax} derinliği, D_{20}/D_{10} oranı, simetri, düzgünlük, penumbra ve FWHM verileri bulundu. Havada kolimatör saçılma faktörünü ölçmek için, CC04 iyon odası ile pirinç alaşımlı "build-up" başlık ve su fantomunun boş tankı kullanıldı. Doz verim ölçümleri için, katı su fantomda CC04 iyon odası ve termolüminesans dozimetri (TLD) kullanıldı. Ayrıca TLD ile 6 mm derinlikteki dozlar ölçüldü.

Merkezi eksende yerleşmiş olan alanların küçülmesiyle d_{Dmax} derinliğinin ve D_{20}/D_{10} oranının düştüğü görüldü. Demet simetrisinin tüm alanlarda limitler (±%3) içinde olduğu tespit edildi. Düzgünlük parametresinin 5x5 cm²'den küçük alanlarda %3 limitini aştığı bulundu. 4x4 cm²'den küçük alanların profilleri düzleştirici filtresiz profillere benzerlik gösterdi. Bu alanlarda düzgünlük parametresinin % 3 limitinin üzerinde olduğu görüldü. Bu nedenle düzgünlük parametresi yerine FWHM parametresinin kullanımının küçük alanlar için daha etkin olduğu tespit edildi. 10x10 cm²'nin kolimatör saçılma faktörü değerlerinin 2x2 cm² için % 5,4'e indiği, iyon odası ve TLD ile doz verim ölçümlerinde görülen düşüşün ise sırasıyla % 14,5 ve % 11'e indiği görüldü. Yüzey dozu olarak 6 mm derinliğindeki TLD dozlarında da % 12,3 düşüş bulundu.

Alanların yerleşimleri merkezi eksenden uzaklaştıkça tüm düzlemlerde d_{Dmax} derinliği ~ 2-4 mm yüzeye yaklaştı. X2, Y1 ve Diagonal yöndeki kaydırmalardaki her bir alanın profillerinden bulunan D_{20}/D_{10} oranının sırasıyla %3,9, %27 ve %17,8'e kadar düştüğü görüldü. Genellikle sağ ve sol penumbra değişimi 2 mm içinde olmasına rağmen ÇYK'lerin alan şekillendirmesine bağlı olarak Y1 düzleminde sol penumbra çok geniş görüldü. Alanların merkeze göre kaydırma düzlemindeki yerdeğişimiyle kolimatör saçılma faktörleri % 3-% 6 oranında artı. Doz verim ölçümlerinde maksimum doz artışı 4x4 cm² alanda X2 düzleminde iyon odası ile %7,2, TLD ile %11,2 görülürken Diagonal düzlemde %10,7 ve %10,8 görüldü. Y1 düzleminde ise bu artış 2x2 cm² alanda iyon odası ile %11,6 ve TLD ile 13,7 idi. Yüzey dozu olarak 6 mm derinliğindeki TLD dozlarında genel olarak tüm düzlemlerdeki alan kaydırmalarında artış izlendi.

YART tekniğinin dozimetrisi alan boyutlarının çok küçük olmasından dolayı önemlidir. Dolayısıyla, YART'ta doğru doz hesaplaması için küçük alanlar ve onların dozimetrik özellikleri TPS'de uygun bir şekilde modellenmeli ve sonrasında kalite kontrolü sağlanmalıdır.
7. KAYNAKLAR

- AAPM 2001. American Association of Physicists in Medicine Report 72: Basic Applications of Multileaf Collimators. USA.
- ALMOND, P.R., BIGGS, P.J., COURSEY, B.M. Et al.1999. AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. *Medical Physics*, 26(9):1847–1870.
- ASN 2007. Report Concerning the Radiotherapy Incident at the University Hospital Centre (CHU) in Toulouse Rangueil Hospital, Bordeaux.
- ATTIX, F.A. 1986. Introduction to Radiological Physics and Radiation Dosimetry. John Wiley & Sons, Inc.
- AZCONA, J.D., SIOCHI, R.A. and AZINOVIC, I. 2002. Quality assurance in YART: importance of the transmission through the jaws for an accurate calculation of absolute doses and relative distributions. *Medical Physics*, 29 (3): 269–274.
- BEISER, A., 1995. Modern Fiziğin Kavramları. Mc Graw-Hill, Inc. Çeviri: Gülsen Önengüt,1997, İstanbul-Ayhan Matbaası
- BEYZADEOĞLU, M., ÖZYİGİT, G. ve EBRULİ, C. 2008. Temel Radyasyon Onkolojisi. pp 550. Gülhane Askeri Tıp Akademisi Basınevi, Türkiye.
- BJÄRNGARD, B.E. and PETTI, P.L. 1988. Description of the scatter component in Photonbeam data. *Physics in Medicine and Biology*, 33 (1): 21–32.
- BOUCHARD, H. and SEUNTJENS, J. 2004 Ionization chamber-based reference dosimetry of intensity modulated radiation beams. *Medical Physics*, 31 (9): 2454–2465.
- BRADY, L.W., HEILMANN H.P. and MOLLS, M. 2006. New Technologies in Radiation Oncology. Springer, Germany.
- CHEN, F. A., CALSINO G.C.S., ALMEIDA A. Et al. 2007. Relative output factor and beam profile measurements of small radiation fields with an L-alanine/K-Band EPR minidosimeter. *Medical Physics* 34: 1573.
- CHARLES, P. H., SARGISON G. C., THWAITES, D. I., Et al. 2014. A practical and theoretical definition of very small field size for radiotherapy output factor measurements. *Medical Physics*, 41: 041707
- CHOW, J.C., SEGUIN, M. and ALEXANDER, A. 2005. Dosimetric effect of collimating jaws for small multileaf collimated fields. *Medical Physics*, 32 (3): 759–765.
- DAS, I.J., CHENG, C.W., WATTS, R.J., AHNESJÖ, A. Et al. 2008a. Accelerator beam data commissioning equipment and procedures: report of the TG-106 of the Therapy Physics Committee of the AAPM. *Medical Physics*, 35 (9): 4186–4215.

- DAS, I.J., DING, G.X. and AHNESJÖ, A. 2008b, Small fields: nonequilibrium radiation dosimetry. *Medical Physics*, 35 (1): 206–215.
- DAS, I.J., DOWNES, M.B., KASSAEE, A. and TOCHNER, Z. 2000. Choice of radiation detector in dosimetry of stereotactic radiosurgery-radiotherapy. *Journal of Radiosurgery*, 3: 177–185.
- DİNG, G.X., DUGGAN, D.M. and COFFEY, C.W. 2006. Commissioning stereotactic radiosurgery beams using both experimental and theoretical methods. *Physics in Medicine and Biology*, 51 (10): 2549–2566.
- DYK, J.V. 1999. The Modern Technology of Radiation Oncology. Medical Physics Publishing, 375 p.
- DUTREIX, J., DUTREIX, A. and TUBIANA, M. 1965. Electronic equilibrium and transition stages. *Physics in Medicine and Biology*, 10 (2): 177–190.
- EKLUND, K. and AHNESJÖ, A. 2008b. Fast modelling of spectra and stopping-power ratios using differentiated fluence pencil kernels. *Physics in Medicine and Biology*, 53 (16): 4231–4247.
- GRAVES, M.N., THOMPSON, A.V., MARTEL, M.K., Et al. 2001. Calibration and quality assurance for rounded leaf-end MLC systems. *Medical Physics*, 28 (11): 2227–2233.
- HARYANTO, F., FIPPEL, M., LAUB, W. Et al. 2002. Investigation of photon beam output factors for conformal radiation therapy-Monte Carlo simulations and measurements 47 (11): 0031-9155
- HENDEE W.R., IBBOTT G.S., 1996. Radiation Therapy Physics, Mosby, St Louis, MI. British Journal of Radiology (BJR), Supplement 25, 1996. Central Axis Depth Dose Data for Use in Radiotherapy.
- HOROWITZ, Y.S., OSTER, L., and DATZ, H. 2007. The Thermoluminescence Dose-Response and Other Charasteristic of the High Temperature TL in LiF:Mg,Ti (TLD-100), *Radiat. Prot. Dosimetry*, 124(2):191-205.
- IAEA 1997. The International Atomic Energy Agency Report 277: Absorbed Dose Determination in External Beam Radiotherapy: an International Code of Practice for Dosimetry Based on Standards of Absorbed Dose To Water, Vienna.
- IAEA 2000. The International Atomic Energy Agency Report 398: Absorbed Dose Determination in External Beam Radiotherapy: an International Code of Practice for Dosimetry Based on Standards of Absorbed Dose To Water, Vienna.
- IAEA, International Atomic Energy Agency 2005 Radiation oncology physics. e.b. Podgorsak (Editor), A handbook for teachers and students, pp. 20 – 43, VIENNA

- IAEA 2008. The International Atomic Energy Agency TEC-DOC 1588: Transition From 2-D Radiotherapy to 3-D Conformal and Intensity Modulated Radiotherapy. Vienna.
- IEC (1989) Medical Electrical Equipment Medical Electron Accelerators Functional Performance Characteristics 62C – Equipment for Radiotherapy, Nuclear Medicine and Radiation Dosimetry. IEC60976. IEC, Geneva, Switzerland.
- IPSM, 1990. Code of Practice for high-energy photon therapy dosimetry based on the NPL absorbed dose calibration service. *Physics in Medicine and Biology*, 35 (10): 1355–1360.
- IPEM, 2010. Institute of Physics and Engineering in Medicine, Small field MV Photon Dosimetry, Raport number: 103.
- JAFFRAY, D.A., Battista, J.J., Fenster, A. and Munro, P. 1993. X-ray sources of medical linear accelerators: focal and extra-focal radiation. *Medical Physics*, 20 (5): 1417–1427.
- JOHNS, H.E. 1983. The Physics of Radiology, pp. 576, U.S.A.
- JOHNS H.E., CUNNINGHAM J.R., 1984. The Physics of Radiology, Thomas, Springfield II.
- KHAN, F.M. 2003. The Physics of Radiation Therapy. Williams&Williams, 560, USA
- KHAN, F.M. 2010. The Physics of Radiation Therapy, The 4th Edition. Lippincott Williams & Wilkins Company, USA.
- KLEIN, DAVID M., and TAILOR, R. C., ARCHAMBAULT, L., et al. 2010. Measuring output factors of small fields formed by collimator jaws and multileaf collimator using plastic scintillation detectors, *Medical Physics*, 37 (10): 5541-9
- LEE, MOON-SING, LIAO WAN-TING, LO SU-HUA, et al. 2004. Characterization of Delivery Systems for Intensity Modulated Radiation Therapy Using a Stepand-Shoot Approach, *Tzu. Chi. Med J.*, 16: 377-388.
- LI, X.A., SOUBRA, M., SZANTO, J. and GERIG, L.H. 1995. Lateral electron equilibrium and electron contamination in measurements of head-scatter factors using miniphantoms and brass caps. *Medical Physics*, 22 (7): 1167–1170.
- LYDON, J.M. 2005. Theoretical and experimental validation of treatment planning for narrow MLC defined photon fields. *Physics in Medicine and Biology*, 50 (11): 2701–2714.
- LI, S., MEDIN, P., PILLAI, S. and SOLBERG, T. 2006. Analysis of photon beam data from multiple institutions: An argument for reference data. *Medical Physics*, 33:1991.

- MADCALSE, P., KRON, T.and HOBAN, P. 2002. The Physics Of Radiotherapy X-Ray from Linear Accelerators. *Medical Physics Publishing*, p. 493, Madison Wiscansin
- MARTENS, C., WAGTER, C. De., and NEVE, W. De. 2000. The value of the PinPoint ion chamber for characterization of small field segments used in intensitymodulated radiotherapy, *Physics in Medicine and Biology*, 45: 2519–2530.
- MCKINLAY, A.F. 1981. Thermoluminescence Dosimetry-Medical Physics Handbook 5, Adam Hilger, pp. 118.
- MICHALSKİ, J.M., PEREZ, C.A., PURDY, J.A., 1996, Three- Dimensional conformal radiation therapy (3DCRT) for prostate cancer
- MONK, J.E., PERKS, J.R., DOUGHTY, D., PLOWMAN, P.R. 2003. Comparison of a micro-MLC with a 5 mm leaf-width collimator for intracranial stereotactic radiotherapy, *Int. J. Radiation Oncology Biol. Phys.*, 57 (5): 1443–1449.
- NUTTING, C., DEARNALEY, D.P. and WEBB, S. 2000. Intensity Modulated Radiation Therapy: A Clinical Review. *Br. J. Radiol.*, 73: 459-469.
- NIZIN, P.S. and CHANG, X.S. 1991. Primary dose in photon beams with lateral electron disequilibrium. *Medical Physics*, 18 (4): 744–748.
- NIZIN, P.S. 1993. Electronic equilibrium and primary dose in collimated photon beams. *Medical Physics*, 20 (6): 721–1729.
- NILLA, S., TUCKING, T., MUNTER, M. W., OELFKEA, U. 2005. Intensity modulated radiation therapy with multileaf collimators of different leaf widths: a comparison of achievable dose distributions. *Radiotherapy and Oncology*, 75: 106–111.
- PALTA, JATINDER R., YEUNG, et al. 1996. Dosimetric considerations for a multileaf collimator system *Medical Physics*, 23:1219
- PEREZ, C. A. Brady, L. W. ve Roti, J. L.1998. In principles and practise of radiation oncology, Philadelphia PA: Lippincott-Raven
- PEREZ, C.A., BRADY, L.W. and HALPERIN, E.C. 2008. Perez and Brady's Principles and Practice of Radiation Oncology, 5th Edition. Lippincott Williams & Wilkins Company, USA.
- PODGORSAK, B.E. 2005. Radiation Oncology Physics: A Handbook For Teachers And Students. International Atomic Energy Agency (IAEA), Vienna.
- PODGORSAK, B.E. 2006. Radiation physics for medical physicists. Springer, Germany.
- PURDY, J.A. 1997. Advances in three-dimensional treatment planning and conformal dose delivery. *Seminars in Oncology*, 24 (6): 655-71.

- RICHMOND, N., BRACKENRİDGE, R. 2014. A comparison of small-field tissue phantom ratio data generation methods for an Elekta Agility 6MV photon beam, *Medical Dosimetry*, 39 (1): 60–63
- ROGERS, D.W.O., FADDEGON, B.A., DİNG, G.X., MA, C.M., WE, J. and MACKİE, T.R. 1995. BEAM: A Monte Carlo code to simulate radiotherapy treatment units. *Medical Physics*, 22 (5): 503–524.
- RYAN E. 2009 Practical Radiotherapy, (Editor) Cherry P, Duxbury A.M, Physics and Equipment, Chapter 2, pp. 16-25, UK
- SANCHEZ-DOBLADO, F., ANDREO, P., CAPOTE, R., et al. 2003. Ionization chamber dosimetry of small photon fields: a Monte Carlo study on stoppingpower ratios for radiosurgery and YART beams. *Physics in Medicine and Biology*, 48 (14): 2081–2099.
- SARGISON, G. C., WESTON, S., SIDHU NARINDER P. et al. 2011. Experimental small field 6 MV output ratio analysis for various diode detector and accelerator combinations. *Radiotherapy and Oncology*, 100 (3): 429–435
- SHARMA, S.D., 2011. Unflattened photon beams from the standard flattening filter free accelerators for radiotherapy: Advantages, limitations and challenges. *Med Phys.* 36(3): 123–125.
- SHEIKH-BAGHERI, D. and ROGERS, D.W. 2002b. Sensitivity of megavoltage photon Beam Monte Carlo simulations to electron beam and other parameters. *Medical Physics*, 29 (3): 379–390.
- SHIH R., LI XA, CHU JC, HSU WL. 1999. Calculation of head scatter factors at isocenter or at center of field for any arbitrary jaw setting. *Med Phys.*, 26 (4): 506-11.
- SIXEL, KATHARİNA E. and PODGORSAK, ERVİN B. 1994. Buildup region and depth of dose maximum of megavoltage xray beams. *Medical Physics*, 21: 411
- STASI, M., BAIOTTO, B., BARBONİ, G., and SCIELZO, G. 2004. The behavior of several microionization chambers in small intensity modulated radiotherapy fields. *Medical Physics*, 31: 2792.
- TAYLOR, N. T., & FRANCIS, 1995. Measurement and Detection of Radiation Second Edition, Taylor&Francis
- VERHEY, L.C. 1999. Comparison of Three-Dimensional Conformal Radiation Therapy and Intensity-Modulated Radiation Therapy Systems. *Semin. Radiat. Oncol.*, 9 (1): 78–98.
- VERHEY, L.C. 2002. Issues in Optimization for Planning of Intensity-Modulated Radiation Therapy. *Semin. Radiat. Oncol.*, 12 (3): 210-218.

- VERHAEGEN, F., DAS, I.J. and PALMANS, H. .1998. Monte Carlo dosimetry study of a 6 MV stereotactic radiosurgery unit. *Physics in Medicine and Biology*, 43 (10): 2755–2768.
- WANG, L.L. and LESZCZYNSKİ, K. 2007. Estimation of the focal spot size and shape for a medical linear accelerator by Monte Carlo simulation. *Medical Physics*, 34 (2): 485–488.
- WILLIAMS, M.J. and METCALFE, P. 2006. Verification of a rounded leaf-end MLC model used in a radiotherapy treatment planning system. *Physics in Medicine and Biology*, 51 (4): N65–N78.
- WU, A., ZWİCKER, R.D., KALEND, A.M. and ZHENG, Z. 1993. Comments on dose measurements for a narrow beam in radiosurgery. *Medical Physics*, 20 (3): 777–779.
- YIN, Z., HUGTENBURG, R.P. and BEDDOE, A.H. 2004. Response corrections for solid-state detectors in megavoltage photon dosimetry. *Physics in Medicine* and Biology, 49 (16): 3691–3702.
- ZHU, TIMOTHY C., BJÄRNGARD, BENGT E., and SHACKFORD, HOBART, 1995. Xray source and the output factor. *Medical Physics* 22: 793

8. EKLER

8.1. Tüm Alanlar için Merkezi Eksende Yüzde Derin Doz Eğrileri

Şekil 8.1. Tüm Alanlar için Merkezi Eksende Yüzde Derin Doz Eğrileri

8.2. Tüm Alanlar için Merkezi Eksende Demet Profilleri

Şekil 8.2. Tüm alanların Merkezi eksende (a) d_{Dmax} derinliğinde, (b) 10 cm derinlikte ve (c) 20 cm derinlikte demet profilleri

Şekil 8.2'nin devamı: (b) 10 cm derinlikte ve (c) 20 cm derinlikte demet profilleri

Merkezi eksen (mm)

00000

-20

-40

-80

-60

22000000

40

60

80

20

8.3. Çalışmaya Alınan Alanların Kaydırma Düzlemlerindeki Yüzde Derin Doz Eğrilerinden Elde Edilen Verileri

(a)	6x6 cm ² alan X2 kayması (cm)						
X2 kayması (cm)	d _{Dmax} (mm)	D ₁₀ (%)	Fark %	D ₂₀ (%)	Fark %	D_{20}/D_{10}	Fark %
0	18,9	65,8	0,0	37,1	0,0	0,564	0,0
2	14,9	64,4	2,1	36,6	1,3	0,568	0,8
4	14,9	64,2	2,4	36,5	1,6	0,569	0,8
6	16,8	63,9	2,9	36,0	3,0	0,563	0,1
8	16,8	63,9	2,9	36,0	3,0	0,563	0,1
10	14,9	62,9	4,4	35,0	5,7	0,556	1,3
12	14,9	62,9	4,4	35,0	5,7	0,556	1,3
Ortalama	16,01	64,0		36,0		0,563	
SD	1,56	0,010		0,008		0,005	
Fark (max-min)	4	0,03		0,02		0,00	
(b)		6x6	$5 \mathrm{cm}^2 \mathrm{alar}$	n Y1 kayn	nası (cm)		
Y1 kayması (cm)	d _{Dmax} (mm)	D ₁₀ (%)	Fark %	D ₂₀ (%)	Fark %	D_{20}/D_{10}	Fark %
0	18,9	65,8	0,0	37,1	0,0	0,564	0,0
2	18,9	64,4	2,1	37,1	0,0	0,576	2,2
6	16,9	64,2	2,4	36,4	1,9	0,567	0,6
10	16,9	63,9	2,9	35,2	5,1	0,551	2,3
12	16,9	63,9	2,9	34,8	6,2	0,545	3,4
Ortalama	17,70	64,4		36,1		0,558	
SD	1,10	0,008		0,011		0,008	
Fark (max-min)	2	0,02		0,02		0,02	
			2				
(c)		6x6 cn	n² alan D	iagonal ka	ayması (c	m)	
Diagonal	d _{Dmax} (mm)	D ₁₀ (%)	Fark %	D ₂₀ (%)	Fark %	D_{20}/D_{10}	Fark %
<u>kaymasi (cm)</u>	10.0	65 0	0.0	27.1	0.0	0.564	0.0
0	16,9	03,8 65 2	0,0	37,1 27.1	0,0	0,304	0,0
2	10,9	64.0	0,9	57,1 0.25	1,1	0,505	0,2
0	14,9	04,0 62.5	2,1 5.0	0,35	4,9 0 <i>C</i>	0,352	2,2 2 8
10	14,9	02,3 62.2	5,0	0,34	0,0 10 1	0,342	3,8 7.0
	14,9	02,2	5,5	0,33	12,1	0,524	7,0
Ortalama	16,10	63,9		0,351		0,546	
SD	1,79	0,016		0,019		0,017	
Fark (max-min)	4	0,04		0,05		0,04	

Çizelge 8.1. 6x6 cm² alanın (a) X2 düzlemindeki kaymalar için (b) Y1 düzlemindeki kaymalar için (c) Diagonal düzlemdeki kaymalar için elde edilen veriler

(a)	4x4 cm ² alan X2 kayması (cm)						
X2 kayması (cm)	d _{Dmax} (mm)	D ₁₀ (%)	Fark %	D ₂₀ (%)	Fark %	D20/D ₁₀	Fark %
0	16,9	63,6	0,0	35,4	0,0	0,557	0,0
2	16,9	63,1	0,8	35,0	1,1	0,555	0,3
6	16,8	62,2	2,2	33,5	5,4	0,539	3,2
10	16,8	60,4	5,0	23,4	33,9	0,387	30,4
12	14,9	59,7	6,1	11,6	67,2	0,194	65,1
Ortalama	16,46	61,8		27,8		0,446	
SD	0,87	0,017		0,103		0,158	
Fark (max-min)	2	0,04		0,24		0,36	
			-				
(b)		4x4	4 cm ² alai	n Y1 kayr	nası (cm)		
Y1 kayması (cm)	d _{Dmax} (mm)	D ₁₀ (%)	Fark %	D ₂₀ (%)	Fark %	D_{20}/D_{10}	Fark %
0	16,9	0,636	0,0	0,354	0,0	0,557	0,0
2	16,9	0,636	0,0	0,352	0,6	0,553	0,6
6	16,9	0,631	0,8	0,346	2,3	0,548	1,5
10	16,9	0,617	3,0	0,320	9,6	0,519	6,8
12	16,8	0,614	3,5	0,274	22,6	0,446	19,8
Ortalama	16,88	0,627		0,329		0,525	
SD	0,04	0,011		0,034		0,046	
Fark (max-min)	0,1	0,02		0,08		0,11	
(a)		4x4 cm	n ² alan Di	iagonal ka	ayması (cı	n)	
Diagonal kayması (cm)	d _{Dmax} (mm)	D ₁₀ (%)	Fark %	D ₂₀ (%)) Fark %	D_{20}/D_{10}	Fark %
0	16,9	63,6	0,0	35,4	0,0	0,557	0,0
2	16,8	63,0	0,9	34,5	2,5	0,548	1,6
6	16,9	61,9	2,7	33,2	6,2	0,536	3,6
10	14,9	59,7	6,1	20,5	42,1	0,343	38,3
12	12,9	56,8	10,7	06,1	82,8	0,107	80,7
Ortalama	15,68	61,0		25,9		0,418	
SD	1,77	0,028		0,126		0,195	
Fark (max-min)	4	0,07		0,29		0,45	

Çizelge 8.2. 4x4 cm² alanın (a) X2 düzlemindeki kaymalar için (b) Y1 düzlemindeki kaymalar için (c) Diagonal düzlemdeki kaymalar için elde edilen veriler

8.4. Çalışmaya Alınan Alanların Kaydırma Düzlemlerindeki Demet Profillerinden Elde Edilen Veriler

Çizelge 8.3. 6x6 cm² alanın crossline profilinin (a) X2 kayma miktarlarında (b) Y1 kayma miktarlarında (c) Diagonal kayma miktarlarında elde edilen veriler

(a)	62	x6 cm ² ala	n X2 kay	ması (cm)	– Crossli	ne Profili	
X2 kayması (cm)	D_{max} (%)	D ₁₀ (%)	Fark %	D ₂₀ (%)	Fark %	D_{20}/D_{10}	Fark %
0	100	65,7	0,0	37,4	0,0	0,564	0,0
2	100	65,3	0,8	36,9	0,4	0,566	0,4
4	100	65,0	1,3	36,7	1,2	0,564	0,1
6	100	64,8	1,5	36,4	2,0	0,561	0,5
8	100	64,1	2,6	35,7	3,9	0,556	1,4
10	100	63,8	3,0	35,4	4,7	0,554	1,8
12	100	63,4	3,6	35,0	5,8	0,551	2,3
(b)	6	x6 cm² ala	ın Y1 kay	ması (cm)) - Crossli	ne Profili	
Y1 kayması (cm)	D_{max} (%)	$D_{10}(\%)$	Fark %	D ₂₀ (%)	Fark %	D_{20}/D_{10}	Fark %
0	100	65,8	0,0	37,1	0,0	0,564	0,0
2	100	65,6	0,3	37,1	0,1	0,566	0,4
6	100	65,4	0,6	36,8	0,8	0,563	0,2
10	100	64,2	2,5	35,4	4,5	0,552	2,1
12	100	63,8	3,0	35,0	5,7	0,548	2,8
(c)	6x6 cm ² alan Diagonal kayması (cm) - Crossline Profili				ili		
Diagonal kayması (cm)	D _{max} (%)	D ₁₀ (%)	Fark %	D ₂₀ (%)	Fark %	D_{20}/D_{10}	Fark %
0	100	65,7	0,0	37,4	0,0	0,57	0,0
2	100	65,2	0,9	36,8	0,8	0,56	0,1
6	100	64,2	2,4	35,5	4,3	0,55	1,9
10	100	63,1	4,1	34,3	7,6	0,54	3,7
12	100	62,8	4,6	34,0	8,4	0,54	4,0

Çizelge 8.4. 4x4 cm² alanın crossline profilinin (a) X2 kayma miktarlarında elde edilen veriler

(a)	4x4 cm ² alan X2 kayması (cm) - Crossline Profili						
X2 kayması (cm)	D _{max} (%)	D ₁₀ (%)	Fark %	$D_{20}(\%)$	Fark %	D_{20}/D_{10}	Fark %
0	100	63,6	0,0	35,4	0,0	0,557	0,0
2	100	63,4	0,3	35,2	0,7	0,554	0,4
6	100	62,7	1,4	34,4	2,8	0,549	1,4
10	100	61,8	2,8	33,4	5,6	0,541	2,8
12	100	61,3	3,6	33,1	6,6	0,539	3,1

(b)	4x4 cm ² alan Y1 kayması (cm) - Crossline Profili						
Y1 kayması (cm)	D _{max} (%)	D ₁₀ (%)	Fark %	$D_{20}(\%)$	Fark %	D_{20}/D_{10}	Fark %
0	100	63,5	0,0	35,3	0	0,556	0,0
2	100	63,8	0,3	35,3	0,3	0,553	0,6
6	100	63,0	0,9	34,7	2	0,551	1,1
10	100	61,8	2,8	32,1	9,3	0,519	6,7
12	100	61,2	3,8	27,4	22,5	0,448	19,5
(c)	4x4 cm ² alan Diagonal kayması (cm) - Crossline Profili					11	
(•)	14.1	ululi L	Jugonari	kayinasi (C	m = Cros	sinc rion	111
Diagonal kayması (cm)	D_{max} (%)	D_{10} (%)	Fark %	D_{20} (%)	Fark %	D_{20}/D_{10}	Fark %
Diagonal kayması (cm) 0	D _{max} (%)	$\frac{D_{10}(\%)}{63,5}$	Fark %	$\frac{D_{20}(\%)}{35,3}$	Fark %	$\frac{D_{20}/D_{10}}{0,556}$	Fark %
Diagonal kayması (cm) 0 2	D _{max} (%) 100 100	$ \begin{array}{r} D_{10} (\%) \\ \hline 63,5 \\ 63,2 \end{array} $	Fark %	$ \begin{array}{r} D_{20} (\%) \\ \hline 35,3 \\ 35,0 \end{array} $	Fark % 0,0 1,0	$ \begin{array}{r} D_{20}/D_{10} \\ \hline 0,556 \\ 0,555 \end{array} $	Fark %
Diagonal kayması (cm) 0 2 6	D _{max} (%) 100 100 100	$ \begin{array}{r} D_{10} (\%) \\ \hline 63,5 \\ 63,2 \\ 62,2 \\ \end{array} $	Fark % 0,0 0,7 2,3	$ \begin{array}{r} D_{20} (\%) \\ \hline 35,3 \\ 35,0 \\ 33,9 \end{array} $	Fark % 0,0 1,0 4,3	$\frac{D_{20}/D_{10}}{0,556}$ 0,555 0,545	Fark % 0,0 0,3 2,1
Diagonal kayması (cm) 0 2 6 10	D _{max} (%) 100 100 100 100	$ \begin{array}{c} \text{D}_{10} (\%) \\ \hline 63,5 \\ 63,2 \\ 62,2 \\ 60,7 \\ \end{array} $	Fark % 0,0 0,7 2,3 4,6	$ \begin{array}{r} D_{20} (\%) \\ \hline 35,3 \\ 35,0 \\ 33,9 \\ 31,1 \end{array} $	Fark % 0,0 1,0 4,3 12,1	$\begin{array}{c} D_{20}/D_{10}\\ \hline 0,556\\ 0,555\\ 0,545\\ 0,513\\ \end{array}$	Fark % 0,0 0,3 2,1 7,8

Çizelge 8.4.'ün devamı: (b) Y1 kayma miktarlarında (c) Diagonal kayma miktarlarında elde edilen veriler

8.5. Çalışmaya Alınan Alanların Kaydırma Düzlemlerindeki Demet Profillerinden Elde Edilen Sağ ve Sol Penumbra Verileri

Çizelge 8.5. 6x6 cm² alanın 10 cm derinlikte crossline ve inline profillerinden (a) X2 kayma miktarlarında (b) Y1 kayma miktarlarında (c) Diagonal kayma miktarlarında elde edilen sağ ve sol penumbra değerleri

(a)	Alan 6x6 cm ²	Crossline	Inline
е	X2 Kayması (cm)	Sağ-Sol Penumbra (mm)	Sağ-Sol Penumbra (mm)
ikt	0	7,0-6,8	5,3-5,4
inl	2	7,3 - 6,7	5,3-5,4
der	4	7,6 - 6,7	5,4 - 5,6
Ĕ	6	7,6 - 6,7	5,4 - 5,4
0 C	8	7,4 - 6,5	5,4 - 5,4
T	10	7,7 - 6,6	5,3 - 5,3
	12	7,7 - 6,7	5,3 -5,2

(b)	Alan 6x6 cm ²	Crossline	Inline
ikte	Y1 Kayması (cm)	Sağ-Sol Penumbra (mm)	Sağ-Sol Penumbra (mm)
İni	0	7,0-6,8	5,3-5,4
der	2	7,1 - 6,8	5,3 - 5,6
B	6	7,2 - 6,7	5,3 - 27,8
0 C	10	7,2 - 6,6	5,4 - 33,4
Ħ	12	7,1 - 6,6	5,4 - 30,4

Çizelge 8.5.'in devamı: (b) Y1 kayma miktarlarında (c) Diagonal kayma miktarlarında

(c)	Alan 6x6 cm ²	Crossline	Inline
e	Diagonal Kayması	Sağ-Sol Penumbra	Sağ-Sol Penumbra
ikt	(cm)	(mm)	(mm)
inl	0	7,0-6,8	5,3-5,4
der	2	7,2 - 6,7	5,3 - 5,5
ŭ	6	7,4 - 6,4	6,0-6,8
) C	10	7,7 - 6,7	5,3 - 7,9
1	12	7,7 - 6,9	5,4-7,3

Çizelge 8.6. 4x4 cm² alanın 10 cm derinlikte crossline ve inline profillerinden (a) X2 kayma miktarlarında (b) Y1 kayma miktarlarında elde edilen sağ ve sol penumbra değerleri

(a)	Alan 4x4 cm ²	Crossline	Inline
ikte	X2 Kayması (cm)	Sağ-Sol Penumbra (mm)	Sağ-Sol Penumbra (mm)
inl	0	6,8 - 6,6	4,9 - 4,9
der	2	6,9 - 6,2	4,9 - 4,9
B	6	6,8 - 6,1	5,0 - 5,0
0 C	10	7,1 -5,7	5,0 - 5,0
H	12	7,0 - 6,0	4,8 - 5,0

(b)	Alan 4x4 cm ²	Crossline	Inline
ikte	Y1 Kayması (cm)	Sağ-Sol Penumbra (mm)	Sağ-Sol Penumbra (mm)
inl	0	6,8 - 6,6	4,9 - 4,9
der	2	6,8 - 6,3	5,0 - 5,0
m	6	6,9 - 6,2	4,9 - ?
0 C	10	7,0 - 6,1	4,9 - ?
Ē	12	7,1 - 6,2	4,9 - ?

(c)	Alan 4x4 cm ²	Crossline	Inline
te	Diagonal Kayması	Sağ-Sol Penumbra	Sağ-Sol Penumbra
lik	(cm)	(mm)	(mm)
.in	0	6,8 - 6,6	4,9 - 4,9
der	2	6,8 - 6,0	5,0 - 5,0
Ē	6	6,8 - 6,1	4,8 - ?
0 0	10	6,9 - 6,1	4,8 - ?
Ĩ	12	9,4 - 7,7	4,7 - ?

Çizelge 8.6.'nın devamı: (c) Diagonal kayma miktarlarında

ÖZGEÇMİŞ

Hülya ÖZDEMİR, 12.12.1988 yılında Ankara'da doğdu. İlk, orta ve lise eğitimini Ankara'da tamamladı. 2006 yılında girdiği Akdeniz Üniversitesi Fen Fakültesi Fizik Bölümü'nden derece yaparak Onur Belgesi aldı ve Bölüm Birincisi olarak 2010 yılında mezun oldu. 2011 yılında Akdeniz Üniversitesi Fen Fakültesi Fizik Bölümü'nden Yüksek Lisans derecesinde okumaya hak kazandı. Yüksek Lisans eğitimi süresince Stuttgart/Almanya'da Klinikum Stuttgart kliniğinde 3 ay staj yaptı ve Akdeniz Üniversitesi Tıp Fakültesi Radyasyon Onkolojisi Anabilim Dalı'nda araştırma görevlisi olarak bulundu. 2014 yılı içerisinde Denizli Devlet Hastanesi Radyoterapi Merkezinde sağlık fizikçisi olarak çalıştı. Ayrıca, 2014 yılından beri özel bir firmada sağlık fizikçisi olarak çalışmaktadır.